

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering

DEPARTMENT OF CHEMICAL ENGINEERING

PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

B.Tech – Chemical Engineering | Academic Year: 2019-20

PROGRAM OUTCOMES

- **[PO.I].Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- **[PO.2].Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3].Design/development of solutions**: Design solutions for complex engineering problems and <u>design system</u> <u>components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4].Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- **[PO.5].Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and</u> <u>IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- **[PO.6]. The engineer and society**: Apply reasoning informed by the <u>contextual knowledge to assess societal, health,</u> <u>safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7].Environment and sustainability**: Understand the <u>impact of the professional engineering solutions in societal</u> <u>and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8].Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- **[PO.9].Individual and team work**: Function effectively as an individual, and as a <u>member or leader in diverse teams</u>, and in multidisciplinary settings
- **[PO.10]. Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

PROGRAM SPECIFIC OUTCOMES

- **[PSO.I]. Concept to Commissioning:** The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.
- **[PSO.2].** Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.
- **[PSO.3]. Specialization:** Students will be specialized in the areas of petroleum, energy and environment related fields.

Program Articulation Matrix

	Subject Code	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CS1001	3	1	3									3			
	CS1030	3	1	3									3			
-	CV1001	3	3	2	3	3	2	2		3	2	3	3			
EM	CY1001	2	2	2		3		3	2		3		3			
ΣΩ.	CY1002	3	3	1	2	3	3	3	3	3		1	3			
	CY1030	2		2		3		3	2		3		3			
	EC1001	3	3	3	2	2	1	1					2			
	EE1001	3	2	1			1	1					3			
SEM II	LN1001		1				1		2	2	2	1				
	MA1101	3	3	2	3	3				3		3	1			
	ME1001	3	3	3	2		2	2								
	ME1002	3	3	3	2	3							2			
	ME1030	1	1			1		1		1		1	1			
	PY1001	3	3	3	2	2	2	2	2	2	2	2	2			
	PY1030	3	3	1	2	2	3	3	2	3	2	2	2			
-	BB1101						1	3	2	1	2	1	2			3
	MA1310	2	3	2	1	1	1	1		2	1	2	1			
H	CY 1321	3	2	2	2	3	2	2	1	2	1	2	2		1	1
IW	CE1305	3	2	2	2	1	2	1	1	1			3	3	2	1
SE	CE1306	3	3	2	1		1	3	1	2	1	2	2	2	1	2
	CE1307	3	3	3	2		3		3	2	3	2	3	3	2	2
	CE1304	2	3	2	1	2	1	2	1	1	2	1	2	1	2	1
>	CE1405	3	3			3		2		2		2		3	2	
MIN	CE1406	3	3	2	1	1	3	1	1	3	2	2	1	3	3	2
SE	CE1407	3	3	1	1		2	2				2	3	3	1	

	CE1408	3	3	1		2	2	3	1	2	2	3	1	3	3	3
	CY1421	2	2	2		3		3	2		3		3	3	1	3
≤ Ξ Σ >	CE1505	3	3		1	2	2	3		3	2		1	3	2	1
	CE1506	3	2	3	2	1	2	1	1	1		1	2	3	1	2
	CE1507	2	3	1	2	1	2	2		2	2	1	2	2	3	1
	CE1553	2	2	1	1	2	1	2	1					2	1	3
	CE1554		3	1	1	3	2	3	1	1	1		1			3
	CE1604	1		2	3			2						2	1	1
	CE1605	3	3	1		2		2		2	2	1	1	3		2
ΙΛΙ	CE1606	3	3					1	2	3	2				1	
SEM	CE1653	2	2		1		2	2	2	3		2		2		3
	CE1654	3	3	2	3	2	3	3	3	2		3	1	3	2	3
	PS1601	1	2	2			3		1			1	3			
	CE1705	3	3	3	2	2	3	3		2	2	2	2	3	3	3
	CE1706	3	3	1		3		2	3	2	1	3		3	3	2
ПЛ	CE1707	3	3	3		3	1	1		2	1		1	3	2	
EM	CE1708		2	1	1				2	1	2	3		1	2	
	CE1753	2	1	2	1		3	2	1				1	1	1	2
	CE1754	3	3	3	3		2	3	1	1	2	2	2	3	3	3
Ш	CE1803	3	2			2			1	2		1	1	1	3	1
SE	CE1804	3	3	1		3	1	1		2	1	1	1	2	1	2
TOTAL		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

School of Computing and Information Technology

Course Hand-out

Problem Solving Using Computers

| CS 1001 | 3 Credits | 3 0 0 3

Session: 2019-20 (odd Sem.) | Faculty: Dr. Punit Gupta, Mr Nitesh Pradhan, Dr Shivani Gupta, Ms. Neha Sharma, Dr Hemlata Goyal, Mr Harish Sharma, Ms. Shikha Mundra, Ms. Vinita Soni | Class: B.Tech 1st Year

A. Introduction: Programming in C focuses on basic computer fundamentals, number system and programming fundamentals. By means of C language students learn to write set of instruction to create a program so that desire output can be generated by computer.

B. Course Outcomes: At the end of the course, students will be able to

[1001.1]. Demonstrate bitwise operations and conversion of numbers in different representations through Number System.

[1001.2]. Demonstrate a deep knowledge of computer for better understanding of devices, basic fundamental of computer comprises in this course.

[1001.3]. Design flow chart, Write algorithm and pseudo code parallel with Control Statements to understand flow of program execution.

[1001.4]. Create memory oriented operation using pointers and understating programming skills by Array, Structure, Union, Enum and String are added.

[1001.5]. Create program using concept of re-usability by means of functions in C.

[1001.6]. Illustrate the concept of data base by using file handling.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

[PO.I]. Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>,

and an engineering specialization to the solution of complex engineering problems

[PO.2]. Problem analysis: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

[PO.3]. Design/development of solutions: Design solutions for complex engineering problems and <u>design</u> <u>system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

[PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions

[PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern</u> <u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations

[PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess</u> societal.

<u>health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice

[PO.7]. Environment and sustainability: Understand the impact of the professional engineering solutions in

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

[PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the

engineering practices

[PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader in</u> diverse

teams, and in multidisciplinary settings

[PO.10]. Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

[PO.II]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects

and in multidisciplinary environments

[PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

Criteria	Description	Maximum Marks						
	Sessional Exam I (Close Book)	20						
Internal Assessment	Sessional Exam II (Close Book)	20						
(Summative)	In class Quizzes and Assignments ,	20						
	Activity feedbacks (Accumulated and							
	Averaged)							
End Term Exam	End Term Exam (Close Book)	40						
(Summative)								
	Total	100						
Attendance	Attendance A minimum of 75% Attendance is							
(Formative)	required to be maintained by a student							
	to be qualified for taking up the End							
	Semester examination. The allowance							
	of 25% includes all types of leaves							
	including medical leaves.							
Homework/ Home Assignment/	There are situations where a student	may have to work in home, especially						
Activity Assignment	before a flipped classroom. Although th	ese works are not graded with marks.						
(Formative)	However, a student is expected to participate and perform these assignments							
	with full zeal since the activity/ flipped classroom participation by a student will be							
	assessed and marks will be awarded.							

D. Assessment Plan:

E. SYLLABUS

Digital computer fundamentals: Algorithms and flowcharts, the von Neumann architecture, programs, assembly language, high level programming languages; Number System: binary, decimal, octal,

hexadecimal; Imperative programming (Using C): data types, variables, operators, expressions, statements, control structures, functions, arrays and pointers, recursion, records (structures), files, input/output, some standard library functions and some elementary data structures.

F. Text Books

TI. E. Balagurusamy, "Programming in ANSI C", 7th Edition, McGraw Hill Publication, 2016.

T2. Y. P. Kanetkar, "Let us C", 12th Edition, BPB Publication, 2014.

G. Reference Books

RI. B. W. Kernighan, D. M. Ritchie, "The C Programing Language", 2nd Edition, Prentice Hall of India, 2014.

RI. B. Gottfired, "Schaum's Outline Series: Programming with C", 3rd Edition, McGraw Hill Publication, 2012.

H. Lecture Plan:

lecture	Topics	Session	Mode of	Corresponding	Mode Of		
		Outcome	Delivery	со	Assessing CO		

	Number systems: decimal, binary, octal, hexadecimal, base-r conversions	To acquaint knowledge about basics of number system	Lecture	1001.1	Mid Term I, Quiz & End Term
2	Number systems: decimal, binary, octal, hexadecimal, base-r conversions	To acquaint knowledge about basics of number system	Flipped Classroom	1001.1	Mid Term I, Quiz & End Term
3	Basic architecture of computers and its building block	Describing basic architecture of computer	Lecture	1001.2	Mid Term I, Quiz & End Term
4	Computer languages: machine language, assembly language, high level language; translators: assembler, compiler, interpreter	Differentiate between machine language and high level language	Lecture	1001.2	Mid Term I, Quiz & End Term
5	Short history, character set, tokens	Describing basics of datatype, token and keywords with differentiation between them.	Guided Self- Study	1001.3	Mid Term I, Quiz & End Term
6	Constants (integer, real, character, string); variables, keywords	Describe and implementation of various contant type	Lecture	1001.3	Mid Term I, Quiz & End Term
7	Data types (table including range, memory and format specifier)	Implementation of various data type	Lecture	1001.3	Mid Term I, Quiz & End Term
8	Operators: arithmetic, relational, logical, assignment	Implementation of various arthematic operations	Lecture	1001.3	Mid Term I, Quiz & End Term
9	Bitwise, conditional, type-cast, sizeof, comma	Implementation of various operators	Lecture	1001.3	Mid Term I, Quiz & End Term
10	Operator precedence and associativity, type conversion	Implementation of precedence in programing	Activity (Think Pair Share)	1001.3	Mid Term I, Quiz & End Term
11	Operator precedence and associativity, type conversion	Implementation of precedence in programing	Lecture	1001.3	Mid Term I, Quiz & End Term
12	Input and output statements (formatted and unformatted) : printf, scanf	Implementation of input and output statements	Lecture	1001.3	Mid Term I, Quiz & End Term
3	Gets, puts, getchar, putchar	Implementation of input and output statements using system functions	Activity (Jigsaw)	1001.3	Mid Term I, Quiz & End Term
4	Decision statements: if, if-else, nested if-else, if-else ladder	Implementation of decision statements	Lecture	1001.3	Mid Term I, Quiz & End Term
15	Decision statements: if, if-else, nested if-else, if-else ladder	Implementation of decision statements	Lecture	1001.3	Mid Term I, Quiz & End Term

16	Switch, break statement	Learning the implementation of switch and break	Flipped Class	1001.3	Mid Term I, Quiz & End Term
17	Switch, break statement	Learning the implementation of switch and break	Lecture	1001.3	Mid Term I, Quiz & End Term
18	Repetitive structures: for, while, do-while	Learning the implementation of looping	Lecture	1001.3	Mid Term II, Quiz & End Term
19	Repetitive structures: for, while, do-while	Learning the implementation of looping	Lecture	1001.3	Mid Term II, Quiz & End Term
20	Nested loops	Learning the implementation of looping	Activity (Think Pair Share)	1001.3	Mid Term II, Quiz & End Term
21	Nested loops	Learning the implementation of looping	Lecture	1001.3	Mid Term II, Quiz & End Term
22	Continue and break statements	Describe the usage of continue and break	Lecture	1001.3	Mid Term II, Quiz & End Term
23	Continue and break statements	Describe the usage of continue and break	Lecture	1001.3	Mid Term II, Quiz & End Term
24	I-D array: definition, declaration, initialization, input array, output array	Describe and define array of various data type	Lecture	1001.4	Mid Term II, Quiz & End Term
25	I-D array: definition, declaration, initialization, input array, output array	Describe and define array of various data type	Lecture	1001.4	Mid Term II, Quiz & End Term
26	I-D character array: character array, string, string standard function	Describe and define array of various data type	Lecture	1001.4	Mid Term II, Quiz & End Term
27	I-D character array: character array, string, string standard function	Describe and define array of various data type	Lecture	1001.4	Mid Term II, Quiz & End Term
28	I-D character array: character array, string, string standard function	Describe and define array of various data type	Lecture	1001.4	Mid Term II, Quiz & End Term
29	2-D array: definition, declaration, initialization, input array, output array, one simple program	Describe and define array of various data type	Lecture	1001.4	Mid Term II, Quiz & End Term
30	2-D array: definition, declaration, initialization, input array, output array, one simple program	Describe and define array of various data type	Lecture	1001.4	Mid Term II, Quiz & End Term
31	2-D array: definition, declaration, initialization, input array, output array, one simple program	Describe and define array of various data	Lecture, Activity	1001.4	Mid Term II, Quiz & End Term

32	Pointers: introduction	Describe functionality of pointers in programming'	Lecture	1001.4	Mid Term II, Quiz & End Term
33	I-D Array and pointer	Implementation of ID array with pointer	Lecture	1001.4	Mid Term II, Quiz & End Term
34	Functions: introduction to functions	Describe importance of fuction and modular programming	Lecture, Activity	1001.5	Mid Term II, Quiz & End Term
35	Function prototype, call, definition	Describe importance of fuction and modular programming	Lecture	1001.5	Mid Term II, Quiz & End Term
36	Storage classes	Describe usage of storage classes	Lecture	1001.5	Mid Term II, Quiz & End Term
37	Structures: definition, declaration, initialization, array of structures	Describe usage of structures	Lecture	1001.4	Quiz & End Term
38	Structures: definition, declaration, initialization, array of structures	Describe usage of structures	Lecture	1001.4	Quiz & End Term
39	Union, difference between union and structures	Describe usage of union	Lecture	1001.4	Quiz & End Term
40	File handling: introduction, operations on files, opening modes	Describe usage of file handling with various operations and modes	Lecture	1001.6	Quiz & End Term
41	File handing function	Describe usage of file handling with various operations and modes	Lecture	1001.6	Quiz & End Term
42	File handing function	Describe usage of file handling with various operations and modes	Lecture	1001.6	Quiz & End Term

I. Course Articulation Matrix: (Mapping of COs with POs)

		CORRELATION WITH PROGRAM OUTCOMES											
СО	STATEMENT	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 10	PO I I	PO 12
	STATEMENT	Ι	2	3	4	5	6	7	8	9			
CS 1001.1:	Understand bitwise operations and conversion of numbers in different representations through Number System.	2											1
CS 1001.2:	Described a deep knowledge of computer for better understanding of devices, basic fundamental of computer comprises in this course.	2											
CS 1001.3:	Design flow chart, Write algorithm and pseudo code parallel with Control Statements to understand flow of program execution.	2		1									2
CS 1001.4:	Developing ability in students to learn memory oriented operation using pointers and understating programming skills by Array, Structure, Union, Enum and String are added.	3	1	3									2
CS 1001.5:	Students learnt the concept of reusability by means of functions in C.	3		3									3
CS 1001.6:	Illustrate the concept of data base by using file handling.	3											Ι

School of Computing and Information Technology

Course Hand-out

Problem Solving Using Computers Lab | CS 1030 | 1 Credit | 0 0 1 1

Session: 2019-20 (odd Sem.) | Faculty: Dr. Punit Gupta, Mr Nitesh Pradhan, Dr Shivani Gupta, Ms. Neha Sharma, Dr Hemlata Goyal, Mr Harish Sharma, Ms. Shikha Mundra, Ms. Vinita Soni | Class: B.Tech 1st Year

- **A.** Introduction: Problem Solving Using Computers focuses on basic computer fundamentals, number system and programming fundamentals. By means of C language students learn to write set of instruction to create a program so that desire output can be generated by computer.
- **B. Course Outcomes:** At the end of the course, students will be able to

[1030.1]. Demonstrate bitwise operations and conversion of numbers in different representations through Number System.

[1030.2]. Demonstrate a deep knowledge of computer for better understanding of devices, basic fundamental of computer comprises in this course.

[1030.3]. Design flow chart, Write algorithm and pseudo code parallel with Control Statements to understand flow of program execution.

[1030.4]. Create memory oriented operation using pointers and understating programming skills by Array, Structure, Union, Enum and String are added.

[1030.5]. Create program using concept of re-usability by means of functions in C.

[1030.6]. Illustrate the concept of data base by using file handling.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

[PO.I]. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,

and an engineering specialization to the solution of complex engineering problems

[PO.2]. Problem analysis: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

[PO.3]. Design/development of solutions: Design solutions for complex engineering problems and <u>design</u> <u>system components or processes</u> that meet the specified needs with appropriate consideration for the public health

and safety, and the cultural, societal, and environmental considerations

[PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions

[PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern</u>

engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations

[PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal, health,</u> <u>safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice

[PO.7]. Environment and sustainability: Understand the <u>impact of the professional engineering solutions in</u> societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

[PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices

[PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader in diverse</u> teams, and in multidisciplinary settings

[PO.10]. Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

[PO.II]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

[PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

D. Assessment Plan:

Criteria	Description	Maximum Marks							
Lab	Practical Lab Exam	50							
	Day to Day Assessment	50							
	Total	100							
Attendance	Attendance A minimum of 75% Attendance is required to be maintained by a studer								
(Formative)	qualified for taking up the End Semester examination. The allowance of 25%								
	includes all types of leaves including medi	cal leaves.							
Homework/ Home Assignment/	There are situations where a student may	y have to work in home, especially before							
Activity Assignment	a flipped classroom. Although these work	s are not graded with marks. However, a							
(Formative)	student is expected to participate and per	form these assignments with full zeal since							
	the activity/ flipped classroom participation by a student will be assessed and m								
	will be awarded.								

E. SYLLABUS

Digital computer fundamentals: Algorithms and flowcharts, the von Neumann architecture, programs, assembly language, high level programming languages; Number System: binary, decimal, octal, hexadecimal; Imperative programming (Using C): data types, variables, operators, expressions, statements, control structures, functions, arrays and pointers, recursion, records (structures), files, input/output, some standard library functions and some elementary data structures.

F. Text Books

TI. E. Balagurusamy, "Programming in ANSI C", 7th Edition, McGraw Hill Publication, 2016.

T2. Y. P. Kanetkar, "Let us C", 12th Edition, BPB Publication, 2014.

G. Reference Books

RI. B. W. Kernighan, D. M. Ritchie, "The C Programing Language", 2nd Edition, Prentice Hall of India, 2014.

RI. B. Gottfired, "Schaum's Outline Series: Programming with C", 3rd Edition, McGraw Hill Publication, 2012.

lecture	Topics	Session	Mode of	Corresponding	Mode Of
		Outcome	Delivery	со	Assessing CO
I	Algorithms and Flow Charts	Describe the flowcharts and design of algorithm	Lecture	1030.1	Mid Term Lab Assessments and End Term Lab Assessment
2	Working with Linux Commands	Use Unix commands to manage files and develop programs, including multi- module programs	Lecture	1030.1	Mid Term Lab Assessments and End Term Lab Assessment
3	Formula based C Programs	Understand the fundamentals of C programming.	Lecture	1030.2	Mid Term Lab Assessments and End Term Lab Assessment
4	Control Structures: If statement	Choose the loops and decision making statements to solve the problem.	Lecture	1030.2	Mid Term Lab Assessments and End Term Lab Assessment
5	Control Structures: Switch	Choose the loops and decision making statements to solve the problem.	Lecture	1030.3	Mid Term Lab Assessments and End Term Lab Assessment
6	Control Structures: Loops	Choose the loops and decision making statements to solve the problem	Lecture	1030.3	Mid Term Lab Assessments and End Term Lab Assessment
7	Control Structures: Nested Loops	Choose the loops and decision making statements to solve the problem	Lecture	1030.3	Mid Term Lab Assessments and End Term Lab Assessment
8	I-D Array	Implement different Operations on arrays	Lecture	1030.3	Mid Term Lab Assessments and End Term Lab Assessment
9	2-D Arrays	Implement different Operations on arrays	Lecture	1030.4	Mid Term Lab Assessments and End Term Lab Assessment
10	Strings	Implementation of precedence in programing	Lecture	1030.4	Mid Term Lab Assessments and End Term Lab Assessment

	Functions	Use functions to solve the given problem	Lecture	1030.5	Mid Term Lab Assessments and End Term Lab Assessment
12	Pointers	Understand pointers, structures and unions	Lecture	1030.5	Mid Term Lab Assessments and End Term Lab Assessment
13	Structures	Understand pointers, structures and unions	Activity (Jigsaw)	1030.6	Mid Term Lab Assessments and End Term Lab Assessment
14	End Term Exam				Mid Term Lab Assessments and End Term Lab Assessment

I. Course Articulation Matrix: (Mapping of COs with POs)

			CORRELATION WITH PROGRAM OUTCOMES										
СО	STATEMENT	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 10	PO I I	PO 12
CS 1030.1:	Demonstrate bitwise operations and conversion of numbers in different representations through Number System.	2	2	3	4	5	6	/	8	9			I
CS 1030.2:	Demonstrate a deep knowledge of computer for better understanding of devices, basic fundamental of computer comprises in this course.	2											
CS 1030.3:	Design flow chart, Write algorithm and pseudo code parallel with Control Statements to understand flow of program execution.	2		I									2
CS 1030.4:	Create memory oriented operation using pointers and understating programming skills by Array, Structure, Union, Enum and String are added.	3	I	3									2
CS 1030.5:	Create program using concept of re-usability by means of functions in C.	3		3									3
CS 1030.6:	Illustrate the concept of data base by using file handling.	3											Ι

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering

Department of Civil Engineering Course Hand-out

Basic Civil Engineering | CV1001| 3 Credits | 3 0 0 3

Session: Jul 19 - Nov 19 | Faculty: Dr. Jitendra Singh Yadav | Class: B.Tech (First Year)

A. Introduction:

This course is offered by Dept. of Civil Engineering as a departmental core course. The main objectives of this course are to understand, basics of civil engineering with are essential for everyone. The course covers principle of surveying, method and equipment's used for surveying, building material used for construction, different components of building, forces and its equilibrium, evaluation of centre of gravity and moment of inertia of simple and composite sections, simple stress and strain, method of analysis of truss, estimation and costing. Overall, this course will help to understand the basic of civil engineering used in our day to day life.

B. Course Outcomes: At the end of the course, students will be able to

[CVI001.1]. Describe the importance and role of Civil Engineering and Civil Engineer in development of Society.

[CV1001.2]. Explain surveying and the type of instruments used for surveying.

[CVI001.3]. Describe the scientific terminologies related to building materials and components of building.

[CV1001.4]. Assess the force acting on a materials, centre of gravity and moment of inertia of composite area.

[CV1001.5]. Calculate the different type of stress like, simple stress, shear stress, and direct stress and strain in the material, and analysis of truss. Familiar to basic terminologies related to Estimation and Costing which create employability, and entrepreneurship.

Program Outcomes and Program Specific Outcomes

[PO.1]. Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and an engineering specialization to the solution of complex engineering problems

[PO.2]. Problem analysis: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

[PO.3]. Design/development of solutions: Design solutions for complex engineering problems and <u>design</u> <u>system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

[PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions

[PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern</u> engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations

[PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal</u>, <u>health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice

[PO.7]. Environment and sustainability: Understand the <u>impact of the professional engineering solutions in</u> <u>societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development

[PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices

[PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader in diverse</u> teams, and in multidisciplinary settings

[PO.10]. Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

[PO.II]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

[PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

Criteria	Description	Maximum Marks			
	Sessional Exam I (Closed Book)	20			
Internal Assessment	Sessional Exam II (Closed Book)	20			
(Summative)	In class Quizzes and Assignments ,	20			
	Activity feedbacks (Accumulated and				
	Averaged)				
End Term Exam	End Term Exam (Closed Book)	40			
(Summative)					
	Total	100			
Attendance	A minimum of 75% Attendance is requir	red to be maintained by a student to be			
(Formative)	qualified for taking up the End Semester examination. The allowance of 2				
	includes all types of leaves including medi	cal leaves.			
Make up Assignments	Students who misses a class will have to	report to the teacher about the absence.			
(Formative)	A makeup assignment on the topic taught	on the day of absence will be given which			
	has to be submitted within a week from t	he date of absence. No extensions will be			
	given on this. The attendance for that p	articular day of absence will be marked			
	blank, so that the student is not accoun	ted for absence. These assignments are			
	limited to a maximum of 5 throughout th	e entire semester.			
Homework/ Home Assignment/	There are situations where a student may	v have to work in home, especially before			
Activity Assignment	a flipped classroom. Although these works are not graded with marks. However, a				
(Formative)	student is expected to participate and perform these assignments with full zeal sin				
	the activity/ flipped classroom participatio	n by a student will be assessed and marks			
	will be awarded.				

C. Assessment Plan:

D. Syllabus

Introduction:- Scope of Civil Engineering, Role of Civil Engineer in Society, Impact of infrastructural development on economy of country; **Surveying:**-Principles and types of surveying, Site plans, Linear measurements, Angular measurements, Levelling, ordinary levels and total stations, Use of theodolite and plane table, contouring, L- section and cross sections; **Buildings:**-Properties, uses of Stones, bricks, cement, timber, steel, plastics and paints. Properties of concrete. Selection of site for Buildings, Layout of building Plan, Types of buildings, Plinth Area, Carpet Area, Super built up area, floor space index, building bye laws, ventilation, components of buildings and their functions, Functional design of buildings, basic concepts of R.C.C., Type of foundations; **Mechanics of Solids:**- Forces and Equilibrium, Graphical and analytical treatment of concurrent and non-concurrent co-planer forces, Free body diagram, Frictional force in equilibrium problems; **Centroid and centre of gravity**, Moment of inertia of simple and composite areas; **Normal stress and strain**, Hooke's law, modulus of elasticity, modulus of rigidity, allowable stress, shear stress and shear strain; **Analysis of plane truss**, Method of joints, Method of sections; **Estimation and Costing:**- Types of estimates and Contracts, Tenders, NIT, EMD and Security deposits, Award of work, measurements, billing and payments.

E. Text Books

TI. Ramamrutham S., Basic Civil Engineering (3e), Dhanpat Rai Publishing Company (P) Ltd, 2013.

T2. Punamia B. C., Jain A. K., Jain A. K., Surveying Volume I (16e), S Chand, 2016.

T3. Dutta B. N., Estimation and Costing in Civil Engineering (28e), UBS Publishers Distributors LTD., 2016.

T4. Punamia B.C., Jain A. K., Jain A. K., Building Construction (11e), S Chand, 2016.

T5. Khurmi R. S., Strenght of Material, S Chand, 2016

T6. Timoshenko S., Young D.H., Rao J.V., Pati S., Engineering Mechanics (5e), Mcgraw Hill, 2013.

T7.SP41 Handbook on Functional Design of Buildings, Bureau of Indian Standards 2013.

Reference Books

RI. Timoshenko S., Young D.H., Rao J.V., Pati S., Engineering Mechanics (5e), Mcgraw Hill, 2013.

R2. SP41 Handbook on Functional Design of Buildings, Bureau of Indian Standards 2013.

F. Lecture Plan:

Lec No	Topics	Session Outcome	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
1,2	Introduction	Scope of Civil Engineering, Role of Civil Engineer in Society,	Lecture	1001.1	NA
3	Introduction	Impact of infrastructural development on economy of country	Lecture	1001.1	In Class Quiz
4,5	Surveying	Principles and types of surveying, Site plans, Linear measurements,	Lecture and field visit	1001.2	In Class Quiz End Term
6,7,8	Surveying	Angular measurements, Levelling, ordinary levels and total stations	Lecture and field visit	1001.2	Home Assignment End Term
9,10,11	Surveying	Use of theodolite and plane table, contouring, L- section and cross sections	Lecture and field visit	1001.2	In Class Quiz End Term
12	Building	Properties, uses of Stones, bricks, cement,	Lecture and field visit	1001.3	Class Quiz Mid Term I End Term
13	Building	Timber, steel, plastics and paints.	Lecture and field visit	1001.3	Class Quiz Mid Term I End term
14,15	Building	Properties of concrete.	Lecture	1001.3	Home Assignment Class Quiz Mid Term I End Term
16,17	Building	Selection of site for Buildings, Layout of building Plan, Types of buildings, Plinth Area, Carpet Area, Super built up area, floor space index, building bye laws, ventilation, components of buildings and their functions,	Lecture	1001.3	Class Quiz Mid Term I End Term
18,19	Building	Functional design of buildings, basic concepts of R.C.C., Type of foundations.	Lecture	1001.3	Class Quiz Mid Term I End Term
20	Mechanics of Solids	Forces and Equilibrium,	Lecture	1001.4	Class Quiz End Term
21	Mechanics of Solids	Graphical and analytical treatment of concurrent and non-concurrent co- planer forces, Free body diagram	Lecture	1001.4	Class Quiz Mid Term II End Term

	Mechanics of Solids		Lecture	1001.4	Class Quiz
22		Frictional force in equilibrium			Mid Term II
		problems			End Term
	Mechanics of Solids		Lecture	1001.4	Class Quiz
23,24,25					Mid Term II
		Numerical Exercises			End Term
	Mechanics of Solids		Lecture	1001.4	Class Quiz
26					Mid Term II
		Centroid and centre of gravity,			End Term
27	Mechanics of Solids	Moment of inertia of simple and	Lecture	1001.4	Class Quiz
27		composite areas.			End Term
29, 20, 20, 21	Mechanics of Solids		Lecture	1001.4	Class Quiz
28,29,20,31		Numerical Exercises			End Term
22	Mechanics of Solids	Normal stress and strain,	Lecture	1001.5	Class Quiz
32		Hooke's law			End Term
22	Mechanics of Solids	Modulus of elasticity, modulus of	Lecture	1001.5	Class Quiz
33		rigidity			End Term
24	Mechanics of Solids	Allowable stress, shear stress and	Lecture	1001.5	Class Quiz
34		shear strain			End Term
25.26	Mechanics of Solids		Lecture	1001.5	Class Quiz
55, 50		Numerical Exercises			End term
27	Structure Analysis	Analysis of plane truss, Method of	Lecture	1001.5	Class Quiz
57		joints,			
	Structure Analysis		Lecture	1001.5	Class Quiz
38		Mathad of sactions			Mid Term II
					End Term
	Structure Analysis		Lecture	1001.5	Class Quiz
39,40,41					Mid Term II
		Numerical Exercises			End Term
	Estimation and Costing		Lecture	1001.5	Class Quiz
42					Mid Term II
		Types of estimates and Contracts,			End Term
43	Estimation and Costing	Tenders, NIT, EMD and Security	Lecture	1001.5	Class Quiz
15		deposits,			End Term
44	Estimation and Costing	Award of work, measurements,	Lecture	1001.5	Class Quiz
		billing and payments			End Term
45 46	Estimation and Costing		Lecture	1001.5	Class Quiz
13,70		Numerical Exercises			End Term

G. Course Articulation Matrix: (Mapping of COs with POs)

		CORRELATION WITH PROGRAM OUTCOMES											
СО			PO	РО									
	STATEMENT	1	2	3	4	5	6	7	8	9	10	11	12
CV	Importance and role of Civil Engineering and civil			1			1	2			1		1
1001.1	engineer in development of Society.												
CV	Get familiar with surveying and the type of	2	1	2	3	3				3			
1001.2	instruments used for surveying.												
CV	Describe the scientific terminologies related to	3	3	2		2	2	1		2			3
1001.3	building materials and components of building.												
CV	Assess the force acting on a materials, centre of	3	3										
1001.4	gravity and moment of inertia of composite area.												
CV	Calculate the different type of stress like, simple	3	2	1							2	3	3
1001.5	stress, shear stress, and direct stress and strain in the												
	material, and analysis of truss. Familiar to basic												
	terminologies related to Estimation and Costing												
	which create employability, and entrepreneurship.												

