

International Summer School Manipal University Jaipur [ISSMUJ]-2022

Project Overview

Name of Project: Synthesis and characterisation of high performance bioactive glassceramic nano-particulates and their applications in composite bone implants

Name of instructor: Dr. Vijay Shankar Kumawat

Session: June-July 2022

Language of instruction: English Number of contact hours: 36

Credit awarded: 03

Objective of Project

At the end of this project, participates will be able to:

- 1. Describe the fundamental idea, principles, and uses of glass and glass-ceramic materials in biomedical applications.
- 2. Hands-on experience with sophisticated research equipment employed in the synthesis of glasses and glass-ceramics.
- 3. Hands-on experience with glass melting, fritting, and heat treatment to convert glass to glass ceramics, as well as a top-to-bottom ball milling strategy to manufacture nano particles.
- 4. Understanding of current R&D initiatives and employment possibilities in the field of bioactive engineered materials, as well as their application in the development of next-generation composite bone implants via 3D printing techniques.
- 5. Extensive hands-on experience with material characterisation techniques used in nanomaterials and composite bone implants.

Syllabus

- o Biomaterials (bioactive glasses and glass-ceramics, biodegradable polymers and bionanocomposites) and their applications in tissue engineering applications.
- o Bone structure, composition, fractures and healing mechanism.
- Natural bone implants, synthetic bone implants, and the optimal property criteria for each.
- Synthesis, fabrication and characterisation techniques for development of bioactive glasses and glass-ceramics nano-reinforcements.
- Hands-on experience with high temperature glass melting furnaces, heat-treatment tube furnace and cryo-ball milling machine to manufacture glass and glass-ceramic nano particles.
- Conceptualization and practical learning with advanced 3D printers utilised in the manufacture of complex-shaped composite bone implants.

Organization of Project

Total contact hrs 36					
1st week:	10 hrs (theory/research experiments)	2 hrs (self-study/project)			
	10 hrs	2 hrs			
2nd	(theory/research	(Mid-term presentation/assessment/discussion based on			
week:	experiments)	review/experimental research paper writing)			
		2 hrs			
3rd	10 hrs (classes)	(End term presentation/review/experimental research paper			
week:		draft submission)			

Mode of lectures: online lecture/online videos/ workshop/ hands-on experience

Course/Project Plan

Lecture no.	Topic	Lecture mode	Instructor
L: 1-6	 Engineering materials Biomaterials and their property correlation in tissue engineering (TE) applications Current scope and trend Synthesis, fabrication and characterisation techniques Understanding of current R&D initiatives and employment possibilities in the field of in the field of TE. 	PPT / Video	Dr. Vijay Shankar Kumawat
L: 7-12	 Live demonstration and hands on experience of glass batch preparation, glass melting/friting and heat-treatment of bulk glass 	PPT/ Live Video	Dr. Vijay Shankar Kumawat
L: 13- 18	 Live demonstration and hands on experience on characterisation of glass frits, nano-structured glass-ceramic particulates Paper writing & progress 	PPT/ Live Video	Dr. Vijay Shankar Kumawat
L: 19- 24	 Live demonstration and hands on experience on FDM, SLA based 3D printers towards development polymeric and composite of bone implants. 	PPT/ Live Video	Dr. Vijay Shankar Kumawat
L: 25- 30	 Live demonstration and hands on experience on characterisation techniques of polymeric and bio-nanocomposite samples. Progress of review/experimental paper writing 	PPT/ Live Video	Dr. Vijay Shankar Kumawat
L: 31- 36	End term project presentation /review & experimental research paper draft submission	PPT/ Live Video	Dr. Vijay Shankar Kumawat

Brief profile of the instructor

Dr. Vijay Shankar Kumawat

Assistant Professor | Department of Mechanical Engineering
Research Associate | Engineered Biomedical Materials Research and
Innovation Centre (EnBIOMatRIC) | BIONAC Research Lab
Manipal University Jaipur

Email: vijayshankar.kumawat@jaipur.manipal.edu

Ph: +91-90012-25135