MANIPAL UNIVERSITY JAIPUR

Faculty of Engineering

Department of Chemistry Course Hand-out

Engineering Chemistry | CY1001 | 3 Credits | 2 | 0 3

Session: Jul 19 – Nov 19 | Coordinator: Arunava Agarwala | Class: B.Tech. (I and II Sem)

A. Introduction: This course is offered by Dept. of Chemistry for all 1st year B.Tech. students. The objective of the course is to acquaint the students with the basic concepts of chemistry relevant to engineering field. The students with the knowledge of basic chemistry, will understand and explain scientificallythe various chemistry related problems in the industry/engineering field.

B. Course Objectives: At the end of the course, students will be able to

- [1001.1]. Understand and apply concepts of various types of fuel technology
- [1001.2]. Develop skill of synthesis and applications of polymer and some advanced materials.
- **[1001.3].** Explain different the water softening methods.
- **[1001.4].** Understand and apply the concepts in electrochemistry and corrosion science in protecting metallic objects.
- **[1001.5].** Apply the concept of phase rule to construct phase diagram
- **[1001.6].** Develop skill in various modern analytical techniques.

C. Program Outcomes and Program Specific Outcomes

[PO.I]. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,

and an engineering specialization to the solution of complex engineering problems

[PO.2]. Problem analysis: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

[PO.3]. Design/development of solutions: Design solutions for complex engineering problems and <u>design</u> <u>system components or processes</u> that meet the specified needs with appropriate consideration for the public healthand safety, and the cultural, societal, and environmental considerations

[PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions

[PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern</u>

<u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations

[PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess</u> <u>societal,health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineeringpractice

[PO.7]. Environment and sustainability: Understand the <u>impact of the professional engineering solutions</u> insocietal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

[PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of theengineering practices

[PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader in</u> <u>diverseteams</u>, and in multidisciplinary settings

[PO.10]. Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

[PO.II]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

[PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

D. Assessment Plan:

Criteria	Description	Maximum Marks		
	Mid Term Examination I	20		
Internal Assessment	Mid Term Examination II	20		
(Summative)	Quiz tests (Accumulated and Averaged)	20		
End Term Exam	End Term Exam (Closed Book)	40		
(Summative)				
	Total	100		
Attendance	A minimum of 75% Attendance is require	red to be maintained by a student to be		
(Formative)	qualified for taking up the End Semest	er examination. The allowance of 25%		
	includes all types of leaves including medi	cal leaves.		
Homework/ Home Assignment/	There are situations where a student may	/ have to work at home/ hostel especially		
Activity Assignment	before a quiz test or MTE-I/MTE-II. A student is expected to participate and			
(Formative)	perform these assignments with full zeal s	since the activity.		

E. Syllabus

Unit-I Classification of Fuels, Gross Calorific value and Net Calorific value. Solid, Liquid and Gaseous fuels. **Unit-II:** Advanced materials and polymers: Liquid crystals, ceramics, composites, bio-materials, nanomaterials, thin films and their properties and applications.

Unit-III: Water treatment technology.

Unit- IV: Concept of corrosion and its importance, types of corrosion, factors affecting corrosion, Corrosion control methods. Chemistry of primary and secondary batteries. Working principles of fuels cells and their applications. **Unit-V:** Theory and application phase rule (up to two component system).

Unit VI; General methods of chemical analysis, Instrumental methods. Introduction to spectroscopic methods of analysis: Electromagnetic radiation (EMR), Interaction of EMR with matter, Numerical Problems. Concepts of rotational, vibrational and electronic spectra, Laws of spectrophotometry

F. Text Books

TI. Jain P.C. and Jain M., Engineering Chemistry, Dhanpat Rai and Sons, Delhi, Revised, 15th Edn. 2006.

T2. Kuriacose J.C., Raja R. J., Chemistry in Engineering and Technology, Vol. I/II TMH 1988

G. Reference Books

No reference books required for this course.

H. Lecture Plan:

Lec No	Topics	Session Outcome	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
1.	Chemical fuels: Introduction, Classification, Calorific value. Gross calorific value and net Calorific value. Determination of calorific value by Bomb calorimeter.	To acquaint and clear teachers expectations and understand student expectations	Lecture	1001.1	Class Quiz End Term
2.	Determination of calorific value by Boys; Numerical problems based on Bomb and Boys calorimeter.	Working of the calorimeter	Lecture, Activity	1001.1	Class Quiz Mid Term I
3.	Dulong formula; Numerical problems.	Analyse and solve numerical problems	Lecture, Activity	1001.1	Class Quiz End Term
4.	Solid fuels – Coal and its analysis – Proximate and Ultimate analysis.	Analyse and solve numerical problems	L Lecture, Activity	1001.1	Home Assignment End Term
5.	Liquid Fuels: Fractional Distillation, Petroleum cracking - catalytic cracking (Fixed Bed and moving bed) and Reforming of petroleum, Synthetic Petrol: Burgius process, Fisher Trophch method. Composition and applications of water gas, Producer gas.	Principles of distillation, cracking	Lecture	1001.1	Class Quiz End Term
6.	Numerical based on Combustion (By Weight Type and By Volume Type)	Analyse and solve numerical problems	Lecture, Activity	1001.2	Class Quiz Mid Term I End Term
7.	Advanced materials and polymers: Introduction, Definition, classification of polymers – based on origin, thermal behaviour, Polymerization reactions and applications, Tacticity. Functionality, Degree of polymerization, Co-polymerization – alternating, random, block and graft polymers	Describe the working of polymer	Lecture	1001.2	Class Quiz Mid Term I End term
8.	Mechanism of free radical polymerization and ionic polymerization. Mechanism of coordination polymerization, Condensation polymerization reactions, Glass transition temperature & factors affecting it	Describe mechanization of polymerization	Lecture	1001.2	Class Quiz Mid Term I End Term
9.	Molecular weight of polymers, Number average and weight average molecular weights, Numerical problems.	Analyse and solve numerical problems	Lecture, Activity	1001.2	Class Quiz Mid Term I End Term
10.	Preparation, properties and applications of Polythene (LDPE and HDPE), Nylon(6:6, 6, 6:10,	Identify alternative ways to synthesize rubbers.	Lecture	1001.2	Class Quiz Mid Term I

	II), PF resins and Polyester. Natural rubber, Processing of Natural Rubber, Vulcanization, Compounding of rubber: Synthetic Rubber:				End Term
	Buna-N, Buna-S				
11.	Liquid crystals: their properties and applications	Gain knowledge of liquid crystals	Lecture	1001.2	Class Quiz End Term
12	Ceramics: Properties and applications	Gain knowledge of ceramics	Lecture	1001.2	
12.	Columnes: I toper des and applications			1001.2	Mid Term I
					End Term
13.	Composites and bio-materials: properties and	Gain knowledge of bio-materials	Lecture	1001.2	Class Quiz
	applications				Mid Term I
					End Term
14.	Nanomaterials and thin films: Properties and	Understand basics of nanochemistry	Lecture	1001.2	Class Quiz
	applications				Mid Term I
					End Term
15.	Revision	Recall and recap the lessons learnt	Lecture, Activity		Class Quiz
		during last 14 lectures			Mid Term I
					End Term
16.	Water Technology: Introduction,	Describe the properties of water	Lecture	1001.3	Class Quiz
	Characteristics imparted by impurities in water,	and its aplication			Mid Term II
17	Hardness of water Degree of hardness.		1	1001.2	End lerm
17.	Determination of hardness by EDTA method.	Describe working hardness/softness	Lecture, Activity	1001.3	Class Quiz Mid Taura II
	numerical problems.	of water			Find Term II
18	Softening of hard water: Internal treatment by	Describe working hardness/softness	Locturo	10013	
10.	phosphate and calgon condition. Softening of	of water	Lecture	1001.5	Mid Term II
	hard water: External treatment by lime soda				End Term
	process.				
19.	Softening of hard water: Ion exchange method;	Describe working hardness/softness	Lecture.	1001.3	Class Quiz
	Zeolite methods	of water			Mid Term II
					End Term
20.	Softening of hard water, internal treatment by	Describe working hardness/softness	Lecture	1001.3	Class Quiz
	phosphate, calgon condition and colloid	of water			Mid Term II
	conditioning				End Term
21.	Numerical problems based on lime soda	Analyse and solve numerical	Lecture, Activity	1001.3	Class Quiz
	process.	problems			Mid Term II
					End Term
22.	Corrosion and its Control: Introduction,	Describe corrosion and its	Lecture, Activity	1001.4	Class Quiz
	significance, types of corrosion, dry corrosion.	preventions			Mid Term II
22	Nature of oxide layers; PB Rule				End lerm
23.	vvet Corrosion: Electrochemical corrosion	Describe corrosion and its	Lecture	1001.4	
		preventions			
			1	1	End Term

24.	Galvanic corrosion; Differential aeration corrosion: Pitting corrosion, Water line corrosion, Crevice corrosion.	Describe corrosion and its preventions	Lecture	1001.4	Class Quiz Mid Term II End Term
25.	Factors affecting corrosion: Nature of the metal, Nature of the Environment	Describe corrosion and its preventions	Lecture	1001.4	Class Quiz Mid Term II End Term
26.	Corrosion prevention by material selection and design alternation of environment by changing medium; Stress corrosion – Caustic embrittlement	Describe corrosion and its preventions	Lecture	1001.4	Class Quiz Mid Term II End Term
27.	Cathodic protection –sacrificial anode and impressed voltage methods, Anodic protection; Inhibitors – Anodic and Cathodic inhibitors, Protective coating – Metal coating (Electroplating, galvanization, Tinning).	Describe corrosion and its preventions	Lecture	1001.4	Class Quiz Mid Term II End Term
28.	Introduction and theory of batteries and fuel cells.	Gain knowledge of batteries	Lecture	1001.4	Class Quiz Mid Term II End Term
29.	Chemistry (working) of primary and secondary batteries.	Gain knowledge of batteries	Lecture	1001.4	Class Quiz Mid Term II End Term
30.	Working principles of fuels cells and their applications.	Gain knowledge of fuel cells	Lecture	1001.4	Class Quiz Mid Term II End Term
31.	Revision	Recall and recap the lessons learnt during last 14 lectures	Lecture, Activity		Class Quiz Mid Term II End Term
32	The Phase Rule: Definition, Phase rule equation, Phase, Component; Degree of freedom, examples to solve number of phase, component and degree of freedom	Gain knowledge of phase rule	Lecture	1001.5	Class Quiz End Term
33	One component system: Water system; Sulphur system	Gain knowledge of phase rule	Lecture	1001.5	Class Quiz End Term
34	Lead Silver system; Pattinson's process, Limitations of phase rule	Gain knowledge of phase rule	Lecture	1001.5	Class Quiz End Term
35	General methods of chemical analysis, Instrumental methods: Introduction, pH metric analysis, Conductrometric analysis. Chromatographic techniques.	Gain skill in various modern analytical techniques.	Lecture	1001.6	Class Quiz End Term
36	Paper chromatography (R _f value); Thin layer chromatography; Gas Chromatography;	Gain skill in various chromatographic techniques.	Lecture	1001.6	Class Quiz End Term

37	Introduction to spectroscopic analysis. Beer- Lambert's law; Numerical problems.	Gain skill in various modern analytical techniques.	Lecture, Activity	1001.6	Class Quiz End Term
38	Principle of UV visible spectroscopy.	Gain skill in analytical techniques using Uv-Vis spectroscopy.	Lecture	1001.6	Class Quiz End Term
39	Instrumentation of UV visible spectroscopy	Gain skill in analytical techniques using Uv-Vis spectroscopy.	Lecture	1001.6	Class Quiz End Term
40	Principle of IR (vibrational) spectroscopy.	Gain skill in analytical techniques using IR spectroscopy.	Lecture	1001.6	Class Quiz End Term
41	Instrumentation of IR spectroscopy	Gain skill in analytical techniques using IR spectroscopy.	Lecture	1001.6	Class Quiz End Term
42	Revision	Recall and recap the lessons learnt during the semester	Lecture, Activity		Class Quiz End Term

I. Course Articulation Matrix: (Mapping of COs with POs)

			CORRELATION WITH PROGRAM OUTCOMES										
CO	CO στατεμένι		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	STATEMENT	I	2	3	4	5	6	7	8	9	10	11	12
CY 1001.1	Understand and apply concepts of various types of fuel technology.	2						3			2		2
CY 1001.2	Understand the synthesis and applications of polymer and some advanced materials			2					2				3
CY 1001.3	Develop understanding about the water softening methods.	2				3					3		2
CY 1001.4	Understand and apply the concepts in electrochemistry and corrosion science in protecting metallic objects.								2				2
CY 1001.5	Develop concept of phase rule		2			2			2				3
CY 1001.6	Understand various modern analytical techniques.	2				3			2				3

MANIPAL UNIVERSITY JAIPUR

School of Basic Sciences

Department of Chemistry Course Hand-out

Environmental Studies | CY 1002 | 3 Credits | 3 0 0 3

Session: Jul 19 - Nov 19 | Co-ordinator: Dr. M. Prabhu Inbaraj | Class: B. Tech (I Semester)

- A. Introduction: This course is offered to B. Tech. first year students for understanding the different aspects of our environment and issues related to it. The course aims at exposure to various environmental issues (regional, national and international), relevant sources of information about different issues including environmental systems and functions, environmental problems and solutions, role of public and Govt., etc. The course aims at generating useful ideas, concepts for meaningful field work in the immediate environment and self-study of books, journals, and magazines on the subject. The course introduces multi-disciplinary approach to the study of various environmental issues. The approach will facilitate participatory learning about importance of conservation, preservation and protection of the environment and striving towards a life in perfect harmony with nature.
- **B. Course Outcomes:** At the end of the course, students will be able to;
 - **[1002.1].** Develop fundamental skills in understanding the environment, ecology and ecosystem for sustainable development saving the environment.
 - **[1002.2].** Apprehend environmental problems and its linkage to health and safety of society; think and act with a sense of responsibility, committing to the professional ethics.
 - **[1002.3].** Impart knowledge on the application of the techniques / procedures to predict / qualitatively assess the reduction in the environmental impact for sustainable development.
 - **[1002.4].** Promote the active involvement of oneself and society in designing the activities / processes with which the environment and ecosystem would be preserved, considering public health and safety.
 - **[1002.5].** Explore the impacts of various man-made activities from an environmental context. Students can demonstrate the knowledge by participating in class debates and presentations on various topics of environmental concern with effective communication.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- **[PO.I]. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- **[PO.2]. Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3]. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4]. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions

- **[PO.5]. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern</u> engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- **[PO.6]. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7]. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8]. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- **[PO.9]. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- **[PO.10]. Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12]. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Criteria	Description	Maximum Marks			
	Sessional Exam I (Closed Book)	20			
	Sessional Exam II (Closed Book)	20			
Internal Assessment	In class Quizzes and Assignments ,				
(Summative)	Activity feedbacks (Accumulated and	20			
	Averaged)				
End Term Exam (Summative)	End Term Exam (Closed Book)	40			
	Total	100			
Attendance (Formative)	A minimum of 75% Attendance is required to be maintained by a studen be qualified for taking up the End Semester examination. The allowance 25% includes all types of leaves including medical leaves.				
Make up Assignments (Formative)	Students who misses a class will have to report to the teacher about a absence. A makeup assignment on the topic taught on the day of abser will be given which has to be submitted within a week from the date absence. No extensions will be given on this. The attendance for t particular day of absence will be marked blank, so that the student is n accounted for absence. These assignments are limited to a maximum o				
Homework/ Home Assignment/ Activity Assignment (Formative)	There are situations where a student before a flipped classroom. Although th However, a student is expected assignments with full zeal since the ac by a student will be assessed and mark	may have to work in home, especially nese works are not graded with marks. to participate and perform these ctivity/ flipped classroom participation ks will be awarded.			

D. Assessment Plan:

E. SYLLABUS

Environmental Studies – Meaning, multidisciplinary nature of environmental science, applications in engineering disciplines, environmental ethics, sustainable development. **Ecology** – Types and Structure of Ecosystem. **Biodiversity** – Importance, classification, conservation methods. **Natural Resources** – Renewable and non-renewable, Resource consumption, different types of energy, Conventional sources & Non-Conventional sources of energy. **Environmental Engineering** – Environmental Pollution and control: Air / Water / Soil / Noise pollution, Water demand, Water quality standards, basics of water treatment, Conservation of water, Characteristics of sewage, treatment and disposal, Solid waste management. **Disaster Management** – meaning, natural disasters especially earthquakes & Manmade disasters. **Environmental crisis & legislations** – Global environmental problems, Environmental acts, Laws and Policies, EIA, Case studies of the past related to environmental issues, Practical activity related to environmental problems and its impacts on environment.

F. TEXT BOOKS

- T1. Rajagopalan, R., Environmental Studies; From Crisis to Cure 3rd Edition, Oxford University Press, 2016.
- T2. De, A. K. and De, A. K., Environmental Studies 2nd Edition, New Age International Publishers, New Delhi, 2009.
- T3. Bharucha, E., Text book of Environmental Studies for undergraduate courses 4th Edition, Universities Press, Hyderabad, 2013.

G. REFERENCE BOOKS

- RI. Tyler Miller, Jr. and Scott E. Spoolman., Environmental Science 13th Edition, Brooks/Cole, Cengage Learning, Belmont, CA, USA, 2010.
- R2. Daniel B. Botkin and Edward A. Keller., Environmental Science Earth as a Living Planet 8th Edition, John Wiley & Sons, INC. 2011.

Lecture Plan:

Lec No	Topics	Session Outcome	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
Ι	Multidisciplinary Nature of Environmental Studies: Scope of environmental studies, a multidisciplinary view, Importance of environmental studies	Explain the uniqueness / importance of Environmental Studies as an interdisciplinary subject	Lecture	1002.1	Mid Term I End Term
2	Components of the Earth: Spheres of the earth: Atmosphere, Lithosphere, Hydrosphere, Biosphere	Recall the importance and role played by each spheres in Earth	Lecture	1002.1	Mid Term I End Term
3	Environmental Ethics: systematic and critical study of practices, holistic approach	Describe the role of ethics in having concern for other creatures other than human beings, preservation and conservation of all species	Lecture	1002.1	Mid Term I End Term
4	Ecology : Structure / function / components of the ecosystem	In-depth knowledge on the importance of basics in ecology	Lecture	1002.1	Mid Term I End Term
5	Ecosystem: Classification, Energy transfer, Ecological pyramids	Explain ecosystem with structure, flow of energy, food chain and food webs	Lecture	1002.1	Mid Term I End Term
6	Bio-geochemical cycles: Hydrological, Oxygen, Nitrogen	Explain chemical elements cycle through different ecosystems	Lecture	1002.1	Mid Term I End Term
7	Bio-geochemical cycles: Carbon, Sulphur, Phosphorous	Explain chemical elements cycle through different ecosystems	Lecture	1002.1	Mid Term I End Term
8	Ecological succession: Primary & Secondary	Explain the power of nature to reclaim itself without the intervention of humans	Lecture	1002.1	Mid Term I End Term
9	Biodiversity: Importance and classification	Explain services provided by biodiversity, different type of biodiversity and Biogeographic zones of India	Lecture	1002.2	Mid Term I End Term
10	Threats to biodiversity: Species extinction, Threatened, Invasive species	Explain biodiversity loss, biological invasive species and their impact on biodiversity	Lecture	1002.2	Mid Term I End Term
11	Conservation of biodiversity: IUCN, Hotspots, CBD	Explain different measures to conserve biodiversity, description of National parks, wildlife sanctuaries etc.	Lecture	1002.2	In Class Quiz Mid Term I End Term
12	Revision for MTE I	Revision for preparation for mid-term exam	Lecture	NA	NA
13	Energy Resources : Conventional and non- conventional	Recall different energy resources including coal, oil, nuclear and their environmental impacts on the environment and on human health	Lecture	1002.3	Mid Term II End Term
14	Water Resources	Explain importance of sources of water, stress on water consumption and it's conservation	Lecture	1002.3	Mid Term II End Term
15	Forest Resources	Explain importance of forest resources, it's ecological role, deforestation and conservation	Lecture	1002.3	Mid Term II End Term
16	Land and Mineral Resources	Explain kinds of mining, it's impact and remediation	Lecture	1002.3	Mid Term II End Term

17	Energy Resources: Conservation and Management	Explain the importance of conserving the different	Lecture	1002.3	Mid Term II End Term
18	Environmental pollution : Air pollution – sources	Recall air pollution, explain different air pollutants and	Lecture	1002.3	Mid Term II
19	Air pollution control: Source control, equipment	Describe control methods of air pollutants like ESP,	Lecture	1002.3	Mid Term II
20	Water pollution: Sources of water pollution,	Describe water pollutants types and classifications	Lecture	1002.3	Mid Term II
21	Water pollution: Effects of water pollution, Water quality parameters	Explain the negative impact of water pollution on humans	Lecture	1002.3	Mid Term II Fnd Term
22	Wastewater treatment process: Primary, Secondary and Tertiary	Detailed knowledge on various types / stages involved in wastewater treatment	Lecture	1002.3	In Class Quiz Mid Term II End Term
23	Soil pollution: Sources, effects and control of soil pollution	Explain the Causes, effects and control of soil Pollution	Lecture	1002.3	Mid Term II End Term
24	Noise pollution: sources, effects and control of noise pollution	Explain the Causes, effects and control of noise Pollution	Lecture	1002.3	Mid Term II End Term
25	Municipal Solid-Waste Management: sources, characteristics and control measures	Explain the Causes, effects and control of solid waste	Lecture	1002.3	Mid Term II End Term
26	Hazardous-Waste Management: Land Disposal and Integrated Waste Management (3Rs)	Explain the safe disposal of hazardous wastes	Lecture	1002.3	Mid Term II End Term
27	Revision for MTE II	Revision for preparation for mid-term exam	Lecture		Mid Term II End Term
28	Disaster Management: Natural disasters	Describe natural disasters and their impact	Lecture	1002.4	End Term
29	Disaster Management: Manmade disasters	Explain measures of man-made disaster management	Lecture	1002.4	End Term
30	Global warming / Climate change: Causes, effects and control measures	Describe global warming, climate change with its effects and control	Lecture	1002.4	End Term
31	Acid rain: Causes, effects and control measures	Describe the Acid Rain with its effects and control	Lecture	1002.4	End Term
32	Ozone depletion: Causes, effects and control measures	Explain the importance of ozone layer and causes of its depletion, control measures	Lecture	1002.4	End Term
33	Environmental Laws/Acts: Air, Water, Forest & Wildlife	Describe the provision of Water Act, 1974, Air Act, 1981 for prevention and control of water and air pollution, Explain EPA, 1986	Lecture	1002.4	End Term
34	Environmental Movements: Chipko, Narmada dam, Silent valley, etc.,	Describe different movement in India for conserving environment and their socio-economic importance	Lecture	1002.4	End Term
35	International Environmental Policies: CBD, Montreal, Kyoto	Role of international policies towards curbing the global environmental issues	Lecture	1002.4	End Term
36	Environment and Human health	Explain the inter-relationship between humans and environment	Lecture	1002.4	End Term

37	Environmental impact assessment (EIA): Methodology and importance	Explain the stages involved in EIA and it's importance before initiating a project	Lecture	1002.4	In Class Quiz End Term
38	Human Population and the Environment: Population growth, variation among nations, Population explosion – Family Welfare Program	Explain how population expansion is directly correlated to environmental degradation	Lecture	1002.5	End Term
39	Case studies of Environmental issues	Analyse case studies from different perspective and finding solutions	Lecture	1002.5	End Term
40	Practical activity related to environmental problems	In-class practical activity / discussion on environmental issues	Practical	1002.5	End Term
41	Practical activity related to environmental problems	In-class practical activity / discussion on environmental issues	Practical	1002.5	End Term
42	Revision for ETE	Revision for preparation for end term exam	Lecture	NA	NA
43	Revision for ETE	Revision for preparation for end term exam	Lecture	NA	NA

H. Course Articulation Matrix: (Mapping of COs with POs)

		CORRELATION WITH PROGRAM OUTCOMES											
СО	STATEMENT	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	STATEMENT	I	2	3	4	5	6	7	8	9	10	11	12
[1002.1].	Apply the fundamental knowledge of environment, ecology and ecosystem to save the environment for sustainable development.	3		I			I	2					3
[1002.2].	Apprehend environmental problems and its linkage to the health and safety of society; think and act with a sense of responsibility, committing to the professional ethics.		3				3		3	2			
[1002.3].	Know the application of the technique / procedures to predict / qualitatively assess the reduction in the environmental impact for sustainable development.	3	I			3	2	3		I			3
[1002.4].	Realise the active involvement of oneself and society in designing the activities / processes with which the environment and ecosystem would be preserved, considering public health and safety.			I	I					3			
[1002.5].	Explore the impacts of various man-made activities from an environmental context. Students can demonstrate the knowledge by participating in class debates and presentations on various topics of environmental concern with effective communication.	2			2		3					1	3

Faculty of Engineering

Department of Chemistry Course Hand-out

Engineering Chemistry Laboratory CY1030 | 1 Credit | 0 0 2 1

Session: Jul 19 - Nov 19 | Coordinator: Arunava Agarwala | Class: B.Tech. (I and II Sem)

A. Introduction: This course is offered by Dept. of Chemistry for all 1st year B.Tech. students. The objective of the course is to acquaint the students with the basic methods applied in chemical science laboratory relevant to engineering field.

B. Course Objectives: At the end of the course, students will be able to

[1030.1]. Develop skill in quantitative chemical analysis.

[1030.2]. Apply concept of synthetic chemistry.

[1030.3]. Analyse physical property of materials.

C. Program Outcomes and Program Specific Outcomes

[PO.I]. Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>,

and an engineering specialization to the solution of complex engineering problems

[PO.2]. Problem analysis: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

[PO.3]. Design/development of solutions: Design solutions for complex engineering problems and <u>design</u> <u>system components or processes</u> that meet the specified needs with appropriate consideration for the public healthand safety, and the cultural, societal, and environmental considerations

[PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions

[PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern</u> <u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations

[PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess</u> <u>societal,health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineeringpractice

[PO.7]. Environment and sustainability: Understand the <u>impact of the professional engineering solutions</u> <u>insocietal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development

[PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of theengineering practices

[PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader in</u> <u>diverseteams</u>, and in multidisciplinary settings

[PO.10]. Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

[PO.II]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

[PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

D. Assessment Plan:

Criteria	Description	Maximum Marks				
	Class wise assessment (Viva; Practical	60				
Internal Assessment	performance)					
(Summative)						
End Term Exam	End Term Exam (Closed Book)	40				
(Summative)						
	Total	100				
Attendance	A minimum of 75% Attendance is require	red to be maintained by a student to be				
(Formative)	qualified for taking up the End Semest	er examination. The allowance of 25%				
	includes all types of leaves including medi	ical leaves.				
Homework/ Home Assignment/	A student is expected to participate and perform all the experiments with full zea					
Activity Assignment						
(Formative)						

E. Syllabus

Alkalimetric titration; Redox titration; Estimation of total hardness of water; pK value of an acid by pH-metric titration; Conductometric acid base titrations; pH Metric acid base titrations; Synthesis of a resin; Determination of coefficient of viscosity of liquid; Determination cloud and pour point of a given sample of lubricating oil using cloud and pour point apparatus; Determine the water equivalent of bomb calorimeter using benzoic acid as fuel.

F. Text Books

TI. Jain P.C. and Jain M., Engineering Chemistry, Dhanpat Rai and Sons, Delhi, Revised, 15th Edn. 2006.

T2. Kuriacose J.C., Raja R. J., Chemistry in Engineering and Technology, Vol. I/II TMH 1988

G. Reference Books

No Reference books required for this course.

H. Lecture Plan:

Lec No	Topics	Session Outcome	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
1.	Determination of trength of given unknown ferrous ammonium sulphate solution by titrating against standard K ₂ Cr ₂ O ₇ using diphenylamine as an internal indicator	Develop skill in quantitative chemical analysis.	Activity	1030.1	Practical Assessments and End Term Lab Assessment
2.	Determination of strength of given unknown ferrous ammonium sulphate solution by titrating against standard K ₂ Cr ₂ O ₇ using potassium ferricyanide as an external indicator.	Develop skill in quantitative chemical analysis.	Activity	1030.1	Practical Assessments and End Term Lab Assessment
3.	Determination of the total, permanent and temporary hardness of given water sample by complexometric titration using EDTA solution	Develop skill in quantitative chemical analysis.	Activity	1030.1	Practical Assessments and End Term Lab Assessment
4.	Determination of the strength of sodium carbonate and sodium hydroxide in given alkali mix. (water sample) hydrochloric acid is used as an intermediate solution, methyl orange and phenolphthalein used as indicators	Develop skill in quantitative chemical analysis.	Activity	1030.1	Practical Assessments and End Term Lab Assessment
5.	Determination of the strength of ferrous Ammonium Sulphate by titrating against KMnO ₄ solution	Develop skill in quantitative chemical analysis.	Activity	1030.1	Practical Assessments and End Term Lab Assessment
6.	Preparation of urea formaldehyde resin	Apply concept of synthetic chemistry.	Activity	1030.2	Practical Assessments and End Term Lab Assessment
7.	Determination of strength of given HCl solution using a standard NaOH solution by performing a pH-metric titration.	Analyse physical property of materials	Activity	1030.1	Practical Assessments and End Term Lab Assessment
8.	Determination of strength of given HCl solution using a standard NaOH solution by performing a conductometric titration.	Analyse physical property of materials	Activity	1030.1	Practical Assessments and End Term Lab Assessment
9.	Determination of strength of given CH ₃ COOH solution using a standard NaOH solution by performing a pH-metric titration.	Analyse physical property of materials	Activity	1030.1	Practical Assessments and End Term Lab Assessment
10.	Determination of pK_{a1} and pK_{a2} of phosphoric acid.	Analyse physical property of materials	Activity	1001.3	Practical Assessments and End Term Lab Assessment
11.	Titration of a mixture of strong acid HCl and weak acid CH ₃ COOH and determine the	Analyse physical property of materials	Activity	1001.3	Practical Assessments and End Term Lab Assessment

	Determination of unknown strength of HCl and CH ₃ COOH pH-metrically					
12.	the equivalent conductance of given an electrolyte	Analyse physical materials	property of	Activity	1001.3	Practical Assessments and End Term Lab Assessment
13.	Determination of the viscosity of a given lubricating oil at various temperatures using Redwood Viscometer No. 1 or No. 2. / Determination of cloud and pour point of a given sample of lubricating oil using cloud and pour point apparatus	Analyse physical materials	property of	Activity	1001.3	Practical Assessments and End Term Lab Assessment
14.	Demonstration of working of bomb calorimeter.	Analyse physical materials	property of	Activity	1001.3	Practical Assessments and End Term Lab Assessment

I. Course Articulation Matrix: (Mapping of COs with POs)

			CORRELATION WITH PROGRAM OUTCOMES										
СО	STATEMENT	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO 12
	517(12)(12)	1	2	3	4	5	6	7	8	9	10	11	
CY	Develop skill in quantitative chemical analysis.	2						3			2		2
1030.1													
CY	Apply concept of synthetic chemistry.			2					2				3
1030.2													
CY	Analyse physical property of materials.	2				3					3		2
1030.3													

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Electrical Electronics & Communication Engineering

Department of Electronics & Communication Engineering Course Hand-out

Basic Electronics| EC 1001 | 3 Credits | 2 | 0 3

Session: July 19 - Nov 19 | Faculty: Vishal Das | Class: Core Subject

A. Introduction:

The growth of mobile telephony, broadband and wireless internet has led to the growth of career opportunities in the field of communication engineering. This course is a basic overview of electronic components and their common uses. It covers the characteristics and applications of analog and digital circuit components. Emphasis is placed on analysis, selection and applications. The coverage is not as deep as an electronics course aimed at electrical engineers. There are a number of physical applications demonstrated in this course that serve to motivate a wider audience. The course is ideal for someone who wants to gain a basic understanding of electrical circuits, hobbyists, or for someone who is considering electrical engineering as a career.

Review of physics, introduction to semiconductor devices: diodes and transistors. Equivalent circuits and models of semiconductor devices. DC biasing circuits for transistors. Analysis and design of transistor amplifiers. Operational amplifier systems. Number System, Boolean Algebra, Specification and implementation of combinational and sequential systems. Introduction to basic electronic communication systems.

B. Course Outcomes: At the end of the course, students will be able to:

[ECI001.1]. Apply principles of physics to describe and analyse the working of semiconductor devices and integrated circuits and hence develop employability skills.

[EC1001.2]. Analyse different biasing configurations of Bipolar Junction Transistor

[EC1001.3]. Analyse Inverting or Non-Inverting amplifier structures comprising of Operational Amplifier and to promote development of skills towards core employability

[EC1001.4]. Demonstrate inter-conversion on different number systems

[EC1001.5]. Demonstrate minimization of Boolean expressions

[EC1001.6]. Identify different elements of communication

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

[PO.1]. Engineering knowledge: Demonstrate and <u>apply knowledge</u> of Mathematics, Science, and

Engineering to classical and recent problems of electronic design & communication system.

- **[PO.2]. Problem analysis:** Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **[PO.3]. Design/development of solutions**: <u>Design</u> a component, system, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- **[PO.4]. Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments</u>, <u>analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- **[PO.5]. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern</u> <u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations

- **[PO.6]. The engineer and society**: Apply reasoning informed by the <u>contextual knowledge to assess</u> <u>societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7]. Environment and sustainability**: Understand the <u>impact of the professional engineering</u> <u>solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8]. Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- **[PO.9]. Individual and team work**: Function effectively as an individual, and as a <u>member or leader in</u> <u>diverse teams</u>, and in multidisciplinary settings
- **[PO.10].** Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II].** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

Criteria	Description	Maximum Marks			
	Sessional Exam I	20			
Internal Assessment	Sessional Exam II	20			
(Summative)	In class Quizzes and Assignments ,	20			
	Activity feedbacks (Accumulated				
	and Averaged)				
End Term Exam	End Term Exam	40			
(Summative)					
	Total	100			
Attendance	A minimum of 75% Attendance is i	required to be maintained by a			
(Formative)	student to be qualified for taking up	the End Semester examination.			
	The allowance of 25% includes all types of leaves including medical				
	leaves.				
Make up Assignments	Students who misses a class will have	e to report to the teacher about			
(Formative)	the absence. A makeup assignment o	n the topic taught on the day of			
	absence will be given which has to b	e submitted within a week from			
	the date of absence. No extensio	ns will be given on this. The			
	attendance for that particular day of a	absence will be marked blank, so			
	that the student is not accounted for	absence. These assignments are			
	limited to a maximum of 5 throughou	t the entire semester.			
Homework/ Home Assignment/	There are situations where a stude	nt may have to work in home,			
Activity Assignment	especially before a flipped classroom	. Although these works are not			
(Formative)	graded with marks. However, a student is expected to participate and				
	perform these assignments with full zeal since the activity/ flipped				
	classroom participation by a student v	vill be assessed and marks will be			
	awarded.				

D. Assessment Plan:

E. SYLLABUS

PN Junction: Formation of depletion region, Effect of forward and reverse bias on depletion region, I-V characteristics and equivalent circuits of ideal and practical diode, Diode equation. Application of Diode: Series and parallel combination of diodes circuits, Half Wave and Full Wave rectifiers, capacitor filter, clipper, clamper circuits, Zener Diode; I-V Characteristics, Zener Regulators. BJT: Construction, schematic diagram and characteristic of CE, CB Configuration, CC configuration w.r.t. CE, Relation between α and β , transistor biasing, Q-point, load line, fixed bias, self-bias. Operational Amplifier: Ideal characteristics of an Op. Amp., Inverting and Non-inverting, amplifiers, Linear Circuit applications as voltage follower, integrator, differentiator, summing amplifier, subtractor. Digital Electronics: Number systems, Boolean algebra, De Morgan's Theorem, logic gates; Truth tables, SOP, POS form, K-map for minimization of Boolean expressions, Implementation of Boolean expressions with logic gates, Introduction to combinational & sequential circuits. Communication Systems: Elements of communication systems, Analog modulation scheme.

TEXT BOOKS

- I. R. L. Boylestad, L. Nashelsky, Electronic Devices and Circuit Theory, (10e), Pearson, 2009.
- 2. S. Salivahanan, S. Arivazhagan, Digital circuits and Design, (5e), Oxford University Press, 2018.
- 3. G. Kennedy, B. Davis, S R M Prasanna, Electronic Communication systems, (6e), Mcgraw Hill, 2017.
- 4. V. K. Mehta, Rohit Mehta, Principles of Electronics, (10e), S. Chand Publication, 2006.
- 5. B. L. Thereja, Basic Electronics: Solid state, (5e), S. Chand Publication, 2005.

LEC NO.	TOPICS	Session Outcome	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
Ι	Overview of Semiconductors	Recall concept of Semiconductors		EC1001.1 (CO I)	NA
2	Introduction to Extrinsic Semiconductors	Understanding of Doping	Lecture	EC1001.1 (CO I)	In Class Quiz
3	Introduction to PN junction diode, Formation of depletion region	Understanding of switches	Lecture	EC1001.1 (CO I)	In Class Quiz
4	Forward and reverse bias, I-V Characteristics	Understanding of switch operation and their characteristics	Lecture	EC1001.1 (CO 1)	In Class Quiz Mid Term I
5, 6	Equivalent circuits of ideal and practical diode	Model of the diode for circuits	Lecture	EC1001.1 (CO I)	In Class Quiz
7	Diode equation	Introduction to the drift and diffusion in diode equation.	Lecture	EC1001.1 (CO 1)	In Class Quiz Mid Term I End Term
8-10	Application to Diodes: Series and Parallel combination of diode circuits	Use of switches to get different function in electrical circuits	Lecture	EC1001.1 (CO 1)	In Class Quiz Mid Term I End Term
11	Half and Full wave rectifiers	Introduction to pulsating D.C	Lecture	EC1001.1 (CO 1)	In Class Quiz Mid Term I End Term
12	Capacitor Filter	Introduction to Filters	Lecture	EC1001.1 (CO 1)	
3- 4	Clipper circuits	Understanding of wave shaping circuits	Lecture	EC1001.1 (CO I)	In Class Quiz Mid Term I End Term

H. Lecture Plan:

15	Clamper circuits	Understanding of wave shaping circuits	Lecture	EC1001.1 (CO I)	In Class Quiz Mid Term I End Term
16	Zener diode and its I- V characteristics	Understanding of voltage regulating device.	Lecture	EC1001.1 (CO I)	In Class Quiz
17- 18	Zener regulators	Understanding of voltage regulating circuits	Lecture	EC1001.1 (CO I)	In Class Quiz Mid Term I End Term
19	Tutorial				
20	Introduction to BJT	Understanding of three terminal devices	Lecture	EC1001.2 (CO 2)	In Class Quiz
21	Operation of BJT	Understanding of minority carrier movement	Lecture	EC1001.2 (CO 2)	In Class Quiz
22	Transistor configuration: symbolic representation and CB Characteristics.	Characteristics of BJT under various config.	Lecture	EC1001.2 (CO 2)	In Class Quiz Mid Term II End Term
23	Transistor configuration: symbolic representation and CE Characteristics	Characteristics of BJT under various config.	Lecture	EC1001.2 (CO 2)	In Class Quiz Mid Term II End Term
24	CC configuration w.r.t. CE, Relation between α and β	Characteristics of BJT under various config.	Lecture	EC1001.2 (CO 2)	In Class Quiz Mid Term II End Term
25	Transistor Biasing, Q- point, Load line	Effect of load on the characteristics	Lecture	EC1001.2 (CO 2)	In Class Quiz Mid Term II End Term
26	Fixed biasing	Effect of load on the characteristics	Lecture	EC1001.2 (CO 2)	In Class Quiz Mid Term II End Term
27	Self-biasing	Effect of load on the characteristics	Lecture	EC1001.2 (CO 2)	In Class Quiz Mid Term II End Term
28	Introduction to Operational Amplifier, Op. Amp Characteristics.	Understanding the OPAMP characteristics and its difference from BJT as an amplifier.	Lecture	EC1001.3 (CO 3)	In Class Quiz
29	Inverting amplifier	Application of OPAMP	Lecture	EC1001.3 (CO 3)	In Class Quiz Mid Term II End Term
30	NON-Inverting amplifier, Linear applications of Op. Amp as voltage follower	Application of OPAMP	Lecture	EC1001.3 (CO 3)	In Class Quiz Mid Term II End Term
31	Summing amplifier, Subtractor	Application of OPAMP	Lecture	EC1001.3 (CO 3)	In Class Quiz Mid Term II End Term
32	Integrator, Differentiator	Application of OPAMP	Lecture	EC1001.3 (CO 3)	In Class Quiz Mid Term II End Term
33	Tutorial				

34	Digital Electronics: Number system	Mathematical understanding of	Lecture	EC1001.4 (CO 4)	In Class Quiz
		Number System			
35	Boolean algebra, DeMorgan's theorem	Understanding the Algebra in Digital Electronics	Lecture	EC1001.5 (CO 5)	In Class Quiz End Term
36	Logic gates, Truth table.	Basic entities of Digital Electronics	Lecture	EC1001.5 (CO 5)	In Class Quiz End Term
37	Implementation of Boolean expression with logic gates	Use of Logic Gates to implement any Logic in Digital	Lecture	EC1001.5 (CO 5)	In Class Quiz End Term
38	SOP, POS forms	Understanding of various forms to represent a Logic	Lecture	EC1001.5 (CO 5)	In Class Quiz End Term
39	K-Map for minimization of Boolean expressions	A systematic way to minimize the given logic	Lecture	EC1001.5 (CO 5)	In Class Quiz End Term
40	S-R Flip Flop	Understanding of Basic Sequential Circuits	Lecture	EC1001.5 (CO 5)	In Class Quiz End Term
41	Introduction to communication system & Analog Modulation Scheme	Basic concept of Communication	Lecture	EC1001.6 (CO 6)	In Class Quiz End Term
42	Tutorial				

I. Course Articulation Matrix: (Mapping of COs with POs)

				ORR	ELAT	ION	WITI	H PRO) GR/	AM O	UTCO	MES	
СО	STATEMENT	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Ρ	PO	PO	PO
	STATEMENT	0	0	0	0	0	0	0	0	0	10	11	12
	1		2	3	4	5	6	7	8	9			
[EC1101.1]	Apply principles of physics to	3	2	3	I			I					I
	describe and analyse the working of												
	semiconductor devices and												
	integrated circuits												
[EC1101.2]	Analyse different biasing	3	2	I	2	I							I
	configurations of bipolar junction												
	transistor												
[EC1101.3]	Analyse inverting or non-inverting	3	3	3	2	2							I
	amplifier structures comprising of												
	operational amplifiers												
[EC1101.4]	Demonstrate interconversion on	3	2	3	2	2		1					I
	different number systems												
[EC1101.5]	Demonstrate minimization of	3	3	Ι	2	2							I
	Boolean expressions												
[EC1101.6]	Identify different elements of	3	2	2	2		I						2
	communication												

School of Electrical, Electronics and Communication

Department of Electrical Engineering Course Hand-out

Basic Electrical Technology | EE 1001 | 4 Credits | 2 1 0 3

Session: Jan. 20 – Apr. 20 | Faculty: Dr. Manish Kumar Thukral | Class: First Year (All Branches)

- A. Introduction: This course is offered by Dept. of Electrical Engineering as a basic fundamental subject to impart essential knowledge and information of Electrical Technology and their applications. The learning objective would cover the following aspects:
 - a) To develop circuit designing skills through general insight of circuit laws and theorems.
 - b) To analyse the magnetic & electric circuit and calculate different parameters
 - c) To develop and analyse the single and three phase circuits.
 - d) To understand the concepts of basic construction & operation of transformer.
 - e) To understand the fundamentals of DC & Induction motors and measuring Instruments.
- **B. Course Outcomes:** At the end of the course, students will be able to
 - **[1001.1].** Recall basic circuit laws and apply theorems to analyse different types of DC circuits.
 - **[1001.2].** Understand and apply the basic concepts of electromagnetism.
 - [1001.3]. Identify and evaluate different configurations of single phase & three phase ac circuits.
 - **[1001.4].** Understand and apply the construction and operating principle of transformer.
 - **[1001.5].** Illustrate the basic operating principles of DC machines & Induction motors and fundamental measuring Instruments

C. Program Outcomes and Program Specific Outcomes

- **[PO.I].Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- **[PO.2].Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3].Design/development of solutions**: Design solutions for complex engineering problems and <u>design system</u> <u>components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4].Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- **[PO.5].Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT</u> <u>tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal</u>, <u>health</u>, <u>safety</u>, <u>legal</u>, <u>and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7].Environment and sustainability**: Understand the <u>impact of the professional engineering solutions in societal and</u> <u>environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8].Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- **[PO.9].Individual and team work**: Function effectively as an individual, and as a <u>member or leader in diverse teams</u>, and in multidisciplinary settings

- **[PO.10].** Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

D. Assessment Rubrics:

Criteria	Description	Maximum Marks			
	Sessional Exam I (Closed Book)	20			
Internal Assessment	Sessional Exam II (Closed Book)	20			
(Summative)	In class Quizzes and Assignments ,	20			
	Activity feedbacks (Accumulated and				
	Averaged)				
End Term Exam	End Term Exam (Closed Book)	40			
(Summative)					
	Total	100			
Attendance	A minimum of 75% Attendance is requir	red to be maintained by a student to be			
(Formative)	qualified for taking up the End Semest	er examination. The allowance of 25%			
	includes all types of leaves including medi	cal leaves.			
Make up Assignments	Students who misses a class will have to	report to the teacher about the absence.			
(Formative)	A makeup assignment on the topic taught	on the day of absence will be given which			
	has to be submitted within a week from t	he date of absence. No extensions will be			
	given on this. The attendance for that p	articular day of absence will be marked			
	blank, so that the student is not accoun	ited for absence. These assignments are			
	limited to a maximum of 5 throughout th	e entire semester.			
Homework/ Home Assignment/	There are situations where a student may	have to work in home, especially before			
Activity Assignment	a flipped classroom. Although these works are not graded with marks. However, a				
(Formative)	student is expected to participate and perform these assignments with full zeal since				
	the activity/ flipped classroom participatio will be awarded.	n by a student will be assessed and marks			

E. Syllabus

DC circuits, Independent sources, Resistance, Network reduction techniques, Mesh and Node voltage analysis, Superposition, Thevenin's and Maximum power transfer theorems, Transient behaviour of inductance and capacitance, Self and Mutual inductances, Coupled coils, Dot rule, Average and RMS values of sinusoidal waves, Series and Parallel AC circuits, Phasor Analysis, Power factor improvement, Series and Parallel resonance, Three phase star and delta connected loads, Measurement of power in three phase circuits, Electrical power system, Emf Equation, Construction & Types of Transformers, DC motors, BLDC, Induction motors, Synchronous motors, Stepper motors, Fundamentals of Electrical Measuring Instruments.

F. TEXT BOOKS

- I. Nagasarkar & Sukhija, Basic Electrical Engineering, Oxford University Press, 2006.
- 2. S.K. Sahdev, Fundamentals of Electrical Engineering & Electronics, Dhanpat Rai & Co, 2010.
- 3. D. C. Kulsheshtha, Basic Electrical Engineering, McGraw Hill Education India, 2011.

G. REFERENCE BOOKS

- I. S. N. Singh, Basic Electrical Engineering, PHI, 2011.
- 2. D. P. Kothari. & I. J. Nagarath, Basic Electrical Technology, TMH 2004.

Lec No	Topics	Session Outcomes	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
LI	Introduction to the Course	To acquaint students with the outcome based education (OBE) and Course outcome (CO) and program outcome (PO) assessment process	le Lecture NA		NA
12	Basic circuit elements. Source Transformation	Recall the basic elements of a DC network	Lecture	[1001.1]	Class Quiz
L3	Series & parallel resistive circuits, Review of Kirchhoff's laws	Identify different series and parallel network configurations and their equivalent resistance calculation	Lecture	[1001.1]	Home Assignment Class Quiz
L4-L5	Star-Delta transformation	Explain the need of star-delta transformation and their applications	Lecture	[1001.1]	Home Assignment Class Quiz
ΤI	LI – L5	Numerical problems based on L1-L5	Tutorial	[1001.1]	Mid Term Exam
L6 – L7	DC Circuit Analysis – Mesh & Node analysis methods	Recall KVL and KCL and apply them to find solution of different dc network problems using Mesh & Node analysis methods	Lecture	[1001.1]	Mid Term Exam
T2-T3	L6 – L7	Numerical problems based on L6-L7	Tutorial	[1001.1]	Mid Term Exam
L8-L11	DC Network Theorems: Superposition, Thevenin, Norton, Maximum Power Transfer	Analyze and solve different dc network problems using all mentioned theorems	Lecture	[1001.1]	Home Assignment Class Quiz Mid Term Exam
T4-T5	L8-L11	Numerical problems based on L8-L11	Tutorial	[1001.1]	Mid Term Exam
LI2	Capacitor, Series & Parallel connections, Charging & Discharging, Energy stored	Recall series and parallel connection of capacitors and energy stored	Lecture	[1001.2]	Class Quiz
LI3	Inductor, Series & parallel connections, Growth & Decay of current in inductive circuit, Energy Stored	Recall series and parallel connection of inductors and energy stored	Lecture	[1001.2]	Class Quiz
Т6	L12 – L13	Numerical problems based on L12-L13	Tutorial	[1001.2]	Class Quiz
LI4– LI5	Magnetic circuits, Terminologies, Analysis of series and parallel circuits	Recall the concept of magnetic circuits and their configurations	Lecture	[1001.2]	Class Quiz
L16	Review of Electromagnetism, Electromagnetic Induction, Fleming's left & right hand rules, Lenz's Law	Recall the Fleming's rule, Lenz's law, Faraday's law and review the concept of Electromagnetism	Lecture [1001.2] Class Quiz		Class Quiz
LI7– LI8	Induced emf in a conductor & coil, Mutual Inductance, Coupling Coefficient and dot rule	Describe the concept of emf induced in coil, dot rule and Coupling Coefficient	oil, Lecture [1001.2] Class Quiz		Class Quiz
T7-T8	LI4–LI8	Numerical problems based on L14-L18	Tutorial		Class Quiz
L19-L20	Single phase circuits: Generation, Emf induced, Average value, RMS value, Peak factor, Form factor	Describe the concept of generation of ac voltage and waveform analysis	Lecture	[1001.3]	Class Quiz

L2I – L24	Phasors, Analysis of pure R, L, C, Series RL, RC and RLC circuits, Impedance, Power, Power factor	Describe the phasor operations and calculation of different quantities pertaining to different combinations of series ac circuits	Lecture	[1001.3]	Mid Term Exam
L25-L26	Analysis of Parallel RL, RC and RLC circuits	Analyze and calculate different quantities pertaining to parallel ac circuits	Lecture	[1001.3]	Mid Term Exam
T9-T10	L19 – L26	Numerical problems based on L19-L26	Tutorial	[1001.3]	Mid Term Exam
L27 – L28	Series & Parallel Resonance, Resonant frequency, Voltage & Current magnification	Recall and examine the series and parallel resonance phenomenon	Lecture	[1001.3]	Class Quiz
TH	L27– L28	Numerical problems based on L27-L28	Tutorial	[1001.3]	Class Quiz
L29-L30	Three phase ac circuits, Advantages, Types of connections, Voltage & Currents, Line & Phase values	Identify and analyse different types of Three phase ac circuits	Lecture	[1001.3]	Class Quiz
L31-L32	Analysis of balanced 3 wire & 4 wire star and delta connected systems, Phasor diagrams	Analyze three phase balanced star and delta connected systems	Lecture	[1001.3]	Mid Term Exam
L33	Measurement of three phase power by two wattmeter method	Examine two wattmeter method for three phase power Measurement	Lecture	[1001.3]	Mid Term Exam
TI2-TI3	L29 – L33	Numerical problems based on L29-L33	Tutorial	[1001.3]	Class Quiz
L34	Single phase transformer: Introduction, types, Construction, Operating principle, Emf equation	Recall and analyse operating principle of Single phase transformer and their types	Lecture	[1001.4]	Class Quiz
L35 – L36	Ideal & practical transformer, Losses and Efficiency, Voltage regulation	Compare the ideal and practical transformer and analyse different performance parameters	Lecture	[1001.4]	Mid Term Exam
T14	L34 – L36	Numerical problems based on L34-L36	Tutorial	[1001.4]	Class Quiz
L37 - L38	Introduction of single and three phase induction motors	Describe the operating principle of single and three phase induction motors	Lecture	[1001.5]	Class Quiz
L39-L40	DC Machine: Introduction, Construction, Types	Describe the construction and operating principle of DC machine	Lecture	[1001.5]	Class Quiz
L41-L42	Fundamentals of Electrical Measuring Instruments	Describe the construction and operating principle of different Measuring Instruments	Lecture	[1001.5]	Class Quiz

I. Course Articulation Matrix: (Mapping of COs with POs)

					CORR	ELATIO	N WIT	H PRO	GRAM (DUTCO	MES		
СО	STATEMENT	PO I	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO I I	PO 12
EE 1001.1	Develop circuit designing skills through general insight of circuit laws and theorems.	3	2										2
EE 1001.2	Understand the basic concepts of electromagnetism	2	I										2
EE 1001.3	Identify and evaluate different configurations of single phase & three phase ac circuits.	Ι	2										3
EE 1001.4	Understand the construction and operating principle of transformer and evaluate efficiency.	2	2	I			Ι	I					2
EE 1001.5	Illustrate the basic operating principles of DC & Induction motors and fundamental measuring Instruments.						Ι	Ι					

I-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Humanities and Social Sciences

DEPARTMENT OF LANGUAGES

Course Hand-out

Communication Skills in English | LN 1001 | 2 Credits | 2 0 0 2

Session: Jan - Apr 20 | Faculty: Dr Arun Kumar Poonia| Class: B-Tech I Semester

- A. Introduction: This course is offered by the Department of Languages as a common course to the students of B. Tech in Semester-I/II. The course offers an in-depth knowledge of language as an important branch of English language studies. It covers basic concepts such as role of communication, vocabulary, comprehension, composition, and presentation skills. It also focuses on the enhancement of critical thinking, reasoning abilities, active listening, proper and appropriate writing skills in various practical situations.
- **B. Course Outcomes:** At the end of the course, students will be able to
 - **[LN1001.1]** Apply the fundamental principles of effective communication in day to day life as well as in the professional world.
 - [LNI001.2] Develop critical and creative thinking abilities for communicative competence
 - [LN1001.3] Organize and express ideas clearly in speech
 - [LNI001.4] Develop ideas with precision and coherence in writing
 - **[LN1001.5]** Utilize analytical communicative skills for effective presentations during employment opportunities and later on working in a team.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- **[PO.I].** Engineering knowledge: Demonstrate and <u>apply knowledge</u> of Mathematics, Science, and Engineering to classical and recent problems of electronic design & communication system.
- **[PO.2]. Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **[PO.3].** Design/development of solutions: <u>Design</u> a component, system, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- **[PO.4].** Conduct investigations of complex problems: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions.
- **[PO.5].** Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern</u> <u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **[PO.6].** The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess</u> <u>societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice.

- **[PO.7].** Environment and sustainability: Understand the <u>impact of the professional engineering</u> <u>solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development.
- **[PO.8].** Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices.
- **[PO.9].** Individual and team work: Function effectively as an individual, and as a <u>member or leader</u> <u>in diverse teams</u>, and in multidisciplinary settings.
- **[PO.10]. Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **[PO.II]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change.

D. Assessment Plan:

Criteria	Description	Maximum Marks					
	Sessional Exam I (Closed Book)	20					
Internal Assessment	Sessional Exam II (Closed Book)	20					
(Summative)	CWS (In class Assignments & 3 Quizzes- Best2 Assignments & Quizzes will be counted)	10+10=20					
End Term Exam	End Term Exam (Closed Book)	40					
(Summative)							
	Total	100					
Attendance	A minimum of 75% Attendance is required to be maintained by a student to						
(Formative)	be qualified for taking up the End Semester examination. The allowance of 25% includes all types of leaves including medical leaves.						
Make up Assignments	Students who miss a class will have	to report to the teacher about the					
(Formative)	absence. A makeup assignment on th will be given which has to be submi absence. No extensions will be give particular day of absence will be mar	e topic taught on the day of absence tted within a week from the date of en on this. The attendance for that ked blank, so that the student is not					
	particular day of absence will be marked blank, so that the student is not accounted for absence. These assignments are limited to a maximum of 5 throughout the entire semester.						
Homework/ Home Assignment/	There are situations where a student	may have to work at home, especially					
Activity Assignment	before a flipped classroom. Although these works are not graded with						
(Formative)	assignments with full zeal since the ac by a student will be assessed and mar	ctivity/ flipped classroom participation ks will be awarded.					

E. SYLLABUS

Communication: Definition, process, features, types, modes, and barriers; **LSRW Skills- Listening:** Listening to groups and individuals- active listening, response, and feedback; comprehending conversations and lectures; **Reading:** Analysis of passages; skimming and scanning; contextual meaning; advanced vocabulary; **Writing:** Paragraph writing; Writing Creative and Critical responses; Formal letters; Emails; Résumés; Statement of Purpose; **Speaking:** Presentation, Discussion, and Debate on current affairs, scientific enquiry, philosophical attributions, literary sensibilities, socio-political awareness, and cultural sensitivity; Telephonic Etiquettes; Role Play; Team Work; Time Management; Grooming; Exploring multiple perspectives- critical reasoning, constructive feedback, persuasive arguments, and effective interpersonal communication.

F. **REFERENCES**:

- 1) Meenakshi Raman and S. Sharma, Technical Communication: Principles and Practice, (2/e), Oxford University Press, 2013.
- 2) N. Krishnaswamy, Modern English: A Book of Grammar Usage and Composition, Macmillan India, 2018.
- 3) Sanjay Kumar and Pushplata, Communication Skills, Oxford University Press, 2016.
- 4) Sunita Mishra and C. Muralikrishna, Communication Skills for Engineers, Pearson, 2014.

G. Lecture Plan:

DAY	TOPICS	Programme objective	Mode of Delivery	Correspo nding CO	Mode of Assessing the Outcome
Day I	Introduction about the course hand-out/ Examination scheme/Internal Assessment and Communication skills.	Review communication as a process with greater awareness	Lecture, PPT, Discussion	1001.1	Quizzes, I Sessional, End Term Examination
Day 2 & 3	Definition, process, features, types, modes, and barriers	Display enhanced competence in oral communication	Lecture, PPT, Discussion	1001.1, 1001.2	Quizzes, I Sessional, End Term Examination
Day 4 & 5	LSRW Skills- Listening: Listening to groups and individuals- active listening, response, and feedback	Display enhanced competence in oral and written communication	Lecture, PPT, Discussion	1001.1, 1001.2	Quizzes, I Sessional, End Term Examination

Day 6	Comprehending conversations and lectures	Use	Lecture, PPT, Discussion	1001.1, 1001.2	Quizzes, I Sessional, End
		mmunication skills in specific contexts and for specific purposes			Term Examination
Day 7& 8	Reading: Analysis of passages; skimming and scanning; contextual meaning	Use appropriate co mmunication skills in specific contexts and for specific purposes	Lecture, PPT, Discussion	1001.1, 1001.2	Quizzes, II Sessional, End Term Examination
Day 9	Advanced vocabulary	Demonstrate meaningful group communication exchanges	Lecture, PPT, Discussion	1001.2, 1001.3, 1001.4	Quizzes, II Sessional, End Term Examination
Day 10	Writing: Paragraph writing; Writing Creative and Critical responses	Develop critical and creative thinking abilities for communicative competence	Lecture, PPT, Discussion	1001.1, 1001.2, 1001.4	Quizzes, II Sessional, End Term Examination
Day 11 & 12	Formal letters; Emails	Develop critical and creative thinking abilities for communicative competence	Lecture, PPT, Discussion	1001.1, 1001.2, 1001.4	Quizzes, II Sessional, End Term Examination
Day 13 & 14	Resume and Statement of Purpose	Develop critical and creative thinking abilities for communicative competence	Lecture, PPT, Discussion	1001.1, 1001.2, 1001.4	Quizzes, II Sessional, End Term Examination

Day 15	Speaking: Presentation	Use	Lecture, PPT,	1001.1,	Quizzes, End
	Skills and discussion.	appropriate co mmunication skills in specific contexts and for specific purposes	Discussion	1001.2, 1001.3, 1001.5	Term Examination
Day 16- 18	Debate on current affairs, scientific enquiry, philosophical attributions, literary sensibilities, socio- political awareness, and cultural sensitivity	Use appropriate co mmunication skills in specific contexts and for specific purposes	Lecture, Discussion and any case study	1001.1, 1001.2, 1001.3	Quizzes
Day 19	Telephonic Etiquettes	Use appropriate co mmunication skills in specific contexts and for specific purposes	Lecture, PPT, Discussion	1001.1, 1001.3	Quizzes, End Term Examination
Day 20 & 21	Role Play and Team Work	Use appropriate co mmunication skills in specific contexts and for specific purposes	Lecture, PPT, Discussion	1001.1, 1001.5	Quizzes
Day 22 & 23	Time Management and grooming	Develop critical and creative thinking abilities	Lecture and Discussion	1001.1, 1001.3, 1001.5	Quizzes
Day24- 26	Exploring multiple perspectives- critical reasoning, constructive feedback, persuasive arguments	Develop critical and creative thinking abilities	Lecture, PPT, Discussion, any case study	1001.1, 1001.2, 1001.3	Quizzes
Day 27 & 28	Effective interpersonal communication	Use appropriate co mmunication skills in specific contexts and for specific purposes	Lecture, PPT, Discussion, any case study	1001.1, 1001.3, 1001.5	Quizzes

СО	STATEMENT	Correlation with Program Outcomes (POs)											
		POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	POI I	POI 2
[LN1001.1]	Apply the fundamental principles of effective communication in day to day life as well as in the professional world						I		2	I	I		
[LN1001.2]	Develop critical and creative thinking abilities for communicative competence		I				I		I				
[LN1001.3]	Organize and express ideas clearly in speech									I	I		
[LN1001.4]	Develop ideas with precision and coherence in writing		I								I		
[LN1001.5]	Utilize analytical communicative skills for effective presentations and team work						I		I	2	2	I	

I-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

ASPIRED BY LIFE

MANIPAL UNIVERSITY JAIPUR

School of Engineering

Department of Mathematics & Statistics Course Hand-out

Engineering Mathematics-I | MA | 101 | 4 Credits | 3 | 0 4

Session: Jan 20 – Apr 20 | **Dr Sunil Joshi** | Class: Ist Year

- A. Introduction: An engineering student needs to have some basic mathematical tools and techniques which emphasize the development of rigorous logical thinking and analytical skills. Based on this, the course aims at giving adequate exposure to the theory and applications. The course is aimed at developing the basic Mathematical skills of engineering students that are imperative for effective understanding of engineering
- **B.** Course Outcomes: At the end of the course, students will be able to
 - **[MAII0I.I]** To describe the concept of ODE and their applications to solve the problems
 - [MAII01.2] To describe the concept of Interpolation, Numerical differentiation & integration and their applications and in real life problems.
 - [MAII01.3] To Describe the concept of numerical methods to evaluate the roots of Algebraic & Transcendental equations and solutions of ODE though which one could develop programming skills to develop the skill of solving the complex problems which intern become employable in corporate sector
 - **[MAII01.4]** To Describe the concept of rank for the matrix by solution of the system of linear equations and developed their skill to solve engineering application based problems.
 - [MAII01.5] To Describe the basic concepts of vector space and to analysis the problems having engineering applications.

C. Program Outcomes and Program Specific Outcomes

- [PO.I]. Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- [PO.2]. Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **[PO.3].** Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
- **[PO.4].** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
- **[PO.5].** Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modelling to complex engineering activities with an under- standing of the limitations.

- [PO.6]. The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- [PO.7]. Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.
- [PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- [PO.9]. Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
- [PO.10]. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
- [PO.II]. Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to owners own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- [PO.12]. Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

D. Assessment Plan:

Criteria	Description	Maximum Marks				
	Sessional Exam I (Closed Book)	20				
Internal Assessment	Sessional Exam II (Closed Book)	20				
(Summative)	Quizzes (Open Book/Close Book) and	20				
	Assignments					
End Term Exam	End Term Exam (Closed Book)	40				
(Summative)						
	Total	100				
Attendance	A minimum of 75% Attendance is require	red to be maintained by a student to be				
(Formative)	qualified for taking up the End Seme	ester examination. The allowance of 25%				
	includes all types of leaves including	medical leaves.				
Homework/ Home Assignment/	There are situations where a student may	have to work in home, especially before				
(Formative)	a flipped classroom. A student is ex	pected to participate and perform these				
	assignments with full zeal since the activity/ flipped classroom participation by					
	a student will be assessed and marks	will be awarded.				

E. Syllabus

Matrices-inverse and rank, solution of linear system of equations, Eigen value problems. Vector spaces, basis, linear transformations, inner product spaces and Orthogonalization. First and higher order differential equations and their solutions; finite difference and interpolation for equal and unequal intervals, Numerical differentiation and integration. Solution of algebraic and transcendental equations, solutions of ordinary differential equations.

F. Text Book:

1. Grewal B. S., Higher Engineering Mathematics, (42e), Khanna Publishers, 2013

G. Reference Book:

- I. Kreyszig E., Advanced Engineering Mathematics, (10e), Wiley Eastern, 2011
- 2. Lay David C., Linear Algebra and applications, (3e), Pearson Education, 2009
- 3. Sastry S. S., Introductory methods of Numerical analysis, (4e), PHI, 2007

- 4. Iyengar S.R.K. and Jain, Rajendra K., Advance Engineering Mathematics (3e), Narosa book distributors Pvt Ltd-New Delhi, 2007
- 5. Ramana B. V., Higher Engineering Mathematics (6th reprint), Tata Mcgraw-Hill, New Delhi, 2008

H. Lecture Plan:

Lecture N o.	Description of the Topics	Session Outcome	Mode of Delivery	Correspondin g CO	Mode of Assessing the Outcome
I	Introduction: Basic definitions, solving first order differential equations using Variable separable method.	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.1	Quizzes, assignments, Two Sessional, End Term Examination
2	Homogeneous	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.1	Quizzes, assignments, Two Sessional, End Term Examination
3	reducible to Homogeneous	Identify, formulate, apply appropriate techniques <u>, professional</u> ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.1	Quizzes, assignments, Two Sessional, End Term Examination
4	Tutorial	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	1101.1	Quizzes, assignments, Two Sessional, End Term Examination
5	Linear D. E	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.1	Quizzes, assignments, Two Sessional, End Term Examination
6	Bernouli equations	Identify, formulate, apply appropriate techniques <u>, professional</u> ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.1	Quizzes, assignments, Two Sessional, End Term Examination
7	Solution of Exact differential equations	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.1	Quizzes, assignments, Two Sessional, End Term Examination
8	Tutorial	Identify, formulate, apply appropriate techniques <u>, professional</u> ethics, Communicate effectively & life- long learning	Problem solving	1101.1	Quizzes, assignments, Two Sessional, End Term Examination

9	Reducible to exact methods	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.1	Quizzes, assignments, Two Sessional, End Term Examination
10	higher order differetial equations - finding CF	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.1	Quizzes, assignments, Two Sessional, End Term Examination
11	Inverse differential operator method to calculate P.I for eax , sin $(ax+b)$ and cos $(ax+b)$	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.1	Quizzes, assignments, Two Sessional, End Term Examination
12	Tutorial	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	1101.1	Quizzes, assignments, Two Sessional, End Term Examination
13	Inverse differential operator method to calculate P.I for xm, eax v	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.1	Quizzes, assignments, Two Sessional, End Term Examination
14	P.I using method of variation of parameters	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.1	Quizzes, assignments, Two Sessional, End Term Examination
15	Finite difference operators and relation among them.	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.2	Quizzes, assignments, Two Sessional, End Term Examination
16	Tutorial	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	1101.2	Quizzes, assignments, Two Sessional, End Term Examination
17	Newton-Gregory forward and backward interpolations	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.2	Quizzes, assignments, Two Sessional, End Term Examination
18	Stirlings formula	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.2	Quizzes, assignments, Two Sessional, End Term Examination

19	Lagrange's and inverse interpolation for unequal intervals.	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.2	Quizzes, assignments, Two Sessional, End Term Examination
20	Tutorial	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	1101.2	Quizzes, assignments, Two Sessional, End Term Examination
21	Numerical Differentiation - forward and backward formulas	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.2	Quizzes, assignments, Two Sessional, End Term Examination
22	Numerical Differentiation - Central formula	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.2	Quizzes, assignments, Two Sessional, End Term Examination
23	Numerical differentiation for unequal intervals	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.2	Quizzes, assignments, Two Sessional, End Term Examination
24	Tutorial	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	1101.2	Quizzes, assignments, Two Sessional, End Term Examination
25	Numerical Integration- Newton Cotes formula	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.2	Quizzes, assignments, Two Sessional, End Term Examination
26	Trapezoidal and Simpson's 1/3 rd rules of integration	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.2	Quizzes, assignments, Two Sessional, End Term Examination
27	Simpson's 3/8 th rule of integration,Weddle rule	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.2	Quizzes, assignments, Two Sessional, End Term Examination
28	Tutorial	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	1101.2	Quizzes, assignments, Two Sessional, End Term Examination

29	Solution of algebraic and transcendental equations : Bisection method	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.3	Quizzes, assignments, Two Sessional, End Term Examination
30	Regula –Falsi method	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.3	Quizzes, assignments, Two Sessional, End Term Examination
31	Solution by Newton Raphson's method	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.3	Quizzes, assignments, Two Sessional, End Term Examination
32	Tutorial	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	1101.3	Quizzes, assignments, Two Sessional, End Term Examination
33	Numerical solution of ordinary differential equations- by Taylor series method	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.3	Quizzes, assignments, Two Sessional, End Term Examination
34	Numerical solution of ordinary differential equations- by Euler 's method and modified Euler's method	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.3	Quizzes, assignments, Two Sessional, End Term Examination
35	Runge-Kutta method order 4	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.3	Quizzes, assignments, Two Sessional, End Term Examination
36	Tutorial	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	1101.3	Quizzes, assignments, Two Sessional, End Term Examination
37	Matrices and their properties, Elementary row transformations and Echelon matrix	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.4	Quizzes, assignments, Two Sessional, End Term Examination
38	Rank of the matrix with problems	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.4	Quizzes, assignments, Two Sessional, End Term Examination

39	Consistency of the system of homogeneous/non homogeneous equations: Solution by Gauss elimination	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.4	Quizzes, assignments, Two Sessional, End Term Examination
40	Tutorial	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	1101.4	Quizzes, assignments, Two Sessional, End Term Examination
41	Gauss Jordan method for inverse evaluation, examples	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.4	Quizzes, assignments, Two Sessional, End Term Examination
42	Iterative method for solving system of equations: Gauss Jacobi method	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.4	Quizzes, assignments, Two Sessional, End Term Examination
43	Gauss Seidel method	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.4	Quizzes, assignments, Two Sessional, End Term Examination
44	Tutorial	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	1101.4	Quizzes, assignments, Two Sessional, End Term Examination
45	Eigen values , eigen vectors and their properties	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.4	Quizzes, assignments, Two Sessional, End Term Examination
46	Linear combination of vectors, Linear span, some theorems on Linear span	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.5	Quizzes, assignments, Two Sessional, End Term Examination
47	Linear dependency and independency of vectors with problems	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.5	Quizzes, assignments, Two Sessional, End Term Examination
48	Tutorial	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	1101.5	Quizzes, assignments, Two Sessional, End Term Examination

49	Definition of Basis, Spanning set with problems	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.5	Quizzes, assignments, Two Sessional, End Term Examination
50	Inner product space	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.5	Quizzes, assignments, Two Sessional, End Term Examination
51	Orthogonal basis and orthonormal basis. Gram Schmidt orthogonalization to construct Orthonormal basis	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	1101.5	Quizzes, assignments, Two Sessional, End Term Examination
52	Tutorial	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	1101.5	Quizzes, assignments, Two Sessional, End Term Examination

I. Course Articulation Matrix: (Mapping of COs with POs)

		CORRELATION WITH PROGRAM OUTCOMES											
со	STATEMENT												
		PO I	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO I I	PO 12
MA1101.1	To describe the concept of ODE and their applications to solve the problems	3	3	1	3	1				2		2	1
MA1101.2	To describe the concept of Interpolation, Numerical differentiation & integration and their applications and in real life problems.	3	2	2	2	2				2		1	I
MA1101.3	To Describe the concept of numerical methods to evaluate the roots of Algebraic & Transcendental equations and solutions of ODE though which one could develop programming skills to develop the skill of solving the complex problems which	3	2	2	2	2				3		3	1

	intern become employable in corporate sector									
MA1101.4	To Describe the concept of rank for the matrix by solution of the system of linear equations and developed the their skill to solve engineering application based problems.	3	3	2	3	2		1	2	1
MA1101.5	To Describe the basic concepts of vector space and to analysis the problems having engineering applications.	2	2	I	2	3		2	2	Ι

School of Automobile Mechanical and Mechatronics Engineering

Department of Mechanical Engineering Course Hand-out

BASIC MECHANICAL ENGINEERING | ME 1001 | 3 Credits | 3 0 0 3

Session: Jan 20 - Apr 20 | Faculty: Hemant Raj Singh | Class: I Year

A. Introduction: Basic Mechanical Engineering is a brief overview of mechanical engineering that makes the students familiar with the basic concepts of Mechanical Engineering. It provides a systematic introduction to the basic elements of mechanical systems while emphasizing the underlying working principles important in understanding the functioning of mechanical systems and processes which involves energy carrier (working fluid i.e. steam), energy and its transformation, steam generator, refrigeration and air-conditioning, power producing and consuming devices, power transmission devices and manufacturing processes.

B. Course Outcomes: At the end of the course, students will be able to

[MEI001.1] Understand the fundamental concepts to the basic elements of mechanical systems while emphasizing the

underlying working principles important in understanding the functioning of mechanical systems and processes.

- [MEI001.2]. Apply laws of thermodynamics on engineering processes.
- [ME1001.3] Design and analyse the concepts of components, (I.C. Engine, Steam Generator, Refrigerator, Steam Turbine, Machine Tools, Power Transmitting devices and Manufacturing Processes etc.).
- [MEI001.4] Analyse the concepts of manufacturing in the context of mechanical applications.
- [MEI001.5] Apply the concept of thermodynamics and manufacturing processes to design/utilize the power generating, power consuming and manufacturing devices thus increasing the employability in industries.

C. Program Outcomes and Program Specific Outcomes

- **[PO.I].** Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **[PO.2]. Problem Analysis:** Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **[PO.3].** Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
- **[PO.4].** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
- **[PO.5].** Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modelling to complex engineering activities with an under- standing of the limitations.
- **[PO.6].** The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- **[PO.7].** Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.
- **[PO.8]. Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- **[PO.9].** Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.

- **[PO.10].** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
- **[PO.II].** Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to owners own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **[PO.12].** Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

D. Assessment Rubrics:

Criteria	Description	Maximum Marks				
	Sessional Exam I (Close Book)	20				
Internal Assessment	Sessional Exam II (Close Book)	20				
(Summative)	Quizzes(10) and Assignment (10)	20				
End Term Exam	End Term Exam (Close Book)	40				
(Summative)						
	Total	100				
Attendance	A minimum of 75% Attendance is required to be maintained by a student					
(Formative)	qualified for taking up the End Semester examination. The allowance of 25%					
	includes all types of leaves including medical leaves.					
Quizzes	3 Quizzes (Close Book)					

E. Syllabus

Working Fluid: Properties of steam, Steam tables, Steam Generators, Classification, Construction and working of Simple boiler. **Refrigeration and Air Conditioning:** Definition, concept, Vapour Compression cycle, C.O.P., working principles and schematic diagrams of Refrigerator, Air Conditioner. **Internal Combustion Engine**: Classification, Otto and Diesel cycles, Construction and working of SI and CI engine, Two stroke and Four stroke engine, Calculation of thermal efficiency of cycles. Introduction of **Lubrication**: Need, Methods of lubrication, Splash & Force lubrication. **Steam turbines**: Definition, function, classification and parts of steam turbine, Impulse and reaction turbine - working principle, P – V diagram. **Power Transmission**: Classification and applications of mechanical drives like belts, ropes, chains and gear drives and their velocity ratios, length of belts, power transmitted, ratio of tensions in belts and ropes, gear trains, Calculation of different parameters. **Machine Tools**: Construction, Working and specification of Lathe, Drilling machine, Shaper and Milling machine. **Foundry:** Foundry tools and equipments, Procedure for moulding. **Welding:** Definition, Gas and Arc welding, Soldering and Brazing. **Forging:** Definition, applications, tools Different Forging operations.

F. Text Book:

TI. Elements of Mechanical Engineering, Mathur, Mehta and Tiwari, Jain Brother, (Thirteenth Edition), 2016.

G. Reference Book:

RI. Thermodynamics: An Engineering Approach, Y.A. Cengel and M.A. Boles, McGraw Hill (Fifth Edition), 2006.

R2. Workshop Technology, Vol. I, W. A. J. Chapman, CBS Publishers & Distributors(Fifth Edition), 2001

H. Lecture Plan:

Lec No	Topics	Session Objective	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
1	Introduction, aims and objectives of the course and elementary fundamentals of thermodynamics	Know the basics of the course and understand its applications	Lecture	ME1001.1	
2	Properties of steam: formation of steam experiment	Discuss the terms system and surroundings, thermodynamic properties and describe their use	Lecture	ME1001.1	
3	Different states of steam, enthalpy of steam and Measurement of Dryness fraction	Understand the type of steams	Lecture	ME1001.1	Class Quiz Mid-Term I
4	Numerical on properties of steam	Estimating the properties of steam using steam tables.	Lecture/Activity	ME1001.1 ME1001.2	End-Term
5	Steam Boilers – definition, function and classification	Know the basics of the steam boiler and understand its applications	Lecture	ME1001.1	
6	Lancashire boiler – construction, working principle and applications	Understand the concept of Lancashire boiler	Lecture	ME1001.1	
7	Boiler mountings & accessories, Comparison between boiler mountings & accessories	Know the basics of the Boiler its accessories and mounting	Lecture	ME1001.1	
8	Refrigeration : Principle and major parts of an refrigeration system and Air Conditioner	Understand various thermodynamic principles related with refrigeration	Lecture/Activity/Lab Visit	ME1001.1	
9	Vapour compression refrigeration system: working principle	Know the basics of the Vapour compression refrigeration system	Lecture	ME1001.2 ME1001.3 ME1001.4	
10	Classification of refrigerants and properties of an ideal refrigerant Commonly used refrigerants	Know the criteria in selection of refrigerants and their use	Lecture	ME1001.1	
11	I. C. Engines : classification, parts and I.C Engine terms	Know the basics of the I.C. Engine and understand its applications	Lecture/ Activity/ Lab visit	ME1001.1 ME1001.2	Class Quiz Mid-Term I End-Term
12	working of four stroke petrol engine	Know the basics of the four S SI engine and understand its applications	Lecture	ME1001.1 ME1001.2	
13	Working of four stroke diesel engine	Know the basics of the four S CI engine and understand its applications	Lecture	ME1001.1 ME1001.2	
14	Two stroke engines and Working of two stroke petrol engine, Working of two stroke diesel engine	Know the basics of the two S Engine and understand its applications	Lecture	ME1001.1 ME1001.2 ME1001.3	

15	comparison between petrol & diesel engines	Analyse the differences	Lecture	ME1001.2 ME1001.3	
16	Comparison between four stroke & two stroke engines and Important definitions	Analyse the differences	Lecture	ME1001.1 ME1001.2 ME1001.3	
17	Problems on I. C. Engines	Estimating the properties of IC Engine	Lecture/Activity	ME1001.2 ME1001.3	
18	Lubrication: Methods of lubrication, Splash & Force lubrication,	Know the basics of the lubrication and understand its applications	Lecture	ME1001.1	
19	Steam turbines :definition, function, classification and comparison with steam engine	Know the basics of the steam turbine and understand its applications	Lecture	ME1001.1	Class Quiz
20	Impulse turbine - working principle and P – V diagram, Reaction turbine - working principle,	Understand the impulse and reaction turbine	Lecture	ME1001.1 ME1001.3	End-Term II
21	Reaction Turbine-PV diagram (Continued),Difference between impulse & reaction turbine	Compare and understand the steam turbines	Lecture	ME1001.3	
22	Power Transmission: Introduction, Significance and definitions, Different methods of power transmission, types of belt drives,	Know the basics of power transmission and understand its applications	Lecture	ME1001.1	
23	types of pulleys and its application, V – belt introduction and advantages	Know the type of belt and its use	Lecture	ME1001.1	
24	Derivation of length of belt (open and cross)	Estimate the length of belt drives	Lecture/Activity	ME1001.1	
25	Calculation of Velocity ratio for belt drive, introduction of slip and creep	Estimating the velocity ratio of belt drive	Lecture/Activity	ME1001.3 ME1001.5	
26	Calculation of Tension in belt drive (open), Power transmitted in belt drive and Numerical on belt drives	Estimating the tension in belt	Lecture/Activity	ME1001.3 ME1001.5	Class Quiz Mid-Term II End-Term
27	Gear drives, types of gears and their application	Know the basics of the gear drives and understand its applications	Lecture	ME1001.1 ME1001.3 ME1001.5	
28	Calculation of velocity ratio for gear drive, gear train (simple and compound)	Estimating the velocity ratio of gear drive	Lecture	ME1001.3 ME1001.5	
29	Machine tools: Introduction Lathe- Basic introduction, explanation of principal parts of lathe with the help of diagram and working principle	Know the basics of the machine tool and understand its applications	Lecture	ME1001.1 ME1001.3 ME1001.5	
30	Specification of lathe Machine, Types of operations- Turning, Facing, Knurling, Parting, Grooving, Chamfering, taper turning	Analyse the Lathe Machine and its operation	Lecture	ME1001.1 ME1001.2 ME1001.3 ME1001.5	Class Quiz End-Term
31	Drilling: Introduction, classification of drilling machines, operations	Know the basics of the Drilling and understand its applications	Lecture	ME1001.1 ME1001.3	
32	and Milling machine	now the basics of the Milling and shaper	Lecture/ Workshop Visit	ME1001.1 ME1001.3	
		and understand its applications			
----	---	---	----------------------------	--	------------
33	Foundry: Usage of Foundry tools and equipments,	Know the basics of the Foundry and understand its applications	Lecture	ME1001.1 ME1001.3 ME1001.5	
34	Procedure of moulding process	Know the Procedure for moulding.	Lecture	ME1001.1 ME1001.2 ME1001.3 ME1001.5	
35	Welding: Definition, Classification majorly Gas and Arc welding,	Know the basics of the welding and understand its applications	Lecture	ME1001.1 ME1001.2 ME1001.3	Class Quiz
36	Principle of Oxy- Acetylene gas welding, flames and its application	Understand the gas welding	Lecture	ME1001.1 ME1001.2 ME1001.3 ME1001.5	End-Term
37	Principle of electric arc welding, Soldering and Brazing.	Understand the arc welding	Lecture	ME1001.1 ME1001.2 ME1001.3	
38	Forging:Definition,applications,toolsDifferentForgingoperations	Know the basics of the forging and understand its applications	Lecture/ workshop visit	ME1001.1 ME1001.2 ME1001.3 ME1001.5	

I. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT	CORRELATION WITH PROGRAM OUTCOMES											
	STATEMENT	PO I	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO I I	PO 12
ME1001.1	Understand the fundamental concept to the basic elements of mechanical systems while emphasizing the underlying working principles important in understanding the functioning of mechanical systems and processes.	3											
ME1001.2	Apply laws of thermodynamics on engineering processes.	3	2										
ME1001.3	Design and analyse the concept of components, (I.C. engine, Steam generator, Refrigerator, turbine, Machine tools, power transmitting devices and Manufacturing processes etc.).	3		3	2								
ME1001.4	Analyse the concept of second law and entropy in the context of thermal applications.	3	2	3	2		2	2					
ME1001.5	Apply the concept of thermodynamics and manufacturing processes to design/utilize the power generating, power consuming and manufacturing devices.	3	3	3			2	2					

School of Automobile, Mechanical and Mechatronics

DEPARTMENT OF MECHANICAL ENGINEERING

Course Hand-out

Engineering Graphics | ME 1002 | 3 Credits | 0 0 6 3

Session: Jan 20 – Apr 20 | Course Coordinator: Dr. Mithilesh Kumar Dikshit | Class: I Year B.Tech

- **A. Introduction:** This course teaches the basics of engineering drawing utilising free hand sketching, mechanical drawing, and computer aided drafting. The fundamental principles of orthographic projection as well as the topics of dimensioning, sectional views, isometric and perspective pictorials views, descriptive geometry and assembly drawings are taught.
- **B.** Course Outcomes: Upon successful completion of this course:
 - [MEI002.1]. Students will be able to understand the conventions and the methods of engineering drawing.

[ME1002.2]. Students will be able to understand the theory of projections. Draw orthographic projection of lines, planes and solids.

[ME1002.3]. Students will learn to apply sectional views to most practically represent engineered parts. Students will have skill to prepare basic engineering models.

[ME1002.4]. Student will learn design and drafting in autocad. Understand the application of industry standards and techniques applied in engineering graphics.

C. Program Outcomes and Program Specific Outcomes

[PO.I] Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

[PO.2] Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.

[PO.3] Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.

[PO.4] Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.

[PO.5] Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

[PO.6] The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.

[PO.7] Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.

[PO.8] Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.

[PO.9] Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.

[PO.10] Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.

[PO.II] Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to owners own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

[PO.12] Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Criteria	Description	Maximum Marks						
	Performance on sheets (Manual Drawing)	30						
Internal	Performance on AUTOCAD	20						
Assessment (Summative)	Viva voce	10						
End Term Exam (Summative)	End Term Exam	40						
	Total	100						
Attendance (Formative)	A minimum of 75% Attendance is required to be r to be qualified for taking up the End Semes allowance of 25% includes all types of leaves inclu	A minimum of 75% Attendance is required to be maintained by a student to be qualified for taking up the End Semester Examination. The allowance of 25% includes all types of leaves including medical leaves.						
Make up Assignments (Formative)	Students who misses a class will have to report t the absence. A makeup assignment on the topic absence will be given which has to be submitted v date of absence. No extensions will be given on t that particular day of absence will be marked blan is not accounted for absence. These assignment maximum of 5 throughout the entire semester.	o his/her faculty about taught on the day of vithin a week from the his. The attendance for hk, so that the student ents are limited to a						

D. Assessment Plan:

E. Syllabus

Principle of Orthographic Projections: Points, straight lines parallel to one ref. plane (HP/VP) and inclined to other ref. plane; Straight lines inclined to both HP and VP; Straight lines inclined to both HP & VP and parallel to PP; Straight lines with traces; Practical problems on straight lines. Projections of Plane surfaces: Perpendicular one ref. plane (HP/VP) and inclined to other ref. plane, Inclined to both HP & VP, Inclined to both HP & VP and perpendicular to PP. Projections of Solids (right regular) by change of position method: Axis parallel to one ref. plane (HP/VP) and inclined to other ref. plane, Resting on one of the ref. plane, axis inclined to both HP & VP, Suspended freely, axis inclined to both HP & VP, Axis inclined to both HP & VP parallel to PP. Projections of solids by Auxiliary plane method: Axis inclined to both HP and VP. Sections of solids (right regular and no spheres): Using Horizontal and vertical section planes using section plane perpendicular to one ref. plane and inclined to the other ref. plane, Given the regular true shapes of various solids and find the inclination of section plane. Development of surfaces: Parallel line development, Radial line development, Triangulation development. Isometric projections: Plane surfaces and simple solids (prisms & cylinders), Frustum and combination of solids, Simple machine elements. Introduction to Computer Aided Drafting.

F. Text Books:

- I. Bhat N. D., Engineering Drawing Charotar Publishing House, Anand , 2000.
- 2. Jeyapoovan T. Engineering Drawing and graphics Using AutoCAD, 3rd Ed. Vikas Publishing House Pvt. Ltd., 2010.

G. Reference Books:

- I. Gopalkrishna K. R., Engineering Graphics, Suhas Publications, Bangalore, 2001.
- 2. Venugopal K., Engineering Drawing and Graphics + Autocad Newage International Publishers, Delhi (2001).

3. Narayana K. L. and Kannaiah P., Text book on Engineering Drawing, Scitech Publications, Chennai (2002).

H. List of Sheets

- I. Projection of Points
- 2. Projection of Lines (inclined to one plane and parallel to other)
- 3. Projection of Lines inclined to both the planes and Traces of a line
- 4. Projection of Planes
- 5. Projection of Solids
- 6. Projection of Sections of Solids & Development of Surfaces
- 7. Isometric projections

CAD

- I. Introduction to Auto-CAD and commands
- 2. Questions on projection of lines
- 3. Questions on projection of lines inclined to both the planes
- 4. Questions on projection of planes
- 5. Basic concept of 3D drafting and drawing

I. Lecture Plan:

Lecture Number	Topics	Session Outcomes	Mode of delivery	Corresponding CO	Assessments
I	Introduction to Engineering Graphics	Layout of drawing sheet, conventions, scales, Dimensioning, Letterings and Numberings	Board/PPT	ME1002.1	
2	Theory of projection. Projection of Points	Types of Projections, orthographic projections, plane of projection, Quadrants, Angles of projections	Board/PPT	ME1002.1	Sheet performance in class/End terms
3	Problems on projection of points	Position of point, to find distance between any two points	Board/PPT	ME1002.1	
4	Projection of lines inclined to one plane and perpendicular to another plane	Position and projection of straight line, Methods for determining true length and true inclinations.	Board/PPT	ME1002.2	
5	Problems practice of lines inclined to one plane and parallel to other plane	Classroom practice.	Board/PPT	ME1002.2	Sheet
6	Projection and traces of straight line inclined to both planes	Projection of straight line inclined to both planes, determining apparent top view and apparent front view, angle of inclinations with both the planes.	Board/PPT	ME1002.2	performance in class/End terms
7	Problems practice on Lines inclined to both planes and traces of a line	Projection of straight line and traces.	Board/PPT	ME1002.2	
8	Projection of planes	Introduction to plane, location of plane, types of planes, Projection concepts	Board/PPT	ME1002.2	Sheet performance
9	Problems practice on projection of planes inclined to one plane and planes inclined to both planes	Projection of planes, perpendicular planes, plane inclined to reference planes	Board/PPT	ME1002.2	in class/End terms
10	Projection of Solids (right regular and by change of position method)	Introduction, types of solids, position of	Board/PPT	ME1002.2	Sheet performance

		solids w.r.t. HP and			in class/End
		VP			terms
		Projection of solids in		ME1002.2	
11	Problems practice on projection of	simple positions,	Board/PPT		
	solids	Position of solids in	Board/TT T		
		typical positions			-
		Oblique solids,		ME1002.2	
12	Problems on projection of solids	Frustum of cone and	Board/PPT		
12	inclined to both planes	Pyramid, Truncated	Doard/TTT		
		solids			-
		suspended freely and		ME1002.2	
		axis inclined to both			
13	Problems on projection of solids	planes, Axis inclined	Board/PP1		
		to both HP & VP,			
		parallel to PP			-
		Projection of solids		ME1002.2	
14	Problems on projection of solids	by auxiliary plane	Board/PPT		
		LO DOLII FIF & VF		ME1002.2	
		of solids Different		TTET 002.5	
15	Projection of sections of solids	terminology	Board/PPT		
		classifications			
		Section		ME1002.3	
		perpendicular to VP		1121002.5	
		and parallel to HP.			Sheet
16	Projection of sections of solids	Section	Board/PP1		performance
		perpendicular to HP			in class/End
		and parallel to VP			terms
		Section		ME1002.3	
		perpendicular to VP			
17	Problems on projection of sections of	and inclined to HP,	Board/PPT		
	solids	Section	Board/TTT		
		perpendicular to HP			
		and inclined to VP			
		Parallel line		ME1002.3	
10		development, Kadial			
18	Development of surfaces	line development and	Board/PP1		Chart
		l riangular development			Sneet
		Brobloms on		ME1002.2	performance
		Dovelopment of		I'IE I 002.5	torms
19	Development of Surfaces	Surfaces for prism	Board/PPT		terms
	Development of Surfaces	ovramid cone	board/111		
		cylinder			
		Introduction		ME1002 3	
		Difference between			Sheet
20	Isometric view and proiection	isometric view and	Board/PPT		pertormance
	FF	isometric projection.			in class/End
		lsometric axis,			terms

		isometric lines and			
		Isometric planes		ME1002 3	
		isometric projection		11111002.5	
		Isometric view and			
		projection of plane			
	Problems on Isometric view and	geometries. Four			
21	projection of planes and solids	center method to	Board/PPT		
	F	draw isometric view			
		and projection of			
		circle, Isometric view			
		of right solids			
		Isometric view and		ME1002.3	
22	Problems on Isometric projection of	projection of	Board/PPT		
	planes and solids	Truncated solids,	board/111		
		frustum			
		Introduction, CAD		ME1002.4	
		applications,			
22		AUTOCAD	DDT		
23	Introduction to Auto CAD	workspace, Setting	PPI		
		up drawing space,			
		sneet layout,			
		Methods of locating a		ME10024	
	Commands and Projection of lines and	point Drawing lines		1121002.4	
24	lines inclined to both planes using Auto	and curves texting			
		and dimensioning of			
		drawings			
		Drawing of polygons		ME1002.4	Classroom
		using commands,			Test
		editing commands			
25	Commands and Projection of planes	like OFFSET, FILLET,			
25	using AUTOCAD	CHAMFER, TRIM,			
		EXTEND, BREAK,			
		ROTATE, MIRROR			
		etc.			
		Commands:		ME1002.4	
		EXTRUDE,			
26	3D objects	CILINDER, CONE,	AUTOCAD		
		POA, UNION, SUBSTRACT and			

J. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT					Co	orrelat	ion V	/ith Pr	ogram	Outco	omes	
		PO I	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO I I	PO 12

ME1002.1	Students will be able to understand the conventions and the methods of engineering drawing.	3		2	1					2
ME1002.2	Students will be able to understand the theory of projections. Draw orthographic projections of lines, planes and solids.	3	2	2	I					2
ME1002.3	Students will learn to apply sectional views to most practically represent engineered parts. Students will have skill to prepare basic engineering models.	3	3	3	1					2
ME1002.4	Student will learn design and drafting in autocad. Understand the application of industry standards and techniques applied in engineering graphics.	3	3	3	2	3				2

I-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Automobile Mechanical and Mechatronics Engineering

Department of Mechanical Engineering Course Hand-out

Basic Workshop Practice |ME 1030 | I Credits

Session: JAN 20 - APR 20 | Faculty: Ashish Sharma

- A. Introduction: This course is offered by Dept. of Mechanical Engineering which focuses on mainly hands on learning based on various working shops like lathe machine, welding, engines, UTM, residential wiring design, power supply and building plan. This course gives an overview of fundamental working of various machine tools, compressive strength of building materials and electrical- electronics instruments.
- **B. Course Outcomes:** At the end of the course, students will be able to

MEI030.1 Understand about the various measuring, marking and cutting tools and Comprehend the safety measures required to be taken while using tools.

- **ME1030.2** Acquire skills and Knowledge about lathe machine, welding machines and 2S-4S engines and their operations.
- **ME1030.3** Learn different techniques for quality assurance check of building materials.
- MEI030.4 Analyse the profile of existing ground for any infrastructure development project
- **ME1030.5** Understand about the basic construction and working principle of fluorescent lamp, ceiling fan and three Phase Induction machine
- **ME1030.6** Analyse the characteristics of different electronic components and CRO.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- **[PO.I]. Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- **[PO.2].Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3].Design/development of solutions**: Design solutions for complex engineering problems and <u>design system</u> <u>components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4].Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- **[PO.5].Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and</u> <u>IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations</u>
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal, health,</u> <u>safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7].Environment and sustainability**: Understand the <u>impact of the professional engineering solutions in societal</u> <u>and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8].Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- **[PO.9].Individual and team work**: Function effectively as an individual, and as a <u>member or leader in diverse teams</u>, and in multidisciplinary settings

- **[PO.10]. Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change.

D. Assessment Plan:

Criteria	Description	Maximum Marks						
	Job preparation-	30						
Internal Assessment	File/Records-	15						
(Summative)	Viva-	15						
End Term Exam	End Term Exam (External Practical	40						
(Summative)	Exam)							
	Total	100						
Attendance	A minimum of 75% Attendance is requir	red to be maintained by a student to be						
(Formative)	qualified for taking up the End Semest	er examination. The allowance of 25%						
	includes all types of leaves including medical leaves.							
Make up Assignments	Students who misses a class will have to	report to the teacher about the absence.						
(Formative)	A makeup class on the job done on the o	day of absence will be given which has to						
	be completed within a week from the	date of absence. No extensions will be						
	given on this. The attendance for that p	particular day of absence will be marked						
	blank, so that the student is not accounted	ed for absence. These jobs are limited to						
	a maximum of 2 throughout the entire se	emester.						
Homework/ Home Assignment/	There are situations where a student	may have to work in home, especially						
Activity Assignment	before a flipped classroom. Although these works are not graded with m							
(Formative)	However, a student is expected to par	ticipate and perform these assignments						
	with full zeal since the activity/ flipped cla	ssroom participation by a student will be						
	assessed and marks will be awarded.							

E. SYLLABUS

- 1. Study of parts of lathe machine and lathe operations
- 2. Perform different operations on lathe machine like Facing, Turning, Taper Turning and knurling on MS cylindrical work piece
- 3. Study of types of welding process and perform welding of different types of joint on MS plate with arc welding process
- 4. Study of two stroke and four stroke engines.
- 5. Layout of a small building plan on ground.
- 6. Levelling around Academic block.
- 7. Measurement of tensile strength of reinforcement bar using UTM.
- 8. Measurement of compressive strength of Brick/Cement by CTM.
- 9. Designing of residential wiring and study of three phase induction motor.
- 10. Study of the working of fluorescent lamp and ceiling fan.
- 11. Use of electronic Instruments and tools.
- 12. Building DC Regulated Power Supply.

F. TEXT BOOKS

- i. Hajra Choudhury S. K and Bose S. K, Elements of Workshop Technology, Vol I, Media
- ii. Promoters & Publishing Pvt. Ltd., Mumbai, 2012.

- iii. Raghuvanshi S.S, Workshop Technology, Dhanpat Rai and Sons, Delhi, 2002.
- iv. Punmia B. C, Surveying, Laxmi Publications, Bangalore, 2012.
- v. Uppal S.L., Electrical Wiring, Estimating and Costing, Khanna Publishers, 1978.
- vi. Bishop Owen, Electronics: A First Course, (2e), NEWNES, An Imprint of Elsevier, 2006.

Lecture Plan:

Lec No	Topics	Session Outcome	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
I	Study of parts of lathe machine and lathe operations	Understanding building of tools and lathe machines	Lecture+Lab	1030.1	Lab Experiment
2	Perform different operations on lathe machine like Facing, Turning, Taper Turning and knurling on MS cylindrical work piece	Performance of different operations	Lecture+Lab	1030.1	Lab Experiment
3	Study of types of welding process and perform welding of different types of joint on MS plate with arc welding process	Understanding of welding processes	Lecture+Lab	1030.2	Lab Experiment
4	Study of two stroke and four stroke engines.	Knowledge of IC engines	Lecture+Lab	1030.2	Lab Experiment
5	Layout of a small building plan on ground.	Understanding of building layout	Lecture+Lab	1030.3	Lab Experiment
6	Levelling around Academic block.	Have information regarding levelling	Lecture+Lab	1030.3	Lab Experiment
7	Measurement of tensile strength of reinforcement bar using UTM.	UTM experiment	Lecture+Lab	1030.4	Lab Experiment
8	Measurement of compressive strength of Brick/Cement by CTM.	CTM experiment	Lecture+Lab	1030.4	Lab Experiment
9	Designing of residential wiring and study of three phase induction motor.	Gain knowledge about residential wiring	Lecture+Lab	1030.5	Lab Experiment
10	Study of the working of fluorescent lamp and ceiling fan.	Study of lamp and ceiling fan	Lecture+Lab	1030.5	Lab Experiment

11		Analyze the	Lecture+Lab	1030.6	Lab Experiment
	Use of electronic	characteristics of			
	Instruments and tools.	different electronic components and its applications.			
12	Building DC Regulated Power Supply.	Understanding of small circuits.	Lecture+Lab	1030.6	Lab Experiment

G. Course Articulation Matrix: (Mapping of COs with POs)

		CORRELATION WITH PROGRAM OUTCOMES											
CO	STATEMENT	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 12
	JIAIEIIEI	Ι	2	3	4	5	6	7	8	9	10	11	
ME1030.1	Understanding about the various measuring, marking and cutting tools and Comprehend the safety measures required to be taken while using tools.	1				1		1		1			1
ME1030.2	Acquire skills and Knowledge about lathe machine, welding machines and 2S-4S engines and their operations.		I							1			
ME1030.3	Learn different techniques for quality assurance check of building materials.	1	1			1							I
ME1030.4	Analyse the profile of existing ground for any infrastructure development project	1				1				1			I
ME1030.5	Understand about the basic construction and working principle of fluorescent lamp, ceiling fan and three Phase Induction machine	1				1				I		1	1
ME1030.6	Analyze the characteristics of different electronic components and CRO.	1	1					1		1			I

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Basic Sciences

Department of Physics Course Hand-out

Engineering Physics | PY1001 | 4 Credits | 3 | 0 4

Session: Jan- Apr, 2020| Faculty: Dr. Saikat | Class: B.Tech. I Sem.

A. Introduction: The mission of the Engineering Physics course is to prepare students for careers in engineering where physics principles can be applied to the advancement of technology. The course work will develop sufficient depth in physics skills to produce engineers who can relate fundamental physics to practical engineering problems, and will possess the versatility to address new problems in our rapidly changing technological base. The present course is meant to provide a more thorough grounding in applied physics for a selected specialty such as optics, quantum physics, atomic & molecular physics and solid-state physics. The discipline is also meant for cross-functionality and bridges the gap between theoretical science and practical engineering. It is notable the term "engineering physics" is also called as "technical physics" in several universities and colleges.

B. Course Objectives: At the end of the course, students will be able to

[1001.1] identify clearly the wide range of diversity in science and technology with the help of knowledge of the basic Physics.

[1001.2] justify and explain various processes involved in understanding the nature of light.

[1001.3] categorize and investigate the problems and applications of quantum physics.

[1001.4] understand and relate the fundamentals of quantum mechanics and apply the skills to solve one dimensional motion of particles.

[1001.5] impart the knowledge of empirical laws based on Solid State Physics and Atomic and Molecular Physics.

[1001.6] develop skills in imparting practical knowledge to real time solution of industrial problems

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

[PO.I] Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and an engineering specialization to the solution of complex engineering problems

[PO.2] Problem analysis: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

[PO.3] Design/development of solutions: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

[PO.4] Conduct investigations of complex problems: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions

[PO.5] Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern</u> <u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations

[PO.6] The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess</u> <u>societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice

[PO.7] Environment and sustainability: Understand the <u>impact of the professional engineering</u> <u>solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development

[PO.8] Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices

[PO.9] Individual and team work: Function effectively as an individual, and as a <u>member or leader in</u> <u>diverse teams</u>, and in multidisciplinary settings

[PO.10] Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

[PO.II] Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

[PO.12] Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

D. Assessment Plan:

Criteria	Description	Maximum Marks					
	Sessional Exam I (Closed Book)	20					
Internal Assessment	Sessional Exam II (Closed Book)	20					
(Summative)	In class Quizzes and Assignment	20					
	(Accumulated and Averaged)						
End Term Exam	End Term Exam (Closed Book)	40					
(Summative)							
	Total	100					
Attendance	A minimum of 75% Attendance is requ	uired to be maintained by a student to					
(Formative)	be qualified for taking up the End Semester examination. The allowance of						
	25% includes all types of leaves includi	ing medical leaves.					
Homework/ Home Assignment/	There are situations where a student	may have to work in home, especially					
Activity Assignment	before a flipped classroom. Althoug	h these works are not graded with					
(Formative)	marks. However, a student is expect	ed to participate and perform these					
	assignments with full zeal since the ac	tivity/ flipped classroom participation					
	by a student will be assessed and marl	<s awarded.<="" be="" td="" will=""></s>					

E. SYLLABUS

Optics: Two source interference, double slit interference, coherence, intensity in double slit interference, thin film interference, air-wedge, Newton's rings, Michelson's interferometer, diffraction and wave theory of light, single-slit diffraction, intensity in single-slit diffraction (using phasor method), diffraction at a circular aperture, double-slit interference and diffraction, combined-intensity in double-slit diffraction (qualitative approach), diffraction of light through multiples slits, diffraction gratings, dispersion and resolving power of gratings, polarization of electromagnetic waves, polarizing sheets, polarization by reflection, double refraction; Quantum Physics: Black body radiation and Planck's hypothesis, Stefan's Law, Wein's displacement law, Photoelectric effect, Compton effect, photons and electromagnetic waves, wave properties of particles, de Broglie hypothesis, Davisson-Germer experiment, quantum particle (wave packet, phase velocity, group velocity), the uncertainty principle; **Quantum Mechanics:** An interpretation of quantum mechanics, wave function and its significance, Schrödinger equation, particle in a box, particle in a well of finite height (qualitative), Tunneling through a potential barrier and its applications, the simple harmonic oscillator (qualitative); Atomic Physics & Molecular Physics: Atomic spectra of gases, energy states and spectra of molecules (rotational and vibrational energy levels), X-rays spectrum, Moseley's law, spontaneous and stimulated transitions, He-Ne and Ruby laser, application of lasers; Solid State Physics: band theory of solids, electrical conduction in metals, insulators and semiconductors, Superconductivity, type-I and type-II superconductors, Meisner effect, BCS theory (Introductory) and applications of superconductivity.

F. TEXT BOOKS

- 1. Halliday, Resnick, Krane, PHYSICS, Volume 2, 5th edition, John Wiley & Sons, Inc, 2011
- 2. Beiser & Mahajan, Modern Physics, Mc Graw Hill, 6th edition., 2009

G. REFERENCE BOOK

Serway & Jewett, PHYSICS for Scientists and Engineers with Modern Physics; Volume 2,6th edition, 2013

H. Lecture Plan:

Lec. No.	Topics	Session Outcome	Mode of Delivery	Correspondin	Mode of Assessing the
			Denvery	500	Outcome
I	Discussion of Lecture Plan	To acquaint and clear teachers expectations and understand student expectations	Lecture	1001.1	NA
2	Introduction to OPTICS	To make the student understand the difference between physical and geometrical optics. Recall elementary idea of transverse and longitudinal waves. Develop mathematical representation of waves.	Flipped Classroo m	1001.1 & 1001.2	In Class Quiz (Not Accounted)
3	Interference of light, Young's double slit interference, coherence	Understanding of the concept of coherent waves and interference	Lecture	1001.2	Class Quiz – I Home Assignment - I Mid Term I End Term
4	Intensity in double slit interference using Phasor method	Derivation of the formula for intensity distribution in double slit interference	Lecture	1001.2	Class Quiz – I Home Assignment - I Mid Term I End Term
5	Interference in thin film, antireflection coatings	Understand the concept of thin-film interference	Lecture	1001.2 & 1001.6	Class Quiz – I Home Assignment - I Mid Term I End Term
6	TUTORIAL:I		Activity (Think Pair Share)		
7	Interference in wedge shaped air film	Understand the concept of interference in wedge shaped films and introduction to Newton's ring	Lecture	1001.2 & 1001.6	Class Quiz – I Home Assignment - I Mid Term I End Term
8	Newton's rings – theory and experiment	Describe the Newton's ring experiment and develop the theory of Newton's ring	Lecture	1001.2	Class Quiz – I Home Assignment- I Mid Term I End Term
9	TUTORIAL: 2		Activity (Think Pair Share)		
10-11	Michelson interferometer – construction &	Description of Michelson interferometer and derivation of the formula	Lecture	1001.2	Class Quiz – I Home Assignment - I

	theory (Qualitative approach only), Applications of Michelson interferometer (determination of wavelength)	for determination of wavelength using it.			Mid Term I End Term
12	TUTORIAL: 3		Activity (Think Pair Share)		
13-14	Diffraction and wave theory of light, Fraunhoffer diffraction at single slit – theory and intensity distribution	Introduction to diffraction and understand the difference between Fraunhoffer and Fresnel diffraction	Lecture, Activity	1001.2	Class Quiz – 2 Home Assignment- 2 Mid Term I End Term
15-16	Analysis by Phasor method, Intensity distribution curve, Diffraction at a circular aperture	Develop the theory and formula for single slit diffraction	Lecture	1001.2	Class Quiz – 2 Home Assignment - 2 Mid Term I End Term
17	TUTORIAL:4		Activity (Think Pair Share)	1001.2	
18	Fraunhoffer diffraction at double slit – theory (Qualitative approach only) and intensity distribution	Qualitatively develop the formula for intensity distribution in double slit diffraction	Lecture	1001.2	Class Quiz – 2 Home Assignment - 2 Mid Term I End Term
19	Fraunhoffer diffraction at multiple slit – theory and intensity distribution, Diffraction grating	Understand the multiple slit diffraction pattern and diffraction grating	Lecture	1001.2	Class Quiz – 3 Home Assignment- 2 Mid Term I End Term
20	TUTORIAL:6		Activity (Think Pair Share)	1001.2	
21	Rayleigh's criteria of resolution, Dispersion and resolving power of grating	Understand the Raleigh's criteria for resolution and derive the expression for dispersive and resolving power	Lecture	1001.2	Class Quiz – 3 Home Assignment- 2 Mid Term I End Term
22	TUTORIAL:7		Activity (Think Pair Share)	1001.2	
23-24	Polarization of EM Waves, Polarizing sheets,	Understand the phenomena of polarisation	Lecture	1001.2	Class Quiz – 3 Home Assignment - 3

	Polarization by reflection, Double refraction, Malus law & Brewsters law	and different approaches to polarise EM waves			Mid Term I End Term
25	TUTORIALS: 8		Activity (Think Pair Share)	1001.2	
26-27	Black body radiation , Wein's law, Stefan- Boltzmann law, Raleigh-Jeans Law, UV Catastrophe, Planck's hypothesis and Planck's law of black body radiation	Understand the laws of Black Body radiation and introduction to Planck's hypothesis	Flipped Class, Lecture	1001.1 & 1001.3	Class Quiz – 4 Home Assignment - 4 Mid Term II End Term
28-29	Photoelectric effect, Experimental observations of Photoelectric effect, Compton effect (Qualitative approach)	Describe the theory of Photoelectric effect and Compton effect	Lecture	1001.1 & 1001.3	Class Quiz – 4 Home Assignment - 4 Mid Term II End Term
30	TUTORIAL:9		Activity (Think Pair Share)	1001.3	
31	Photons and electromagnetic waves, de-Broglie hypothesis of matter wave, Davisson-Germer Experiment	Understand the concept of de-Broglie hypothesis and describe the Davission- Germer Experiment	Lecture	1001.1 & 1001.3	Class Quiz – 5 Home Assignment - 4 Mid Term II End Term
32-33	Quantum particle, Concept of wave packet. Group and phase velocity, Relation between $V_g \& V_p$ in dispersive medium, Uncertainty Principle (Statement and expression only) and its Physical significance	Understand the Group Velocity and Phase Velocity and the concept of Uncertainty Principle	Flipped Classroo m, Lecture	1001.3	Class Quiz – 5 Home Assignment - 5 Mid Term II End Term
34	TUTORIAL: 10		Activity (Think	1001.3	

			Pair Shara)		
35	An Interpretation of Quantum mechanics, Wave function and its physical significance, SchrŐdinger wave equation	Introduction to wave function and Schrodinger wave equation	Lecture	1001.3	Class Quiz – 5 Home Assignment - 5 Mid Term II End Term
36	Particle in a box of infinite potential height	Derive the wave-function and energy of a particle confined in a one dimensional box	Lecture	1001.3	Class Quiz – 6 Home Assignment - 5 Mid Term II End Term
37	TUTORIAL: 11		Activity (Think Pair Share)	1001.3	
38-39	Particle in a well of finite height (qualitative), Tunnelling through a potential barrier (qualitative) and its applications	Qualitatively describe the phenomena of particle in a finite well and the phenomena of tunnelling	Lecture	1001.3	Class Quiz – 6 Home Assignment - 5 Mid Term II End Term
40	Quantum mechanical simple harmonic oscillator (Qualitative)	Qualitative discussion of the wave function and energy of a harmonic oscillator	Lecture	1001.1 & 1003.4	Class Quiz – 6 Home Assignment - 5 Mid Term II End Term
41	TUTORIAL: 12		Activity (Think Pair Share)		
42-43	Bohr's Theory, Atomic Spectra of gases, Continuous and characteristic X-rays, Duane – Hunt relation, Moseley's law	Recall Bohr's theory and atomic spectra. Understand the continuous and characteristic X-rays and derive the related formula.	Flipped Classroo m, Lecture	1001.1 & 1001.4	Class Quiz (Not Accounted) Home Assignment - 6 End Term
44-45	Energy states and spectra of molecules (Rotational and Vibrational spectra)	Qualitative discussion of Rotational and Vibrational spectra and the related formulas	Lecture	1001.4	Class Quiz – 7 Home Assignment - 6 End Term
46	TUTORIAL: 13		Activity (Think Pair Share)		
47	Lasers- Spontaneous and stimulated transitions,	Understand the lasers and the related optical phenomena.	Lecture	1001.4 & 1001.5	Class Quiz – 7 End Term

	Population inversion and metastable state,				
48-49	Construction and working of Ruby laser , Construction and working of He-Ne laser, Energy level diagram of He-Ne laser, Application of Laser	Description of Ruby laser and He-Ne laser and understand their working	Flipped Classroo m, Lecture	1001.5	Class Quiz – 7 End Term
50	TUTORIAL: 14		Activity (Think Pair Share)		
51	Band Theory of solids, Electrical conduction in Metals, Insulators, and Semiconductors	Understand qualitatively the band theory of solids	Lecture	1001.5 & 1001.6	Class Quiz – 8 End Term
52-53	Superconductivity: Type- I and Type- II Superconductivity, Meisner effect	Introduction to super conductivity and superconductors and the related phenomena	Lecture	1001.5 & 1001.6	Class Quiz – 8 End Term
54	TUTORIAL: 15		Activity (Think Pair Share)		
55	BCS Theory (Introductory) and Applications of superconductivity	Qualitatively understand the BCS theory and their applications	Lecture	1001.5 & 1001.6	Class Quiz – 8 End Term
56	TUTORIAL: 16		Activity (Think Pair Share)		
1					

I. Course Articulation Matrix: (Mapping of COs with POs and PSOs)

			CC	CORRELATION WITH PROGRAM OUTCOMES												
СО	STATEMENT	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO			
		I	2	3	4	5	6	7	8	9	10		12			
PY	understand the	3	2			Ι	2	Ι	2		2		Ι			
1001.1	wide range of															
	diversity in															
	science and															
	technology with															
	the help of															
	knowledge of the															
	basic Physics.															

PY 1001.2	explain various processes involved in understanding the nature of light	3	3	3	2	2	2		I	Ι	2		2		
PY 1001.3	identify the problems and applications of Quantum Physics.	I		3		I			I	2			2		
PY 1001.4	fundamentals of quantum mechanics and apply to one dimensional motion of particles	2	3	3				Η		2	Ι		2		
PY 1001.5	impart the knowledge of empirical laws based on Solid state Physics and Atomic and Molecular Physics.				I		I	2		I		2	2		
PY 1001.6	develop skills in imparting practical knowledge to real time solution of industrial problems	2	Ι		2	I		2	Ι		2	Ι			

School of Basic Sciences

Department of Physics Course Hand-out

Engineering Physics Lab | PY1030 | I Credit | 0 0 2 I

Session: Jan- Apr, 2020 | Faculty: Dr. Saikat | Class: B. Tech. II Sem.

A. Introduction: The mission of the Engineering Physics course is to prepare students for careers in engineering where physics principles can be applied to the advancement of technology. The course work will develop sufficient depth in physics skills to produce engineers who can relate fundamental physics to practical engineering problems, and will possess the versatility to address new problems in our rapidly changing technological base. The present course is meant to provide a more thorough grounding in applied physics for a selected specialty such as optics, quantum physics, atomic & molecular physics and solid-state physics. The discipline is also meant for cross-functionality and bridges the gap between theoretical science and practical engineering. It is notable the term "engineering physics" is also called as "technical physics" in several universities and colleges.

B. Course Objectives: At the end of the course, students will be able to

[1030.1] clearly explain the different type of errors like backlash error, parallax etc.

[1030.2] assess the behaviour of basic instruments like Vernier Callipers, screw gauge, spherometer and spectrometer etc and it will enhance their skills to use them.

[1030.3] acquire, analyse and process experimental data.

[1030.4] compare and contrast the facts and ideas in handling the practical applications of light, electricity sound and modern physics.

[1030.5] acquire hands on skills on diverse experimental tools related to physics that are essential for engineering students

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

[PO.1] Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems [PO.2] Problem analysis: <u>Identify, formulate</u>, research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

[PO.3] Design/development of solutions: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

[PO.4] Conduct investigations of complex problems: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions

[PO.5] Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern</u> <u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations

[PO.6] The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess</u> <u>societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice

[PO.7] Environment and sustainability: Understand the <u>impact of the professional engineering</u> <u>solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development

[PO.8] Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices

[PO.9] Individual and team work: Function effectively as an individual, and as a <u>member or leader in</u> <u>diverse teams</u>, and in multidisciplinary settings

[PO.10] Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

[PO.II] Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

[PO.12] Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

D. Assessment Plan:

Criteria	Description	Maximum Marks
	Continuous Assessment/Viva	60
Internal Assessment		
(Summative)		
End Term Exam	End Term Exam	40
(Summative)		
	Total	100
Attendance	A minimum of 75% Attendance is requ	uired to be maintained by a student to
(Formative)	be qualified for taking up the End Sen	nester examination. The allowance of
	25% includes all types of leaves includ	ing medical leaves.
Homework/ Home Assignment/	There are situations where a student	may have to work in home, especially
Activity Assignment	before a flipped classroom. Althoug	h these works are not graded with
(Formative)	marks. However, a student is expect	ted to participate and perform these
	assignments with full zeal since the ac	ctivity/ flipped classroom participation
	by a student will be assessed and mar	ks will be awarded.

E. SYLLABUS

Experiments on interference, diffraction and dispersion, experiments on quantum theory of radiation, Experiments on band theory of solids, semiconductors, Experiments on resonance circuits, Hall-effect.

F. TEXT BOOKS

1. Jewett & Serway, PHYSICS for Scientists and Engineers with Modern Physics (7e), Cengage Learning, 2008.

2. Worsnop & Flint, Advanced Practical Physics for Students (9e), Methuen & Co. Ltd, London 1987.

G. Lecture Plan:

Lec No	Topics	Session Outcome	Mode of Delivery	Correspondi ng CO	ModeofAssessingtheOutcome
I	Discussion of Lecture Plan	To acquaint and clear teachers expectations and understand student expectations	Lecture	1030.1	NA
2	Experiments on interference	To make the student understand the difference between physical and geometrical optics. Recall elementary idea of transverse and longitudinal waves. Develop mathematical representation of waves.	Hands-on training	1030.1 & 1030.2	Continuous Assessment/Viva
3	Experiments on diffraction and dispersion	Understanding of the concept of coherent waves and interference	Hands-on training	1030.2 & 1030.3	Continuous Assessment/Viva

4	experiments on quantum theory of radiation	Derivation of the formula for intensity distribution in double slit interference	Hands-on training	1030.2 & 1030.3	Continuous Assessment/Viva
5	Experiments on band theory of solids	Understand the concept of thin-film interference	Hands-on training	1030.3 & 1030.4	Continuous Assessment/Viva
6	Experiments on semiconductors		Hands-on training	1030.3, 1030.4 & 1030.5	Continuous Assessment/Viva
7	Experiments on resonance circuits	Understand the concept of interference in wedge shaped films and introduction to Newton's ring	Hands-on training	1030.3, 1030.4 & 1030.5	Continuous Assessment/Viva
8	Experiments on Hall-effect		Hands-on training	1030.3 & 1030.4	Continuous Assessment/Viva

H. Course Articulation Matrix: (Mapping of COs with POs and PSOs)

			CC	ORREL	ATIC	N W	/ITH I	PROC	GRAM	OUT		1ES			
СО	STATEMENT	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO		
			2	3	4	5	6	7	8	9	10		12		
PY 1030.1	understand different type of error like backlash error, parallax etc. and its role in making conclusions.	3	3		1	2	Ι			3	1		Ι		
PY 1030.2	gain knowledge on the behaviour of basic instruments like Slide Callipers, Vernier Callipers, screw gauge and spherometer etc.	3	2		2	2				I	2		I		
PY 1030.3	acquire, analyse and process experimental data.	Ι	I	I			3	2		Ι	2	Ι	2		
PY 1030.4	understand the facts and ideas in handling the practical applications of light, electricity sound and modern physics.				I	2			2	2	I		I		
PY 1030.5	acquire hands on skills on diverse experimental tools related to physics that are essential for	I	3	1				3				2			

	engineering students																
I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation																	

School of Civil & Chemical Engineering (SCCE)

Department of Chemical Engineering

Course Hand-out

Value, Ethics & Governance BB1101 [2 Credits] [2 0 0 2]

Session: July-Nov, 2019 | Faculty: Dr. Anjalee Narayan | Class: B.Tech-Chemical Engg-3rd SEM

Introduction: The course is offered to understand Moral Values and Ethics in personal as well as professional life. It is basic requirement of every human to be a good human being and a good citizen. It further imparts him basics of corporate governance so as to empower him to work technically and professionally in any organization with confidence and conviction and at the same time with honesty & integrity.

A. Course Objectives: At the end of the course, students will be able to

BB1101.1	Define the meaning and relevance of Value and Ethics and apply in personal & professional life.
BB1101.2	Describe the importance of three Gunas for self-development, lifelong learning & growth.
BB1101.3	Find issues and identify solutions related to Public & Private Governance systems.
BB1101.4	Explain the relevance of Company's Act 2013 with reference to corporate world.
BB1101.5	Explain the role and key objectives of organizational governance in relation to ethics and law.
BB1101.6	Demonstrate the social & environmental responsibilities of corporate for sustainability, harmony
	and growth.

B. Program Outcomes and Program Specific Outcomes

PROGRAM OUTCOMES

- [PO.1]. Engineering knowledge: Demonstrate and apply knowledge of Mathematics, Science and Engineering to classical and recent problems of electronic design & communication system.
- [PO.2]. Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. Design/development of solutions: Design a component system, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- [PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding_of the limitations

- [PO.6]. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- [PO.10]. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environment.
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

PROGRAM SPECIFIC OUTCOMES

- [PSO.1]. An ability to understand the concepts of basic Electronics & Communication Engineering and to apply them to various areas like signal processing, VLSI, Embedded systems, Communication Systems, Digital & Analog Devices, etc.
- [**PSO.2**]. An ability to solve complex Electronics Communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.
- [**PSO.3**]. Wisdom of social and environmental awareness along with ethical responsibility to have a successful career and to sustain passion and zeal for real applications using optimal resources as an Entrepreneur.

C. Assessment Plan:

Criteria	Description	Maximum Marks					
	Mid Sem Exam I (Close Book)	15					
Internal Assessment	Mid Sem Exam II (Close Book)	15					
(Summative)	In class Quizzes/ Assignments	20(Min 5 each)					
	Students' Presentations	10					
End Term Exam	End Term Exam (Close Book)	40					
(Summative)							
	Total	100					
Attendance	A minimum of 75% Attendance is requi	ired to be maintained by a student to be					
(Formative)	qualified for taking up the End Semester examination. The allowance of 25%						
	includes all types of leaves including me	edical leaves.					

Make up Assignments	Students who misses a class will have to report to the teacher about the absence.
(Formative)	A makeup assignment on the topic taught on the day of absence will be given
	which has to be submitted within a week from the date of absence. No extensions
	will be given on this. The attendance for that particular day of absence will be
	marked blank, so that the student is not accounted for absence. These
	assignments are limited to a maximum of 5 throughout the entire semester.
Homework/ Home Assignment/	There are situations where a student may have to work in home, especially
Activity Assignment	before a flipped classroom. Although these works are not graded with marks.
(Formative)	However, a student is expected to participate and perform these assignments
	with full zeal since the activity/ flipped classroom participation by a student will
	be assessed and marks will be awarded.

D: Syllabus:

Values: Relevance of Value Education in day-to-day life. Mantra for success - Value, Moral and Ethics. Determinants of human nature (Three Gunas) and its impact on human life.

Relevance of traits like Personality, Attitude, Behaviour, Ego, Character, introspection, Motivation, Leadership and 4 Qs with relevant Case Studies^{*}.

Governance: Understanding of Public and Private sector Governance systems; Courts & CAG.

Public Sector Governance: Need, relevance, stakeholders.

Private Sector Governance: Proprietary, Partnership, Company (Pvt Ltd & Ltd), Company' Act 2013, Board of Directors; its Roles and Responsivities. Regulatory bodies; its role in ethical governance.

Projects on PPP mode-relevance & prospects.

CSR: Relationship with Society, Philanthropy and Business strategy, CSR Policy, Triple Bottom Line

Text / Reference Books:

- 1. Professional Module of ICSI.
- 2. Ghosh B.N., Business Ethics & Corporate Governance, McGraw Hill.
- 3. Mandal S.K., Ethics in Business & Corporate Governance, McGraw Hill .
- 4. Ray C.K., Corporate Governance, Value & Ethics, Vaya Education of India
- 5. Chatterjee Abha, Professional Ethics, Oxford Publications.

*Suggestive Case Studies:

- 1) Uphar Theatre Tragedy- Engineering Ethics
- 2) Bhopal Gas Tragedy- Operational Engineering Ethics
- 3) Satyam Case- Financial Reporting Ethics
- 4) Enron Case- Business Ethics
- 5) Neerav Modi Case- Financial Fraudulence cases

D. Lecture Plan:

Lec No	Topics	Session Outcome Me		Correspo	Mode of
			Delivery	nding CO	Assessing the
					Outcome
1	Introduction: Values: Meaning	To acquaint and clear teacher's	Lecture	BB	In class Quiz
	& Relevance of value education	expectations and understand		1101.1	Mid Term I
		student expectations. Basics of			End Term Exam
		Value Education			
2	Success: Meaning in	To understand the concept of	Lecture,	BB	In class Quiz
	perspective of morals & ethics	success achieved with or without	case	1101.1	Mid Term I
	± ±	morals / ethics/ values	study		End Term Exam

3,4	Professional Ethics & ethical	To understand the role of	Lecture	BB	In class Quiz,
	dilemmas	professional ethics in the life &		1101.1	assignment
	Case study-Neerav Modi	deal with dilemmas			Mid Term I End Term Even
5	Three Gunes and their	Understand basic traits in one's	Lecture	RR	In Class Quiz
5	relevance Nature and kinds of	personality its causes and	Lecture	1101 2	Mid Term I
	value with examples	relevance with value based		1101.2	End Term
	value with examples	living.			
6,7	Relevance of traits of individual	To acquaint & develop positive	Short	BB	Class Quiz
	like Personality, Attitude,	traits of personality in oneself	stories,	1101.2	assignment
	Behaviour		Lecture		Mid Term I
					End Term
0.0		T 1 0 1 1 1	T .	DD	
8.9	Ego, Character, introspection,	To acquaint & develop positive	Lecture	BB 1101 0	In Class Quiz
	Motivation	traits of personality in oneself	Short	1101.2	Mid Term I
10.11	Leadership traits & $4\Omega_s$ (PO IO	To realize importance of	Lecture	RR	In Class Ouiz
10,11	EQ. SO)	leadership and to imbibe in life	Short	1101 2	assignment
			stories	1101.2	Mid Term I
					End Term
12,13	Governance & its relevance	To acquaint with the concept of	Lecture	BB 1101.3	In Class Quiz
	Case studies- Bhopal Gas & Uphar	Governance			Mid Term II
	Cinema				End Term
14	Public Sector Governance:	Understand various aspects of	Lecture	BB	Class Quiz,
	Need, relevance, stakeholders	public sector governance		1101.3	Mid Term II
15		Understand basics of Dublic	Lastura	DD	End Term
15	Public Finance, Audit &	Finance Check & balance	Case	DD 1101 2	Class Quiz,
	Control	Finance, Check & Dalance	study	1101.5	Mid Term II
			study		End Term
16,17	Private Sector Governance,	Understand meaning of	Lecture	BB	Class Quiz
	proprietary & partnership firms	proprietary & partnership in a	Short	1101.3 &	Mid Term II
	and corporate, PPP mode	firm / company and perspective	stories	1101.4	End term
	projects	in PPP mode			
18, 19	Company' Act 2013 : Roles &	Explain various Regulations and	Lecture	BB	Class Quiz
	Responsibilities of Directors &	practices of Corporate		1101.4	Mid Term II
	regulatory authorities	Governance internationally &			End Term
00.01		understand key role of directors			
20,21	Role of Ethics in Governance	Recognize the necessity of ethics	Movie :	BB	Class Quiz,
	Case studies- Satyam & Enron	& transparency in Governance	Ganani	1101.5	assignment Mid Torm II
					End Term
22,23	CSR: Relationship with Society	To understand the relevance of	Lecture.	BB	Class Quiz,
	Philanthropy and Business	giving back to society by a	case	1101.6	End Term
	strategy	corporate & its importance in	study		
	- 0/	society			
24	CSR Policy, Triple Bottom Line	Understand the concept of TBL	Lecture	BB	Class Quiz
		in organizational frameworks	case	1101.6	assignment
			study	A T T	End Term
25,26	Students' Presentation	Kecall contents and their	Flipped	ALL	Class Quiz
		studies	GIASS		
		studies.			

														CO	RREL	ATI		
CO														ON WITH				
	STATEMENT		COR	REL	ATIO	NW	ITH	PRO	GRA	ΜΟΙ	UTCO	OMES	S	PROGRAM				
														SPECIFIC				
													OUTCOMES					
		Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р		
		0	0	0	0	0	0	0	0	0	0	0	0	S	S	S		
		1	2	3	4	5	6	7	8	9	10	11	12	0	0	0		
							-							1	2	3		
BB11	Define the meaning and relevance						1		2									
01.1	of Value and Ethics and apply in																	
	personal & professional life.																	
BB11	Describe the importance of three						1		2	1	1		2			1		
01.2	Gunas for self-development,																	
	lifelong learning & growth.																	
BB11	Find issues and identify solutions						1	1		1	2							
01.3	related to Public & Private																	
	Governance systems.																	
BB11	Explain the relevance of Company's						1		1	1								
01.4	Act 2013 with reference to																	
	corporate world.																	
BB11	Explain the role and key objectives						1		2	1			1			1		
01.5	of organizational governance in																	
	relation to ethics and law.																	
BB11	Demonstrate the social &						1	3				1	1			3		
01.6	environmental responsibilities of																	
	corporate for sustainability,																	
	harmony and growth.																	

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Engineering Mathematics III | MA1310 | 3 Credits | 3 0 0 3

Session: Aug19 - Dec 19 | Faculty: Dr. Ram Naresh Saraswat | Class: Core course

A. **INTRODUCTION:** Mathematics is the backbone of engineering to develop analytical skills and capacity and to apply their knowledge to a wide range of problems relevant to modern industry. This course is a carefully selected blend of theory and real-world applications which prepares engineers for specialist professional employment.

B. Course Outcomes: At the end of the course, students will be able to

[MA1310.1] Apply knowledge of Laplace Transform, Fourier Transform, Z transform to solve real world problems.

[MA1310.2] Understand and use concept of probability theory and vector calculus in decision making and industry problems

[MA1310.3] Use of tensor and vector calculus to real world systems.

[MA1310.4] Develop analytical and logical thinking.

[MA1310.5] Recall and recognize the application of mathematics in engineering

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Program Outcomes for B.Tech. in chemical engineering are as follows.

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

[PSO.1]. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

[PSO.2]. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments. **[PSO.3]. Specialization:** Students will be specialized in the areas of petroleum, energy and environment related fields.

Criteria	Description	Maximum Marks							
	Sessional Exam I (Closed Book)	15							
Internal Assessment	Sessional Exam II (Closed Book)	15							
(Summative)	In class Quizzes and Assignments	30							
	, Activity feedbacks								
	(Accumulated and Averaged)								
End Term Exam	End Term Exam (Closed Book)	30							
(Summative)									
	Total	100							
Attendance (Formative)	A minimum of 75% Attendance is required to be maintained by a student to be qualified for taking up the End Semester examination. The allowance of 25% includes all types of leaves including medical leaves.								
Make up Assignments (Formative)	Students who misses a class will have absence. A makeup assignment on the will be given which has to be submit absence. No extensions will be given particular day of absence will be may accounted for absence. These assigns 5 throughout the entire semester.	Students who misses a class will have to report to the teacher about the absence. A makeup assignment on the topic taught on the day of absence will be given which has to be submitted within a week from the date of absence. No extensions will be given on this. The attendance for that particular day of absence will be marked blank, so that the student is not accounted for absence. These assignments are limited to a maximum of 5 throughout the entire semester							
Homework/ Home Assignment/ Activity Assignment (Formative)	There are situations where a student may have to work in home, especially before a flipped classroom. Although these works are not graded with marks. However, a student is expected to participate and perform these assignments with full zeal since the activity/ flipped classroom participation by a student will be assessed and marks will be awarded								

D. Assessment Plan:

E. SYLLABUS

Vector Calculus: Gradient, divergence and curl, vector integrals, related theorems, introduction of tensors, Laplace Transforms: Transforms of elementary functions, inverse transforms, convolution theorem .Application of Laplace in solutions of differential equations Fourier series, Fourier Transform: Fourier sine and cosine transforms, Fourier integrals, study of heat and wave equations, Z Transform, Bessel and Legendre differential equations, Rodrigues formula, orthogonal properties of Bessel and Legendre polynomials, Problems: Probability, regression, least square principle of curve fitting, distributions – binomial, Poisson, normal.

F. TEXTBOOKS

- 1. Grewal, B. S., Higher Engineering Mathematics, Khanna Publishers, 2011.
- 2. Kreyszig, E., Advanced Engineering Mathematics, Wiley Eastern, 2012.

3. Pal and Bhunia, Advanced Engineering Mathematics, Oxford University Press, 2015

G. REFERENCE BOOKS

4. Meyer, P. L., Introduction to probability and statistical applications, IBH 2010.

5. Hogg and Craig, Introduction of Mathematical Statistics, MacMillan, 2012.

H. LECTURE PLAN

LEC NO	TOPICS	Session outcome	Mode of Delivery	Corresponding	Mode of
1-6	Laplace Transforms: Transforms of elementary functions, inverse transforms, convolution theorem .Application of Laplace in solutions of differential equations	Properties and example	Lecture	1310.1	Mid Term-1, End term
6-9	Fourier series,	Solve the problems and basic concept	Lecture + Tutorial	1310.2	Mid Term-1, End term
9-12	Fourier Transform: Fourier sine and cosine transforms, Fourier integrals, study of heat and wave equations,	Solve the problems and basic concept	Lecture + Tutorial	1310.3	Mid Term-1, End term, Assignment-1
12-15	Probability, distributions – binomial, Poisson,	Solve the problems with basic concept	Lecture + Tutorial	1310.3	Mid Term-2, End term, Assignment-2
15-17	Normal Distribution.	Basic concept and related problems on real life problems	Lecture	1310.3	Mid Term-2, End term
17-22	Vector Calculus: Gradient, divergence, and curl,	Basic concept and related problems on real life problems	Lecture + Tutorial	1310.5	Mid Term-2, End term
22-25	vector integrals,	Brief overview of the concept, Solve the problems and basic concept	Lecture	1310.5	Mid Term-2, End term, Assignment-3
25-29	Gauss Divergence Theorem, Stokes Theorem and Green's Theorem	Solve the problems	Lecture	1310.4	End term
29-33	Z Transform,	and basic concept	Lecture	1310.4	End term
33-37	regression, least square principle of curve fitting,	Concept and problems related to industries	Lecture	1310.4	End term
37-39	Bessel and Legendre differential equations, Rodrigues formula, orthogonal properties of Bessel and Legendre polynomials,	Solve the problems and basic concept	Lecture	1310.4	End term
39 - 41	introduction of tensors, Tensor analysis	Basic concept and related problems on real life problems	Lecture + Tutorial	1310.4	End term, Assignment-4

I. Course Articulation Matrix: (Mapping of COs with POs)

СО	STATEMENT			(CORRE	LATIO	N WIT	H PRO	GRAM	OUTC	OMES	
NA 1010 1		POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	PO9	POIO	PC
MA 1310.1	Apply knowledge of Laplace Transform, Fourier Transform, Z -transform to solve real world problems	2	1		1							
MA 1310.2	Understand and use concept of probability theory and vector calculus in decision making and industry problems	2	1		1	2						
MA 1310.3	Use tensor and vector calculus to real world problems	2	1		1	2						
MA 1310.4	Develop analytical and logical thinking		2	1	1	2	1	1	1			
MA 1310.5	Recall and recognize the application of mathematics in engineering		1	1	1	2	1	2	1			

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation
Aspired BY LIFT

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Organic Chemistry | CY1321 | 4 Credits | 3 1 0 4

Session: July'19 - Nov'19 | Faculty: Dr Nitu Bhatnagar | Class: Core course

A. Introduction: This course is offered by the Department of Chemistry as a core course. The purpose of this course is to provide key knowledge base and laboratory resources to prepare students as professionals in the field of chemistry, chemical industry and related fields. This course explains the behaviour of, and interactions between, matter and energy at both atomic and molecular levels.

B. Course Outcomes: At the end of the course, students will be able to:

[CY1321.1]. Understand the wide range of diversity in Organic Chemistry with the help of knowledge of basic organic chemistry along with practical approach.

[CY1321.2]. Explain various processes involved in understanding the mechanism of reactions.

[CY1321.3]. Impart the knowledge of carbohydrates and proteins.

[CY1321.4]. Identify the problems and applications of organic reactions.

[CY1321.5]. Understand stereochemistry of organic compounds and application of the concept in organic synthesis.

[CY1321.6]. Enhance the scientific skills of students for employability.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

[PO.I]. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

[PO.2]. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

[PO.3]. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

[PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

[PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

[PO.6]. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

[PO.7]. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

[PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

[PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

[PO.10]. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

[PO.II]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

[PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

[PSO.1]. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

[PSO.2]. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.

[PSO.3]. Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

D. Assessment Plan:

Criteria	Description	Maximum Marks					
	Sessional Exam I (Closed Book)	20					
Internal Assessment	Sessional Exam II (Closed Book)	20					
(Summative)	In class Quizzes and Assignments,	30					
	Activity feedbacks (Accumulated and						
	Averaged)						
End Term Exam	End Term Exam (Closed Book)	30					
(Summative)							
	Total	100					
Attendance	A minimum of 75% Attendance is require	d to be maintained by a					
(Formative)	student to be qualified for taking u	ip the End Semester					
	examination. The allowance of 25% incl	udes all types of leaves					
	including medical leaves.						
Homework/ Home	There are situations where a student may	have to work in home,					
Assignment/ Activity	especially before a flipped classroom. Alt	hough these works are					
Assignment	not graded with marks. However, a s	tudent is expected to					
(Formative)	participate and perform these assignment	s with full zeal since the					
	activity/ flipped classroom participation	by a student will be					
	assessed and marks will be awarded.						

E. SYLLABUS

Organic Reaction Mechanism: Reaction intermediates, Inductive effect, Mesomeric effect, Electromeric effect, Hyperconjugation, Types of reactions with mechanism-addition, substitution and elimination, Aromatic and Heterocyclic compounds. Industrially Important Organic reactions: Beckmann Rearrangement, Perkin reaction, Hofmann rearrangement, Reamer-Tiemann reaction, Cannizzaro reaction, Skraup synthesis, Diels-Alder reaction, Aldol condensation etc. Stereochemistry: Constitutional isomerism, Geometric isomerism, Syn-anti, Optical isomerism, Configuration- R,S and E,Z Conformation. Carbohydrates: Monosaccharaides, Disaccharides and Polysaccharides, Sources, Structure and Properties of Glucose, Fructose, Sucrose, Lactose, Starch and Cellulose. Amino acids & Proteins: Amino acids, Peptides, Proteins, Nucleic acids, Enzymes Organic Materials of industrial importance: Dyes-classification-modern theory of colour; Synthesis of methyl orange; Congo red, Malachite green, Indigo and Alizarin. Oils-Fats: Saponification value, Iodine and Acid value of oils, Solvent extraction of oils, Hydrogenation of oils, Soaps and Detergents, Petrochemicals.

F. REFERENCE BOOKS

TEXT BOOKS

- 1. Morrison B.R. and Boyd L.L., Organic Chemistry 6th Edition, ELBS, New Delhi, 2008.
- 2. Sykes P, A Guidebook to mechanism in Organic Chemistry, Pearson Education, 6th edition, 1986.
- 3. Finar I.L., Organic Chemistry Vol. I & II, Pearson Education, 6th edition, 2002.

REFERENCE BOOKS

- 1. Sharma B.K. Industrial Chemistry, 16th edition, 2011.
- 2. Modern Analytical Chemistry, David Harvey, McGraw Hill, 1999.

G. Lecture Plan:

Cla ss Nu mb er	Topics	Session Outcome	Mode of Delivery	Correspon ding Course Outcome	Mode of Assessing the Outcome
I	Introduction and Course Hand-out briefing	To acquaint and clear teachers expectations and understand student expectations	Lecture Interaction	-	NA
2	Organic Reaction Mechanism: General Introduction, Classification of organic compounds, Bond Length, Bond Energy	To ascertain the interest and recapitulate the understanding and the existing knowledge about Organic Compounds	Interaction, Discussion & Question Answer Session	COI	In Class Quiz (Not Accounted)
3	Reaction intermediates, Inductive effect, Mesomeric effect	To make them understand the different types of effects	Interaction, Discussion	COI	I st Sessional
4	Electromeric effect, Hyperconjugation	To make them understand the different types of effects	Interaction, Discussion	COI	Ist Sessional
5	Types of reactions with mechanism- Substitution Reactions: Nucleophilic substitution (SNI & SN2)	To acquaint them with the mechanism of nucleophilic substitution reaction	Interaction, Discussion	CO I & CO 2	1 st Sessional
6	Electrophilic and Free radical reactions	To make them understand the different types of reactions that involve reactive intermediates	Interaction, Discussion	COI	I st Sessional
7	Addition Reactions: Electrophilic, Nucleophilic and Free radical reactions	To make them understand the different types of reactions that involve reactive intermediates	Interaction, Discussion	COI	Quiz I st Sessional
8	Elimination: EI and E2 Mechanism, Rearrangement Reactions	To make them understand the different types of reactions that involve reactive intermediates	Interaction, Discussion	COI	1 st Sessional
10	Energy Consideration: Free energy, energy profile diagram, transition state and intermediate	To make them understand the reaction mechanism and the energy profile of the intermediates	Interaction, Discussion	COI	Home Assignment
11	Reaction Intermediate: Carbocation, Carbanions,	To give them an understanding of reactive intermediates	Interaction, Discussion	COI	I st Sessional
12	Free radicals, carbene and benzynes	To give them an understanding of reactive intermediates	Interaction, Discussion	COI	Ist Sessional
13	Industrially Important Organic reactions: Introduction, Beckmann Rearrangement	To conceptualize the understanding of reaction mechanisms of Industrially important reactions	Interaction, Discussion	CO I & CO 2	1 st Sessional
14	Hofmann rearrangement, Perkin reaction	To conceptualize the understanding of reaction mechanisms of Industrially important reactions	Interaction, Discussion	CO I & CO 2	1 st Sessional
15	Reimer-Tiemann reaction	To conceptualize the understanding of reaction mechanisms of Industrially important reactions	Interaction, Discussion	CO I & CO 2	I st Sessional
16	Cannizzaro reaction	To conceptualize the understanding of reaction mechanisms of Industrially important reactions	Interaction, Discussion	CO I & CO 2	1 st Sessional
		MTE-I			
17	Skraup synthesis	To conceptualize the understanding of reaction mechanisms of Industrially important reactions	Interaction, Discussion	CO I & CO 2	2 nd Sessional

18	Diels-Alder reaction	To conceptualize the understanding of reaction mechanisms of Industrially important reactions	Interaction, Discussion	CO I & CO 2	
19	Aldol condensation	To conceptualize the understanding of reaction mechanisms of Industrially important reactions	Interaction, Discussion	CO I & CO 2	2 nd Sessional
20	Stereochemistry: Introduction, Classification of Stereoisomerism,	To make them understand the concept of chirality/stereochemistry	Interaction, Discussion	CO 5 & CO 6	2 nd Sessional
21	Constitutional isomerism, Optical Isomerism: optical activity	To make them understand the concept of optical activity	Interaction, Discussion	CO 5	2 nd Sessional
22	Diastereoisomers and meso compounds,	To make them understand the concept of diastereomers and meso compounds	Interaction, Discussion	CO 5	Quiz
23	Fisher projection and Flying Wedge Formulae	To make them understand the Fisher projection and Flying Wedge Formulae	Interaction, Discussion	CO I & CO 5	2 nd Sessional
24	Optical isomerism in Molecules without Chiral Centers	To make them understand the concept of optical isomerism	Interaction, Discussion	CO 5	2 nd Sessional
25	Geometric isomerism, Syn-anti,	To make them understand the	Interaction,	CO 5	2 nd
26	Configuration- R,S and E,Z,	concept of geometrical isomerism	Discussion Interaction	CO 5	Sessional 2nd
20	Staggered and Eclipsed Conformations, Difference between Configuration and Conformation	concept of conformational isomerism	Discussion		Sessional
27	Carbohydrates: Introduction, Classification and nomenclature, Monosaccharides	To recapitulate the understanding and the existing knowledge about carbohydrates	Interaction, Discussion Question Answer Session	CO 3	2 nd Sessional
28	Mechanism of osazone formation, interconversion of glucose and fructose, chain lengthening and chain shortening of aldoses	To make them understand the mechanism of osazone formation	Interaction, Discussion	CO 3	2 nd Sessional
29	Configuration of monosaccharides, Erythro and threo diastereomers	To make them understand configuration	Interaction, Discussion	CO 3	2 nd Sessional
30	Conversion of glucose intro mannose, Formation of glcosides, ethers and esters	To make them understand the conversion of glucose	Interaction, Discussion	CO 3	2 nd Sessional
31	Determination of ring size of monosaccharides, Cyclic structure of D (+)-glucose	To make them understand the cyclic structure of glucose	Interaction, Discussion	CO 3	2 nd Sessional
		MTE-2	Γ		
32	Mechanism of mutarotation, Structures of ribose and deoxyribose	IO make them understand the concept of mutarotation	Interaction, Discussion	03	EI exam
33	Disaccharides (maltose, sucrose and lactose)	To give them an understanding of disaccharide	Interaction, Discussion	CO 3	ET exam
34	Polysaccharides (starch and cellulose)	To give them an understanding of polysaccharide	Interaction, Discussion	CO 3	ET exam
35	Amino Acids, Peptides, Proteins and Nucleic Acids: Introduction, Classification, structure and stereochemistry of amino acids, Acid-base behaviour isoelectric point and electrophoresis	To acquaint them with the structure and properties of amino acids	Student presentation, Interaction, Discussion	CO 4	ET exam
36	Preparation and reactions of α -amino acids, Structure and nomenclature of peptides and	To acquaint them with the structure and properties of peptides	Student presentation, Interaction, Discussion	CO 4	ET exam

	proteins, Classification of proteins,				
	peptide structure determination				
37	Peptide Synthesis, Structures of peptides and proteins, Levels of protein structure, Protein denaturation/ renaturation,	To acquaint them with the structure and proteins	Student presentation, Interaction, Discussion	CO 4	ET exam
38	Nucleic acids: Introduction, constituents of nucleic acids, Ribonucleosides and ribonucleotides, The double helical structure of DNA	To acquaint them with the structure and properties of nucleic acids	Student presentation, Interaction, Discussion	CO 4	ET exam
39	Enzymes Definition, classification of enzymes with one example, Mechanism of enzyme action. Lock and key mechanism, induced fit theory, Michaleis-Menten equation. Enzyme inhibition: competitive, uncompetitive and non-competitive, Biological functions of enzymes, Factors affecting enzyme	To acquaint them with the enzyme action	Interaction, Discussion	CO 4	ET exam
40	Organic Materials of industrial importance: Dyes-classification- modern theory of colour	To acquaint them with the basics of dyes and the concept behind the relation of colour and structure	Interaction, Discussion	CO I & CO 4	ET exam
41	Synthesis of methyl orange; Congo red, Malachite green, Indigo and Alizarin.	To make them understand the synthesis and working nature of different types of dyes	Interaction, Discussion	CO I & CO 4	ET exam
42	Solvent extraction of oils, Hydrogenation of oils, Oils-Fats: Distinction between oil and fat	To make them understand the process involved in the extraction of oil	Interaction, Discussion	CO I & CO 4	ET exam
43	Vegetable oil, Saponification value, Iodine and Acid value of oils	To make them understand the concept of different terms associated with the characteristics of fats/oils	Interaction, Discussion	CO I & CO 4	ET exam
44	Hydrogenation of oils, Soaps and Detergents, Manufacture of soap, Analysis of oil, fats and waxes, Ecofriendly detergents-zeolite, Principal group of synthetic detergents	To make them understand the difference between soaps and detergents	Interaction, Discussion	COI& CO4	ET exam
45	Petrochemicals, Manufacture of Petrochemicals, Alkylation, Dealkylation and Hydroalkylation	To make them understand the processes involved during the manufacture of petrochemicals	Interaction, Discussion	CO I & CO 4	Home Assignment
46	Pyrolysis, Esterification, Halogenation and Hydrohalogenation	To make them understand the processes involved during the manufacture of petrochemicals	Interaction, Discussion	CO I & CO 4	ET exam
47	Nitration, Oxidation, Oxo- hydroformation, Carbonylation, Polymerization	To make them understand the processes involved during the manufacture of petrochemicals	Interaction, Discussion	CO I & CO 4	ET exam
	-	End term Exam	•		

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES													CORRELATION WITH PROGRAM SPECIFIC OUTCOMES		
		PO I	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSOI	PSO2	PSO3		
CY 1321.1	Master the wide range of diversity in Organic Chemistry with the help of knowledge of basic organic chemistry along with practical approach	2	2	0	2	0	0	0	0	2	0	0	0	0	Ι	0		
CY 1321.2	Explain various processes involved in understanding the mechanism of reactions	3	2	0	0	2	0	0	0	0	0	2	0	0	Ι	0		
CY 1321.3	Impart the knowledge of carbohydrates and proteins	2	0	I	0	0	0	2	0	0	0	0	0	0	0	0		
CY 1321.4	Identify the problems and applications of organic reactions	2	2	0	0	0	2	0	0	0	0	2	0	0	0	0		
CY 1321.5	Skilled in solving problems of stereochemistry of organic compounds and application of the concept in organic synthesis	2	0	0	0	2	0	0	0	I	I	2	2	0	0	I		
CY 1321.6	Enhance the scientific skills of students for employability.	3	2	2	2	3	0	0	I		0	0	0	0	Ι	I		

I-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR School of Civil and Chemical Engineering Department of Chemical Engineering Course Hand-out Chemical Process Calculations| CE1305 | 3 Credits | 3 0 0 3 Session: Jul'19 – Dec'19 | Faculty: Dr. Manisha Sharma | Class: Core course

A. INTRODUCTION

This course on Chemical Process Calculations is a core course designed for the undergraduate students of Chemical Engineering. This course is intended to provide clear overview of field of chemical engineering and introduce the elementary principles involved in the analysis of chemical processes. It offers the fundamental knowledge required in solving the material and energy balances related to industrial problems and covers the concepts ranging from basic units and dimensions to simultaneous material and energy balances for reacting and non-reacting systems.

B. COURSE OUTCOME

At the end of the course, students will be able to

- [CE1305.1] Understand the fundamental concepts and calculations in chemical processes
- [CE1305.2] Develop the skills to perform mass balance calculations on existing systems
- [CE1305.3] Develop the skills to perform energy balance calculations
- [CE1305.4] Evaluate the bubble point and dew points of multicomponent mixtures
- [CE1305.5] Use the psychrometric charts to determine the properties of air required in solving vaporization and condensation problems

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

The Graduates of Chemical Engineering from MUJ will have:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

PSO.1. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

PSO.2. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.

PSO.3. Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

Criteria	Description	Maximum Marks								
	Sessional Exam I (Open Book)	20								
Internal Assessment	Sessional Exam II (Open Book)	20								
(Summative)	In class Quizzes and Assignments, Activity feedbacks	30								
	(Accumulated and Averaged)									
End Term Exam	End Term Exam (Open Book)	30								
(Summative)										
	Total	100								
Attendance	ed by a student to be									
(Formative)	qualified for taking up the End Semester examination. Th	e allowance of 25%								
	includes all types of leaves including medical leaves.									
Homework/ Home	All assignments are to be solved and submitted, on/before dead	dline, on plain A4 size								
Assignment/Quiz	sheets only. Late submissions will not be entertained.									
(Formative)										
Make up	Students who miss a class will not be provided with any sort of	of makeup assignment								
Assignments	or make up quiz. If you miss a lecture, you yourself have to stud	dy the topics that were								
(Formative)	covered during that particular lecture. However, you may	vered during that particular lecture. However, you may contact the course								
	coordinator for clarification of doubts, if any.									

D. ASSESSMENT PLAN

E. SYLLABUS

Guidelines for Problem Solving; Review of Basic concepts – Process variables & properties, Degree of Freedom, **MATERIAL BALANCES**: Steady State Material Balances – in non-reacting systems and reacting system, Recycle & purge, elemental vs. species balance, combustion of fossil fuels. **MULTIPHASE EQULIBRIUM**: Single component and multicomponent phase equilibrium, Steady State Material balances in Multiphase systems. **ENERGY BALANCES**: Steady State Energy Balances – in non-reacting & reacting systems, De-Coupled & coupled mass & energy balances, Calculations for network of units with recycle & bypass, Process Flow sheeting with sequential modular calculations, Unsteady State Balances. **HUMIDIFICATION**: Terminology of humidity, Humidity charts, heating and cooling problems of moist air.

F. TEXT BOOKS

T1. David M. Himmelblau and James B.Riggs, Basic Principles and Calculations in Chemical Engineering, 8th ed., Pearsons, TN, 2015

G. **REFERENCE BOOKS**

- R1. Richard M. Felder, Ronald W. Rousseau, Elementary Principles of Chemical processes, 3rd ed., Wiley, 2004
- R2. B.I Bhatt and S.M Vora, Stoichiometry, 4th ed., Mc Graw Hill, 2004

H. LECTURE PLAN

LEC NO	TOPICS	SESSION OUTCOME	MODE OF DELIVERY	CORRESPONDING CO	MODE OF ASSESSING
110					CO
1	Introduction to course and its significance	-	Lecture	-	
2,3	Dimensions and Units - Units and conversions and its significance, Fundamental and derived units, Conversion factors, Dimensional consistency	Fundamentals of units and conversions	Lecture	CE 1305.1	Mid Term I, Assignment / Quiz & End Term
4,5	Basic chemical calculations	Concept of mole unit and equivalent weight, Definitions and Calculations for density, specific gravity concentration, interconversion of mole fraction and mass fraction, Temperature and pressure	Lecture	CE 1305.1	Mid Term I, Assignment / Quiz & End Term
6, 7	Choosing a basis, Example problems	Choosing a basis	Lecture	CE 1305.1	Mid Term I, Assignment / Quiz & End Term
8,9	Material Balances without chemical reactions -	Concept of open vs closed systems, steady vs unsteady state systems Degrees of freedom	Lecture	CE 1305.2	Mid Term I, Assignment / Quiz & End Term
10,11	Material Balances without chemical reactions -	Material balance for single units	Lecture	CE 1305.2	Mid Term I, Assignment / Quiz & End Term
12- 14	Material Balances without chemical reactions -	Material balance for single units involving unit operations such as mixers, dryers, evaporators, crystallizers, absorbers and strippers	Lecture	CE 1305.2	Mid Term I, Assignment / Quiz & End Term
15- 17	Material Balances with	Concept of limiting and excess reactants, Extent of	Lecture	CE 1305.2	Mid Term I, Assignment /

	chemical reactions -	reaction, Percentage conversion, yield, selectivity,			Quiz & End Term
18	Material Balances with chemical reactions -	Material balances involving single and multiple reactions using atomic/elementary balances and molecular/species balances	Lecture	CE 1305.2	Mid Term II, Assignment / Quiz & End Term
19 - 22	Material Balances for multiple units –	Material balances with recycle, bypass and purge streams	Lecture	CE 1305.2	Mid Term II, Assignment / Quiz & End Term
22- 25	Combustion calculations -	Problems on combustion of coal, calorific value of fuels, Air requirement and flue gas analysis	Lecture	CE 1305.2, CE 1305.3	Mid Term II, Assignment / Quiz & End Term
26- 28	Ideal and Real Gases -	Concept of Ideal gas law and Henrys law. Real gas relationships and estimation of gas properties. Compressibility factor	Lecture	CE 1305.3	Mid Term II, Assignment / Quiz & End Term
29,30	Multiphase Equilibrium -	Vapour liquid equilibrium, dew point and bubble point calculations	Lecture	CE 1305.4	Mid Term II, Assignment / Quiz & End Term
31,32	Multiphase Equilibrium -	Use of Psychometric/humidity charts in problem solving	Lecture	CE 1305.4	Mid Term II, Assignment / Quiz & End Term
33,34	Energy Balances without reactions -	First law of thermodynamics, heat capacities of gases and gaseous mixtures, Sensible heat changes in liquids and gases.	Lecture	CE 1305.3	Assignment / Quiz & End Term
35,36	Energy Balances without reactions	Enthalpy changes during phase transition	Lecture	CE 1305.3	Assignment / Quiz & End Term
37,38	Energy Balances with Chemical Reactions -	Heat of reaction, heat of formation, heat of combustion	Lecture	CE 1305.3	Assignment / Quiz & End Term
39,40	Energy Balances with Chemical Reactions -	enthalpy change associated with systems involving chemical reactions	Lecture	CE 1305.3	Assignment / Quiz & End Term
41,42	Humidity charts and their use	Humidity calculations	Lecture	CE 1305.5	Assignment / Quiz & End Term

I. COURSE ARTICULATION MATRIX (Mapping of COs with POs)

СО	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES												CORRELATION WITH			
														PROGRAM SPECIFIC				
														OUTCOMES				
		PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 P										PSO1	PSO2	PSO3			
CE 1305.1	Understand the fundamental concepts and	3	1	2		1	2		1				3	3	2			
	calculations in chemical processes																	
CE 1305.2	Develop the skills to perform mass balance	3	2	2		1		1		1			3	3	2	1		
	calculations on existing systems																	
CE 1305.3	Develop the skills to perform energy	3	2	2		1		1		1			3	3	2	1		
	balance calculations																	
CE 1305.4	Evaluate the bubble point and dew points	3	2	2	2	1	1						1	1		1		
	of multicomponent mixtures																	
CE 1305.5	Use the psychrometric charts to determine	3	2	2	2		2	1					2	1		1		
	the properties of air required in solving																	
	vaporization and condensation problems																	

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Momentum Transfer| CE 1306/CE1302 | 3/4 Credits | 3 0 0 3 / 3 1 0 4

Session: July 19 - Dec 19 | Faculty: Dr. Harsh Pandey | Class: Core Course

A. Introduction:

This course is one of the fundamental ground stones of Chemical Engineering. As a practicing chemical engineer you will have to deal with fluids that need to be transported from one part of the process plant to another. Therefore, in this course of momentum transfer you will be introduced to what a fluid is and how are they classified based on their flow properties. Following that you will study how to analyse a fluid in static state, kinematic state and dynamic state. This would include you getting to know different ways of measuring fluid flow and pumping of fluids. At the end of the course unit operations of agitation and mixing, flow through packing, filtration, fluidization and centrifugation will be introduced.

- **B. Course Outcomes:** At the end of the course, students will be able to
 - [CE1306.1] Classify fluids based on rheology and calculate as well as correlate different fluid properties.
 - [CE1306.2] Correlate the concept of pressure with its measurement and use this knowledge to evaluate and design fluid static equipment like storage tanks and decanters.
 - [CE1306.3] Assess and design fluid flow measurement equipment based on Bernoulli's equation applying them to different flow problems.
 - [CE1306.4]Design, evaluate and develop the skill to understand the characteristics of different types of pumps/Blowers.
 - [CE1306.5] Design different fluid-based unit operations like agitation and mixing, flow through packing, filtration, fluidization and centrifugation.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Program Outcomes for B.Tech. in chemical engineering are as follows.

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. **PO5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

PSO.1. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

PSO.2. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.

PSO.3. Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

Criteria	Description	Maximum Marks							
	Sessional Exam I (Open Book)	20							
Internal Assessment	Sessional Exam II (Open Book)	20							
(Summative)	In class Quizzes and Assignments.	30							
End Term Exam	End Term Exam (Open Book)	30							
(Summative)									
	Total	100							
Attendance	A minimum of 75% Attendance is required to be maintained by a student to be								
(Formative)	qualified for taking up the End Semester	examination. The allowance of 25%							
	includes all types of leaves including medical leaves.								
Make up Assignments	No makeup for missed short quizzes or a	assignments or exam will be allowed,							
(Formative)	except in extenuating circumstances with	prior permission of the instructor. The							
	decision of the instructor in this regard with	ll be final.							
Homework/ Home Assignment/	There are situations where a student ma	y have to work in home, especially							
Activity Assignment	before a flipped classroom. Although the	ese works are not graded with marks.							
(Formative)	However, a student is expected to participate and perform these assi								
	with full zeal since the activity/ flipped cla	assroom participation by a student will							
	be assessed and marks will be awarded.								

D. Assessment Plan:

E. SYLLABUS

Review of Navier-Stokes' (NS) equations; non-dimensionalization of NS equations; introduction to turbulence; analogies; correlations for fluid flow; Short introduction to non-Newtonian flows, Engineering Bernoulli Equation; f vs. NRe charts; K factors and equivalent lengths for various fittings; hydraulic diameter; Head vs. Q plots of centrifugal pumps; NPSH, cavitation and priming; pipeline system design including pseudo-steady state approximation; flow measurements; compressors and blowers. Compressible flows in conduits. Mixing and Agitation: Power consumption; mixing times; scale-up, Characterization of solids; fundamentals of two-phase flow; flow through packed beds and in fluidized beds (pressure drops, loading and flooding); pneumatic and hydraulic transportation. Filtration, Centrifuges and cyclones.

F. TEXT BOOKS

- 1. de Nerves, N., "Fluid Mechanics for Chemical Engineers", McGraw Hill International.
- 2. McCabe, W.L., Smith, J.C., Harriott, P., "Unit operations of Chemical Engineering", McGraw Hill International.

G. REFERENCE BOOKS

- 1. Foust, A.S., Wenzel, L.A., Clump, C.W., Maus, L., Andersen, L.B., "Principles of Unit Operations", John Wiley & Sons.
- 2. Coulson, J.M., Richardson J.F, Backhurst, J.R., Harker, J.H., "Coulson and Richardson's Chemical Engineering Volume 1: Fluid Flow, Heat Transfer and Mass Transfer" Butterworth-Heinemann/Elsevier.
- 3. Streeter, V.L., Wiley, B., "Fluid Mechanics", McGraw Hill International.
- 4. Bansal, R.K., "A Textbook of Fluid Mechanics and Hydraulic Machine", Khanna Publications.
- 5. Douglas, J.F., Gasiorek, J.M., Swaffield, J.A., "Fluid Mechanics", Pearson/Prentice Hall
- 6. Bennett, C.O., Myers, J.E., "Momentum, Heat, and Mass Transfer", McGraw Hill International.
- 7. Bird, R.B., Stewart, W.E., Lightfoot, E.N., "Transport Phenomena" John Wiley & Sons.
- 8. Geankoplis, C.J., "Transport Processes and Separation Process Principles", Prentice Hall of India.

Lecture	Topics	Session Outcome	Mode of Delivery	Correspo- nding CO	Mode Of Assessing CO
1-3	Introduction to fluid mechanics	Introduction to Fluid Mechanics, Continuum Hypothesis, Properties of fluids	Lecture	1306.1	Mid Term I, Assignment & End Term
4-7	Fluid statics	Hydrostatics, Application of hydrostatics, Buoyancy, Barometers, Manometers, Gravity settling, Centrifugal decanters, Illustration by examples.	Lecture	1306.2	Mid Term I, Assignment & End Term
8-9	Dimensional analysis	Raleigh Method, Buckingham π theorem, Introduction of dimensionless numbers	Lecture	1306.1	Mid Term I, Assignment & End Term
10-11	Introduction to Fluid Dynamics	The General Balance Equations, Mass Balance, Flow lines, Velocity Distribution, Steady and Unsteady state balance (one dimensional),- illustration by examples	Lecture	1306.3	Mid Term I, Assignment & End Term
12	Differential analysis of Fluid Flow	Euler's equation, Navier Stokes Equation	Lecture	1306.3	Mid Term II, Assignment & End Term
13-17	Energy Balance Equations for Fluid Flow	Energy and its different forms, First Law of Thermodynamics, Mechanical Energy Equation (Bernoulli's Equation), Correction factors for Bernoulli's Equation, Head form of Bernoulli's Equation	Lecture	1306.3	Mid Term II, Assignment & End Term
18-21	Flow though Pipes	Reynold's Experiment, Reynold's number, Laminar and Turbulent flow, Boundary layer theory, Flow through pipes, Friction factor, Moody's diagram- illustration by examples	Lecture	1306.3	Mid Term II, Assignment & End Term
22-24	Applications of Bernoulli's equation	Sudden Expansion and Sudden Contraction, Torricelli's Equation, Pitot tube, Venturi meters, Orifice meters, Rotameter, Losses in pipe systems- illustration by examples	Lecture	1306.4	Mid Term II, Assignment & End Term
25-27	Pumps and Compressors	Introduction to positive displacement pumps, centrifugal pumps, NPSH, Cavitation, Reciprocating blowers, centrifugal blowers- illustration by examples	Lecture	1306.4	Mid Term II, Assignment & End Term
28-29	Pipe Networks	Design of pipe networks- illustration by examples	Lecture	1306.3	Mid Term II, Assignment & End Term
30-32	Mixing and Agitation	Need for agitation and mixing, Types of agitation, Vortex and Baffles, Impeller types, Dimensionless numbers related to mixing, Scale up of agitated vessels, Static mixers, Jet mixers	Lecture	1306.5	End Term
33-42	Solid Liquid Flows	Concept of Drag & Coefficient of Drag, Stagnation point, Flow through bed of solids, Motion of particles in fluids, Fluidization, Sedimentation, Filtration	Lecture	1306.5	End Term

I. Course Articulation Matrix: (Mapping of COs with POs)

СО	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES										CORRELATION WITH PROGRAM SPECIFIC OUTCOMES			
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CE 1306.1	Classify fluids based on rheology and calculate as well as correlate different fluid properties.	3	3	5	1	5	0	,	0	7	10	11	2	1		2
CE 1306.2	Correlate the concept of pressure with its measurement and use this knowledge to evaluate and design fluid static equipment of storage tanks and decanters.	3	3	1			1	2	1		1	1	2			
CE 1306.3	Assess and design fluid flow measurement equipment based on Bernoulli's equation applying them to different flow problems.	3	3	2				1		1	1	1	2			
CE 1306.4	Design, evaluate and develop the skill to understand the characteristics of different types of pumps/Blowers.	3	3	2				2		2	1	1	2	1		
CE 1306.5	Design different fluid-based unit operations like agitation and mixing, flow through packing, filtration, fluidization and centrifugation.	3	3				1	3		2	1	2	2	2	1	

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Process Synthesis | CE 1307 | 3 Credits | 3 0 0 3

Session: July 19 - Dec 19 | Faculty: Ir. Nandana Chakinala | Class: Core Course

A. Introduction:

This course on Process Synthesis is a core course designed for the undergraduate students of Chemical Engineering. This course emphasizes on the principles applied in developing a process from a potential point of view. The course presents heuristics and systematic tools for developing and screening potential process flow sheets. It provides insight in to the concepts of process design and development.

B. Course Outcomes: At the end of the course, students will be able to

[CE1307.1] Synthesize the optimum reaction path from a set of alternatives.

[CE1307.2] Investigate the thermodynamic feasibility of chemical processes

[CE1307.3] Perform material and energy balances and synthesize the block flow and process flow diagrams for new processes.

[CE1307.4] Describe more widely used industrial separation methods and their basis of separations

[CE1307.5] Synthesize heat exchange networks to minimize external heating and cooling requirements

[CE1307.6] Develop the skill to interpret equilibrium data required in solving material balances

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Program Outcomes for B.Tech. in chemical engineering are as follows.

POI. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

POI0. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

POIL. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

PSO.1. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

PSO.2. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.

PSO.3. Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

Criteria	Description	Maximum Marks					
	Sessional Exam I (Open Book)	20					
Internal Assessment	Sessional Exam II (Open Book)	20					
(Summative)	In class Quizzes and Assignments.	30					
End Term Exam	End Term Exam (Open Book)	30					
(Summative)							
	Total	100					
Attendance	A minimum of 75% Attendance is required to be maintained by a student						
(Formative)	to be qualified for taking up the End Se	mester examination. The allowance					
	of 25% includes all types of leaves inclu	ding medical leaves.					
Make up Assignments	No makeup for missed short quizzes	or assignments or exam will be					
(Formative)	allowed, except in extenuating circums	tances with prior permission of the					
	instructor. The decision of the instruct	or in this regard will be final.					
Homework/ Home Assignment/	There are situations where a student m	ay have to work in home, especially					
Activity Assignment	before a flipped classroom. Although	these works are not graded with					
(Formative)	marks. However, a student is expecte	d to participate and perform these					
	assignments with full zeal since the acti	vity/ flipped classroom participation					
	by a student will be assessed and marks	s will be awarded.					

D. Assessment Plan:

E. SYLLABUS

Introduction to Process Systems Engineering; Strategy of Reaction Synthesis

SYNTHESIS OF REACTION PATHS - Engineering Data on Reaction Paths; Screening of Reaction Paths; Reaction Paths with Recycle; Conservation of Mass; Material Balancing Pathways

SYNTHESIS OF REACTION FLOWSHEETS - Synthesis of Material Flow; Species Allocation

SEPARATIONS SYNTHESIS - Introduction to Separation Technology; Solid-Solid separation methods; Liquid-Liquid separation techniques; Reduction of Separation Load; Selection of Separation Phenomena; Integration of Auxiliary Operations; Energy Balance; Sensible and Latent Heat; Heat of Chemical Reactions

HEAT EXCHANGE NETWORK SYNTHESIS - Heat energy management and Heat-Exchanger Networks; Case studies from chemical and petroleum processing plants

F. TEXT BOOKS

TI Dale F. Rudd, Gary J. Powers, and Jeffrey J. Siirola, "Process Synthesis", Prentice-Hall international series in the physical and chemical engineering sciences, 1973.

T2 Regina M. Murphy, "Introduction to chemical processes: Principles, Analysis, Synthesis", 1st ed., McGraw Hill education, 2013.

G. **REFERENCE BOOKS**

RI Turton, Bailie, Whiting and Shaeiwitz, "Analysis, Synthesis and Design of Chemical Processes", 3rd ed., Prentice Hall India, 2009

R2 Robin Smith, "Chemical Process: Design and Integration", 8th ed., Wiley, January 2005.

R3 Warren D. Seider, J. D. Seader, Daniel R. Lewin, "Product and Process Design Principles: Synthesis, Analysis and Design", 2nd ed., Wiley, 2009

Lecture Plan:

Lecture	TOPICS	Session	Mode of	Corresponding	Mode of
No.		Outcome	Delivery	CO	assessing
I	Introduction to process synthesis	To understand the importance of process synthesis	Lecture		
2-3	The Engineering of process systems - Elementary concepts of synthesis and analysis, Pattern of process synthesis	To acquaint the basic steps of process synthesis	Lecture	1307.1	Quiz, Mid term I, End Term
4-5	Reaction path synthesis – Engineering data on reaction paths, stoichiometric concepts	To acquaint the data required for reactor synthesis	Lecture	1307.1	Quiz, Mid term I, End Term
6-8	Reaction path synthesis – Generation consumption analysis, Economic screening of reaction paths, Atom economy, Process economy and associated heuristics	To synthesize the optimum reaction path from a set of alternatives	Lecture & Tutorial	1307.1	Quiz, Assignment, Mid term I & End term
9-11	Reactor flow sheet synthesis – Process flow calculations, Synthesis of new technology	To perform basic material balance calculations of reactor	Lecture & Tutorial	1307.3	Assignment, Mid term I & End term
12	Reactor flow sheet synthesis – system variables, system and stream specification	To acquaint the process variables and specifications used in flow calculations	Lecture	1307.3	Assignment, Mid term I & End term
13-16	Reactor flow sheet synthesis – reactor material balances, Species allocation from raw materials to reaction sites, recycle structure of flowsheet	To develop the recycle structure of flowsheet	Lecture	1307.3	Quiz, Assignment, Mid term I & End term

17-19	Reactor flow sheet synthesis - Chemical Equilibrium and kinetics	To estimate the equilibrium conversion of reactors	Lecture	1307.2	Quiz, Mid term II & End term
20-22	Introduction to separation technology, Solid-solid separation techniques - solubility differences, Density differences	To acquaint the basic principles of separations & To understand the property differences exploited in S-S separations	Lecture	1307.4	Quiz, Mid term II & End term
23-24	Liquid-liquid separation techniques - volatility differences	To acquaint the concept of volatility in distillation	Lecture	1307.4	Assignment, Mid term II & End term
25-26	Liquid-liquid separation techniques – solubility differences, Gas-Gas separations – Solubility differences	To describe and understand the L-L extraction and absorption process	Lecture	1307.4	Assignment, Quiz, Mid term II & End term
27	Solid-liquid separations – Solubility differences	To describe and understand the S-L extraction and absorption process	Lecture	1307.4	Quiz, Mid term II & End term
28	Separation technology – Phase equilibrium, equilibrium calculations and graphs	To interpret the equilibrium data used in separator flowsheet synthesis	Lecture & Tutorial	1307.3 & 1307.6	Assignment, Mid term II & End term
29	Separator selection – Heuristics, reduction of separation load	To synthesize separator flowsheet based on heuristics	Lecture	1307.3	Mid term II & End term
30	Separator flowsheet synthesis – Separator performance, process flow calculations	To perform material balance of separators	Lecture & Tutorial	1307.3	Assignment, Mid term II & End term
31-33	Task integration – Economy of processing plan, Preliminary design of equipment to reuse material and energy, industrial procedures for energy management	To develop the preliminary process flowsheet integrating reactions and separations	Lecture	1307.6	Quiz, Mid term II & End term
34-35	Heat exchange network synthesis – Process Energy calculations	To perform energy balance calculations of various systems	Lecture	1307.3 & 1307.5	Assignment, Quiz, End term
36-38	Heat exchange network synthesis – Preliminary synthesis of heat exchanger networks, industrial procedures for energy management,	To synthesize preliminary heat exchanger network based on heuristics	Case study & Tutorial	1307.5	End term
39-40	Case studies from chemical and petroleum processing plants	To apply the process synthesis principles for case studies	Case study Activity	1307.3	End term

H. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES							CORRELATION WITH PROGRAM SPECIFIC OUTCOMES						
		PO I	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO I	PSO 2	PSO 3
CE 1307.1	Synthesize the optimum reaction path from a set of alternatives	3	-		I		3		2	•	3	2	3	3		
CE 1307.2	Investigate thermodynamic feasibility of chemical processes	3	I	3			2		I	2	3	2	3	3		I
CE 1307.3	Perform material and energy balances and synthesize the block flow, process flow diagrams for new processes	3	2	2			I		2		3	2	3	3	I	2
CE 1307.4	Describe more widely used industrial separation methods and their basis of separations	3	3	I			2		3		3	2	3	3	I	I
CE 1307.5	Synthesize heat exchange networks to minimize external heating and cooling requirements	3	3	2	2		2		2	I	3	2	3	3	2	2
CE 1307.6	Develop the skill to interpret the equilibrium data required in solving material balances	3	2				2		2		3	2	3	3		

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Basic Sciences

Department of Chemistry Course Hand-out

Engineering Materials | CE 1304 | 3 Credits | 3 0 0 3

Session: July 19 – Nov 19 | Faculty: Dr. Veena Dhayal | Class: B. Tech. (Chemical) III Sem.

A. Introduction: This course is offered by Dept. of Chemical Engineering as a core course, targeting students who wish to pursue research & development in industries or higher studies in field of engineering materials, including structure of material, ferrous and non- ferrous materials, electrical and magnetic properties of materials and gives an introductory level knowledge on classification of materials, crystal structure, properties and treatments of material. Students are expected to have background knowledge on learning of smart & nano-materials and their potential applications.

B. Course Outcomes: At the end of the course, students will be able to

- [CE 1304.1] Analyse the materials classification, properties and 3- dimensional crystal structure and its potential applications in daily life.
- [CE 1304.2] Determine the various engineering techniques to improve skills for modification of the surface properties of materials to increase their performance.
- [CE 1304.3] Analyse the formation of energy band concept of conductor, insulator and semiconductor and its applications
- [CE 1304.4] Recognize different heat treatment techniques and judge the best way to improve physical and mechanical properties of materials
- [CE 1304.5] Analyse the properties of smart nano-engineered & composites materials and apply them to solve real-life problems in engineering.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

The graduates of chemical engineering from MUJ will have:

- **[PO.1].** <u>Engineering knowledge:</u> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **[PO.2].** <u>Problem analysis:</u> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **[PO.3].** <u>Design/development of solutions</u>: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **[PO.4].** <u>Conduct investigations of complex problems</u>: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **[PO.5].** <u>Modern tool usage:</u> Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **[PO.6].** <u>The engineer and society:</u> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

- **[PO.7].** <u>Environment and sustainability:</u> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **[PO.8].** <u>Ethics</u>: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **[PO.9].** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **[PO.10].** <u>Communication:</u> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **[PO.11].** <u>Project management and finance</u>: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **[PO.12].** <u>Life-long learning:</u> Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Degree Specific Outcomes for chemical engineering are as follows:

- **[PSO.1].** <u>Concept to Commissioning:</u> The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.
- [POS.2]. <u>Process Intensification</u>: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.
- **[PSO.3].** <u>Specialization:</u> Students will be specialized in the areas of petroleum, energy and environment related fields.

Criteria	Description	Maximum Marks						
	Sessional Exam I (Closed Book)	20						
Internal Assessment	Sessional Exam II (Closed Book)	20						
(Summative)	In class Quizzes and Assignments	30						
	Activity feedbacks (Accumulated							
	and Averaged)							
End Term Exam	End Term Exam (Closed Book)	30						
(Summative)								
	Total	100						
Attendance	A minimum of 75% Attendance is required to be maintained by a							
(Formative)	student to be qualified for taking up the End Semester examination. The							
	allowance of 25% includes all types of leaves including medical leaves.							
Make up Assignments	Students who misses a class will have	ve to report to the teacher about the						
(Formative)	absence. A makeup assignment on th	e topic taught on the day of absence						
	will be given which has to be submi	tted within a week from the date of						
() /)	absence. No extensions will be give	en on this. The attendance for that						
	particular day of absence will be man	rked blank, so that the student is not						
	accounted for absence. These assign	iments are limited to a maximum of						
	5 throughout the entire semester.							
Homework/ Home Assignment/	There are situations where a stud	lent may have to work in home,						
Activity Assignment	especially before a flipped classroo	om. Although these works are not						
(Formative)	graded with marks. However, a stu	all real since the activity flipped						
	perform these assignments with full zeal since the activity/ flipped							
	classroom participation by a student will be assessed and marks will be							
	awarded.							

D. Assessment Plan:

E. SYLLABUS

STRUCTURE OF MATERIALS-crystal structure, substructure, microstructure; MATERIALS **CLASSIFICATIONS** –engineering standards, material selection (CES type packages); MATERIAL **PROPERTIES** – mechanical, electrical, physical, corrosion, etc. properties; MATERIAL TREATMENT -Heat treatment, Various types of heat treatment such as Annealing, Normalizing, Quenching, Tempering (Austempering, Martempering), and various case hardening processes, surface treatment, etc.; FERROUS MATERIALS-Various types of carbon steels, alloy steels and cast irons, its properties and uses, effects of different alloying elements, super alloys; NON-FERROUS METALS AND ALLOYS-Non-ferrous metals such as Cu, Al, Zn, Cr, Ni etc. and its applications, Various type of Brass and Bronze, bearing materials, its properties and uses. Aluminum alloys such as Duralumin; CERAMICS - classification, characterization, properties; **PLASTICS** – Various types of polymers/plastics and its applications, Mechanical behaviour and processing of plastics, Future of plastics; COMPOSITE MATERIALS structure, properties, classification, processing; **OTHER MATERIALS:** Brief description of other material such as optical and thermal materials, Introduction to Smart materials & Nano-materials and their potential applications; ELECTRIC PROPERTIES, SEMICONDUCTORS AND SUPER CONDUCTORS-Energy band concept of conductor, insulator and semi-conductor. Intrinsic & extrinsic semi-conductors. Super conductivity and its applications; MAGNETIC PROPERTIES-Concept of magnetism - Dia, para, ferro Hysteresis. Soft and hard magnetic materials; SURFACE ENGINEERING AND APPLICATIONS - techniques, coatings, processing and heat treatment.

F. TEXT BOOKS

- 1. W. D. Callister, Fundamentls of Materials Science and Engineering, Wiley (2007), 9th Edition
- 2. V. Raghvan, Materials Science and Engineering, 5th Edition, Phi Learning (2013)
- 3. C. Kittle, Introductin to Solid State Physics, Wiley (2007)

G. REFERENCE BOOKS

VSPIR

- 1. Structure and Bonding in Crystalline Materials, Cambridge University Press (2001)
- 2. V. Gerold Materials Science and Technology, Volume 1, VCH Publication (1992)

H. Lecture Plan:

LEC NO	TOPICS	Session Outcome	Mode of Delivery	Corres pondin g Course Outco me	Mode of Assessing the Outcome
1	Introduction to Engineering materials and their applications in real life	To acquaint and clear teachers expectations and understand student expectations	Interaction, discussion	7100	NA
2	Materials classifications: engineering standards, material selection (CES type packages)	Analysethematerialsclassificationanditspotentialapplicationsdaily life.	Lecture, Interaction, Discussion	CO 1	1 st Sessional, ET Exam, Home Assignment
3	Structure of materials- crystal structure, substructure, microstructure materials	Thorough understanding of 3- dimensional crystal structure at microlevel	Interaction, Discussion & Question Answer Session	CO 1	1 st Sessional, ET Exam, Home Assignment
4, 5	Material treatment –Heat treatment, various types of heat treatment such as Annealing, Normalizing,	Recognize different heat treatment techniques, Annealing, Normalizing	Lecture, Interaction, Question Answer Session	CO 4	1 st Sessional, ET Exam, Home Assignment
6	Quenching, Tempering (Austempering, Martempering),	Recognize heat treatments, Quenching, Tempering (Austempering, Martempering	Lecture, Interaction, Question Answer Session	CO 4	1 st Sessional, ET Exam, Home Assignment
7	Various case hardening processes, surface treatment, etc.;	Judge the best way to improve surface properties of materials	Lecture, Interaction, Question Answer Session	CO 2	1 st Sessional, ET Exam, Home Assignment
8	Ferrous materials: Various types of carbon steels, alloy steels and cast irons	Classification of steel based on their compositions	Lecture, Interaction, Question Answer Session	CO 1, CO 2	1 st Sessional, ET Exam, Home Assignment
9, 10	Properties of Ferrous materials: mechanical, electrical, physical, corrosion	Properties of ferrous materials based on their compositions	Lecture, Interaction, Question Answer Session	CO 1, CO 3	1 st Sessional, ET Exam
11, 12	Applications of Ferrous materials, effects of different alloying elements, super alloys;	Effect of alloying elements on the properties of materials and their applications.	Lecture, Interaction, Question Answer Session	CO 1	1 st Sessional, ET Exam,

13	Non-Ferrous metals such as Cu, Al, Zn, Cr, Ni etc. and its applications and alloys	Classification of non-ferous metals based on their compositions	Lecture, Interaction, Question Answer Session	CO 1	1 st Sessional, ET Exam,
14	Revision				
		Ist Sessional Exa	am		
15, 16	Various type of Brass and Bronze bearing materials and its properties and uses, Aluminum alloys such as Duralumin	Compositions of brass and bronze, their properties and applications	Lecture, Interaction, Question Answer Session	CO 1	2 nd Sessional, ET Exam, Class test
17	Classification and characterization of ceramics, Properties of Ceramics,	Knowledge about ceramics and their classifications and properties	Lecture, Interaction, Question Answer Session	CO 5	2 nd Sessional, ET Exam, Class test
18	Plastics – Various types of polymers/plastics and its applications	Knowledge about polymer. Plastics and its applications	Lecture, Interaction, Question Answer Session	CO 5	2 nd Sessional, ET Exam, Class test
19	Mechanical behaviour and processing of plastics, Future of plastics	Mechanical properties of plastics	Lecture, Interaction, Question Answer Session	CO 5	2 nd Sessional, ET Exam, Class test
20	Composite materials – classification, processing, structure, properties of Composite materials	Knowledge about composites, its classifications, properties and processing	Lecture, Interaction, Question Answer Session	CO 2, CO 5	2 nd Sessional, ET Exam, Class test
21, 22	Othermaterials:Briefdescriptionofothermaterial such as optical andthermal materials,	Knowledge about some important optical and heat resistive materials	Lecture, Interaction, Question Answer Session	CO 3, CO 5	2 nd Sessional, ET Exam, Class test
23	Class test		4	1	nd
24, 25	Introduction to Smart materials & nanomaterials, Synthesis and Characterization of nanomaterials	Knowledge about some smart and nano materials, their synthesis and various characterization techniques	Lecture, Interaction, Question Answer Session	CO 5	2 nd Sessional, ET Exam
26	Electric properties of nanomaterials,	Major electrical properties of nanomaterials	Lecture, Interaction, Question Answer Session	CO 3	2 nd Sessional, ET Exam
27, 28	Potential applications of Nanomaterials	Various applications of nanomaterials	Lecture, Interaction, Question Answer Session	CO 5	2 nd Sessional, ET Exam
29, 30	Semiconductors and Super conductors, Energy band concept of conductor,	Knowledge about conductivity and band theory	Lecture, Interaction, Question Answer Session	CO 3	2 nd Sessional, ET Exam

31, 32	insulator and semi-	Classification of	Lecture,	CO 3	2 nd Sessional,				
	conductor, Intrinsic &	conductors	Interaction,		ET Exam				
	extrinsic semi-conductors		Question						
			Answer Session						
33	Superconductivity and its	Knowledge about	Lecture,	CO 3	2 nd Sessional,				
	applications	superconductivity	Interaction,		ET Exam				
		and its applications	Question						
			Answer Session						
	2^{nd}	SESS <mark>IONAL EXAM</mark>	INATION						
34, 35,	Magnetic properties-	Classification of	Lecture,	CO 1	ET Exam,				
36	Concept of magnetism,	materials based on	Interaction,		Quiz				
	Diamagnetism,	magnetic	Question		A				
	Paramagnetism,	properties	Answer Session	-					
37	Ferromagnetism,	Knowledge about	Lecture,	CO 1	ET Exam,				
	Hysteresis	ferromagnetic	Interaction,		Quiz				
	Se la	materials	Question						
1			Answer Session						
38, 39	Soft and hard magnetic	Knowledge about	Lecture,	CO 1,	ET Exam,				
	materials, Surface	surface	Interaction,	CO 2	Quiz				
	engineering of	engineering of	Question						
01	nanomaterials: techniques,	nanomaterials,	Answer Session						
V	coatings	coating techniques							
40	Quiz 1								
41	Surface engineering of	Surface	Lecture,	CO 2	ET Exam				
	nanomaterials: processing	engineering by	Int <mark>eraction</mark> ,						
	and heat treatment.	heat treatment	Question						
			An <mark>swer Se</mark> ssion						
42	Properties and applications	Various	Lecture,	CO 2	ET Exam				
	of surface engineering of	applications of	Interaction,	1					
	nanomaterials	surface	Question						
		engineering of	Answer Session						
		nanomaterials							
43	Revision								
	END SEMESTER EXAMINATION								

SPIRED

BYLIFE

I. Course Articulation Matrix: (Mapping of COs with POs)

VSPIRE'

СО	Statement		CORRELATION WITH PROGRAM OUTCOMES							CORRELATION WITH PROGRAM SPECIFIC OUTCOMES						
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CE 1304.1	Analyse the material classification, properties and 3-dimentional crystal structure and its potential applications in daily life.	1	1	1	1			1	1		1	Ť		1	1	
CE 1304.2	Determine the various engineering techniques to improve skills for modification of the surface properties of materials to increase their performance.	2	1	2		2		1		1		1		1	2	1
CE 1304.3	Analyse the formation of energy band concept of conductor, insulator and semi-conductor and its applications.	2	3		1		1				1			1	1	1
CE 1304.4	Recognize different heat treatment techniques and judge the best way to improve physical and mechanical properties of materials.	1	2	2	1			2		4	2	1	2		1	1
CE 1304.5	Analyse the properties of smart nano- engineered & composites materials and apply them to solve real life problems in engineering.	2		2	1		1	2	1				1	1	2	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Transport Phenomena | CE 1405/1501 | 3/4 Credits | 3/3 0/1 0/0 3/4

Session: Jan 20 - May 20 | Faculty: Dr Gaurav Kataria | Class: IV Semester

- A. Introduction: This course is an introductory course in Transport Phenomena whereby the student shall be exposed to the various major areas and their applications. The student shall be armed with the basic tools and understanding of the field. The 'premium' in this course shall be on 'thinking' rather than doing things 'mechanically' so that the student is able to apply the various concepts to different situations, other than the ones encountered during the course, as and when the need arises.
- **B. Course Outcomes:** At the end of the course, students will be able to
 - [1405.1]. Identify transport properties and analyze the mechanisms of momentum, energy and mass transport.
 - [1405.2]. Develop the skills to select, locate and orient coordinate systems for transport phenomena problems.
 - **[1405.3].** Generate the skills to formulate the differential forms of the equations of change for momentum, heat and mass transfer problems for steady-state and unsteady flows.

[1405.4]. Develop the skills to identify the analogies between momentum, heat and mass transfer problems.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Program Outcomes for B.Tech. in chemical engineering are as follows.

The Graduates of Chemical Engineering from MUJ will have:

- **PO.I** A thorough knowledge of the basic science, engineering and mathematics and apply that to the underline practice of Chemical Engineering
- **PO.2** Ability to apply these basic principles to solve real world problems in a broad range of career paths
- PO.3 The skills of making smart decisions on process feasibility based in technical and economic evaluation
- **PO.4** The ability to appreciate the social, ethical, cultural, environmental and safety issues related to chemical engineering profession
- **PO.5** The ability to develop experimental procedure/protocol to test hypothesis and analysis meaningful interpretation of the generated data
- PO.6 The skill to generate sustainable engineering solutions to societal and industrial problems
- PO.7 Proficiency to use computational tools for problem solving
- PO.8 The ability to communicate effectively (technical and non-technical context) in written and oral form
- PO.9 Skills to work effectively and professionally in multi-disciplinary groups
- **PO.10** The ability to work effectively and professionally on projects both independently and as a part of a group/team
- **PO.II** The ability to be self-learners and lifelong learners
- PO.12 The motivation to develop and lead entrepreneurial projects for societal benefit

Degree Specific Outcomes for chemical engineering are as follows:

- **PSO.I** Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant.
- **POS.2** Process Intensification: graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.
- **PSO.3** Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

D. Assessment Plan:

Criteria	Description	Maximum Marks							
	Sessional Exam I (Closed Book)	20							
Internal Assessment	Sessional Exam II (Closed Book)	20							
(Summative)	In class Quizzes and Assignments	30							
End Term Exam	End Term Exam (Closed Book)	30							
(Summative)									
	Total	100							
Attendance	A minimum of 75% Attendance is required to be maintained by a student to be								
(Formative)	qualified for taking up the End Semester examination. The allowance of 25%								
	includes all types of leaves including medi	cal leaves.							
Homework/ Home & Class Assignment	Home and class assignments are an integr	al part of this course – you can only learn							
(Formative)	by doing! Home works will be assigned in	between the lectures along with the due							
	date for handing it over. Assignments will	also be given during lecture hours where							
	students will be asked to solve open-ende	ed problems/case studies within stipulated							
	time. No late assignments handed after t	he due date shall be accepted under any							
	circumstance. It is expected that the s	tudents shall work on the assignments							
	independently and not 'copy' the sole	utions from each other. Students are							
	encouraged to discuss problems with th	eir instructor in lecture hours. Students							
	are advised to meet the instructor in case of any difficulty related to assignments								
	and course related matters. Total 10 assignments will be given as a part of home								
	and class assignments.								

E. SYLLABUS

Momentum Transport- Viscosity and mechanisms of momentum transport, shell momentum balances and velocity distribution in laminar flow, the equations of change for isothermal systems, velocity distributions with more than one independent variable, velocity distribution in turbulent flow, interphase transport in isothermal systems, macroscopic balances for isothermal flow systems

Energy Transport- Thermal conductivity and mechanisms of energy transport, shell energy balances and temperature distributions in solids and laminar flow, the equations of change for nonisothermal systems, temperature distributions with more than one independent variable, temperature distribution in turbulent flow, interphase transport in nonisothermal systems, macroscopic balances for nonisothermal systems, energy transport by radiation

Mass Transport- Diffusivity and mechanisms of mass transport, concentration distributions in solids and laminar flow, equations of change for multicomponent systems, interphase transport in nonisothermal mixtures, macroscopic balances for multicomponent systems.

F. TEXT BOOKS

"Transport Phenomena" (Second Edition), R B Bird, W E Stewart, E E Lightfoot, John Wiley & Sons, (2007).

G. REFERENCE BOOKS

"Analysis of Transport Phenomena" (Second Edition), W M Deen, Oxford University Press, (2013).

"Transport Processes and Separation Process Principles: (includes Unit Operations)" (Forth Edition), C Geankoplis, Prentice Hall of India, (2004).

"Introduction to Transport Phenomena" W J Thompson, Prentice Hall, (1999).

Lecture No.	Topics	Session Outcome	Mode of Delivery	Corresponding Course Outcome	Mode of Assessing the Outcome
1	Introduction · Newton's	Understand the role	Locturo	1504 1	Mid Torm I
1.	Law of Viscosity	of viscosity in the momentum transfer.	Lecture	1304.1	End Term
2.	Non-Newtonian Fluids;	Distinguishing the	Lecture	1504.1	Mid Term I
	Pressure-Temperature Dependence of Viscosity	types of fluids based on viscosity.			End Term
3.	ShellMomentumBalances:BoundaryConditions;Flow of aFalling Film	Understand the use of shell momentum balance.	Lecture	1504.1/3	Mid Term I End Term
4.	Flow through a Circular Tube	Understand the use of shell momentum balance.	Lecture	Mid Term I End Term	
5.	Flow through an Annulus.	Understand the use of shell momentum balance.	Lecture	1504.1/2/3	Mid Term I End Term
6.	The EquationofContinuity;TheEquation of Motion	Generalizing the shell momentum balance equations.	Lecture	1504.1/2/3	Mid Term I End Term
7.	Equations of Change in Curvilnear Coordinates; Uses of Equations of Change to set up Steady Flow Problems	Generalizing the shell momentum balance equations.	Lecture	1504.1/2/3	Mid Term I End Term
8.	Dimensional Analysis of the Equations of Change	Generalizing the shell momentum balance equations.	Lecture	1504.1/2/3	Mid Term I End Term
9.	Unsteady Viscous Flow	Understanding the unsteady flow problems.	Lecture	1504.1	Mid Term I End Term
10.	Fluctuations and Time- Smoothed Quantities; Time-Smoothing of the Equations of Change for an incompressible Fluid	Understanding the solution of unsteady flow problems.	Lecture	1504.2/3	Mid Term I End Term
11.	Definition of Friction Factors; Friction Factors for Flow in Tubes; Friction Factors for Flow Around Spheres	Understanding the role of friction factor in the transport phenomenon.	Lecture	1504.1	Mid Term I End Term
12.	The Macroscopic Mass Balance; The Macroscopic Momentum Balance	Distinguishing the macroscopic and microscopic problems.	Lecture	1504.1/3	Mid Term I End Term
13.	TheMacroscopicMechanicalEnergy	Distinguishing the macroscopic and	Lecture	1504.1/3/4	Mid Term I End Term

	Balances; Estimation of Friction Loss	microscopic problems.			
14.	Use of the Macroscopic Balance to set up Steady Flow Problems	Distinguishing the macroscopic and microscopic problems.	Lecture	1504.1/3/4	Mid Term I End Term
15.	Review Lecture		Lecture		Mid Term I End Term
		MID-TERN	<mark>A I</mark>	L	
16.	Fourier's Law of Heat Conduction; Temperature and Pressure Dependence of Thermal Conductivity in Gases and Liquids	Understand the basic concept of heat transfer.	Lecture	1504.1	Mid Term II End Term
17.	Shell Energy Balances; Boundary Conditions; Heat Conduction with an Electrical Heat Source	Understand the use of shell energy balance.	Lecture	1504.1/3	Mid Term II End Term
18.	Heat Conduction with a Viscous Heat Source	Understand the use of shell energy balance.	Lecture	1504.1/3	Mid Term II End Term
19.	HeatConductionthroughCompositeWalls: Addition ofResistances	Understand the use of shell energy balance.	Lecture	1504.1/3	Mid Term II End Term
20.	Forced Convection; Free Convection	Distinguishing the solution of forced and free convection.	Lecture	1504.1/3	Mid Term II End Term
21.	The Equations of Energy; The Energy Equation in Curvilinear Coordinates	Generalizing the shell energy balance equations.	Lecture	1504.1/2/3	Mid Term II End Term
22.	Summary of the Equations of Change; Use of the Equations of Change to set up Steady Flow Heat Transfer Problems	Generalizing the shell energy balance equations.	Lecture	1504.1/2/3	Mid Term II End Term
23.	Dimensional Analysis of the Equations of Change	Generalizing the shell energy balance equations.	Lecture	1504.1/2/3	Mid Term II End Term
24.	Unsteady Heat Conduction in Solids	Understanding the unsteady heat flow problems.	Lecture	1504.1/3	Mid Term II End Term
25.	Definition of the Heat Transfer Coefficient; Heat Transfer Coefficients for Forced Convection in Tubes; Heat Transfer Coefficient for Forced Convection around Submerged Objects	Understanding the common terms of heat transfer and their role in the chemical engineering applications.	Lecture	1504.1/3/4	Mid Term II End Term

26.	Heat Transfer	Understanding the	Lecture	Mid Term II								
	Coefficients for Free Convection	heat transfer concept in free convection.			End Term							
27	Spectrum of	Understanding the	Lecture	1504 1	Mid Term II							
27.	Electromagnetic	basics of radiation	Lecture	1504.1								
	Radiation; Absorption	heat transfer			End Term							
	and Emission at Solid											
	Surfaces; Planck's Law;											
	Wien's Law; Stefan-											
20	Boltzmann Law Direct Padiation	Lindorstanding the		1504 1/2	Mid Torm II							
28.	between Black Bodies		Lecture	1504.1/3								
	in Vacuo at Different	basics of radiation			End Term							
	Temperatures	neat transfer.										
MID-TERM II												
29.	The Macroscopic	Distinguishing the	Lecture	1504.1/3	End Term							
	Energy Balance; The	macroscopic and										
	Macroscopic	microscopic heat										
	Mechanical Energy	problems.										
	Balance (Bernoulli Equation)											
30	Summary of the	Distinguishing the	Lecture	1504,1/2/3	End Term							
20.	Balances for Pure	macroscopic and	Lecture	100 111 27 0								
	Fluids; Use of the	microscopic heat										
	Macroscopic Balances	problems.										
	for Solving Steady-State											
21	Problems (458-460)	Defining basis terms	Locturo	1504 1/2/4	End Torm							
51.	Concentrations	of mass transfer in	Lecture	1504.1/5/4								
	Velocities, and Mass	transport										
	Fluxes; Fick's Law of	phenomenon.										
	Diffusion; Temperature	prienomenom										
	and Pressure											
	Dependence of Mass											
32.	Shell Mass Balances:	Understand the use of	Lecture	1504.1/3	End Term							
52.	Boundary Conditions;	shell mass balance.	Lecture	100 111/0								
	Diffusion through a											
	Stagnant Film											
33.	Diffusion with	Understand the use of	Lecture	1504.1/3	End Term							
	Chemical Reaction:	snell mass balance.										
	Diffusion with											
	Homogeneous Chemical											
	Reaction											
34.	Diffusion in to a Falling	Understand the use of	Lecture	1504.1/3	End Term							
	Liquid Film: Forced	shell mass balance.										
	Transfer											
35.	The Equations of	Generalizing the shell	Lecture	1504.1/3	End Term							
	Continuity for a Binary	mass balance										
	Mixture; The Equation	equations.										
	of Continuity of A in											
	Coordinates: The											
	Multicomponent											
	Equations of Change in											
	Terms of Fluxes											

36.	Dimensional Analysis of the Equations of Change for a Binary Isothermal Fluid Mixture	Generalizing the shell mass balance equations.	Lecture	1504.1/2/4	End Term				
37.	Definition of Binary Mass Transfer Coefficients in One Phase; Correlations of Binary Mass Transfer Coefficients in One Phase at Low Mass Transfer Rates	Understanding the binary mass transfer terms.	Lecture	1504.1	End Term				
38.	Definition of the Transfer Coefficients for High Mass Transfer Rates	Understanding the high mass transfer concepts.	Lecture	1504.1/4	End Term				
39.	The Macroscopic Mass / Momentum / Energy Balances for Multicomponent Systems; Use of Macroscopic Balances to Solve Steady State Problems	Distinguishing the macroscopic and microscopic mass transfer problems.	Lecture	1504.1/3	End Term				
40.	Use of Macroscopic Balances to Solve Steady State Problems	Solving the macroscopic mass transfer problems.	Lecture	1504.1/3	End Term				
END-TERM EXAMINATION									

I. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT	CORRELATION WITH PROGRAM OUTCOMES							CORRELATION WITH PROGRAM SPECIFIC							
		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO 1	PSO 2	PSO 3
		1	2	3	4	5	6	7	8	9	10	11	12			
CE 1405.1	Identify transport properties and analyze the mechanisms of momentum, energy and mass transport.	3	3			1		1		2		1		3	1	
CE 1405.2	Develop the skills to select, locate and orient coordinate systems for transport phenomena problems.	3	3					1		1		2		2	1	
CE 1405.3	Generate the skills to formulate the differential forms of the equations of change for momentum, heat and mass transfer problems for steady-state and unsteady flows.	3	3			3		2		2		2		3	2	
CE 1405.4	Develop the skills to identify the analogies between momentum, heat and mass transfer problems.	3	2			1		1		2		2		1	2	

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

NSPIRED BY LIFE

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Chemical Engineering Thermodynamics | CE 1406 | 3 Credits | 3 0 0 3

Session: Jan 20 - May 20 | Faculty: Anand Chakinala | Class: B. Tech. (Chemical) IV Semester

- **A. Introduction:** This course intends to present thermodynamics from chemical engineering view point. It covers the laws of thermodynamics, thermodynamic relations, Solution thermodynamics, phase equilibrium and chemical reaction equilibrium. The key elements include the adaptation of thermodynamic laws to different flow processes, description of phase equilibrium and chemical equilibrium and their applications.
- **B. Course Outcomes:** At the end of the course, students will be able to
 - [1406.1]. Apply the basic laws of thermodynamics to calculate heat and work requirement for industrial processes
 - [1406.2]. Analyse and evaluate data from PVT behaviour of fluids and ideal gas systems
 - [1406.3]. Apply mass, energy and entropy balances to flow processes
 - [1406.4]. Evaluate and apply the concepts of phase equilibrium
 - [1406.5]. Evaluate and apply the physical and chemical equilibrium
 - [1406.6]. Apply the knowledge of thermodynamics to the reacting and non-reacting processes

C. Program outcomes and program specific outcomes

Program Outcomes for B.Tech. in chemical engineering are as follows.

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

[PSO.1]. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full-scale plant taking into account environmental concerns.

[PSO.2]. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.

[PSO.3]. Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

D. Assessment Plan:

Criteria	Description Maximum Marks								
	Sessional Exam I (Open Book)	20							
	Sessional Exam II (Open Book)	20							
Internal Assessment	In class Quizzes, Assignments,								
	Projects, Case Studies (Accumulated	30							
	and Averaged)								
End Term Exam	End Term Exam (Open Book)	30							
	Total	100							
	A minimum of 75% Attendance is re	quired to be maintained by a							
Attendance	student to be qualified for taking up the End Semester examination.								
Attendance	The allowance of 25% includes all types of leaves including medical								
	leaves.								
	No make-up for missed short quizzes/assignments or exam will be								
Make up Assignments	allowed except in extenuating circumsta	ances, with prior permission of							
Make up Assignments	the instructor(s), and the decision of t	he instructor(s) in this regard							
	shall be final.								
	Home works will be assigned in between the lectures along with the								
	due date for handing it over. No late assignments handed after the due								
Homework/ Home	date shall be accepted under any circumstance. It is expected that the								
Assignment/ Project	students shall work on the assignments independently and not 'copy'								
	the solutions from each other. A case study is given which is assessed								
	in form of individual reports submitted.								

E. Syllabus

Review of I and II Laws of Thermodynamics, P–V–T Relations of Pure Fluids - Graphical, Tabular and Mathematical representation; Generalized compressibility chart; Generalized EOS; Thermodynamic Potentials; Maxwell Relations, Thermodynamic Property Relations, Thermodynamic properties of real gases, Multicomponent mixtures, Properties of solutions, Phase Equilibrium (VLE, LLE, VLLE), Review of Thermochemistry; Chemical reaction equilibrium

F. Text books

1) Smith, J. M., Van Ness, H. C., and Abbott, M. M., Introduction to Chemical Engineering Thermodynamics, 6th ed., McGraw-Hill, 2001.

G. Reference books

- 1) Kyle, B.G., Chemical and Process Thermodynamics, 3rd ed., PHI, New Delhi, 1999.
- 2) Rao, Y.V.C., Chemical Engineering Thermodynamics, University Press, 1997.

Lecture Plan:

LEC NO	TOPICS	Session Outcome	Mode of Delivery	Corresponding CO	Mode of assessing CO
1-2	Introduction	Brief overview of the course	Lecture	1406.1	Mid Term -1, End Term
3	Internal Energy, First Law of Thermodynamics, Energy balances for closed systems, Thermodynamics and state function, Equilibrium	Students will be acquainted with these basic concepts	Lecture	1406.1	Mid Term -1, End Term
4-6	Phase Rule, Reversible processes, constant V and P processes, Enthalpy, Heat capacity, Mass and energy balances for open systems	Phase rule and other key thermodynamic concepts introduced	Lecture + Tutorial	1406.1; 1406.2	Mid Term -1, End Term

7	PVT behavior of pure	Equations of	Lecture	1406.1;	Mid Term -1,
/	substances, Ideal gas	state are covered	Lecture	1406.2	End Term
	Virial equations of state	Equations of	-	1406.1:	Mid Term -1.
8	and its applications, Cubic	state are covered	Lecture	1406.2	End Term
	equation of state	Equations of		1406.1	Mid Torm 1
9	for gases and liquids	state are covered	Lecture	1406.1,	End Term
10	for gabes and inquites	Heat effects are	Lecture	1100.5	
10-	Heat effects	introduced.	+	1406.1;	Mid Term -1,
11			Tutorial	1406.3	End Term
	Second law of	Second law of			
12 –	thermodynamics, heat	thermodynamics	Lecture		Mid Term -1,
14	engines, entropy and its	is a key concept	+	1406.3	End Term,
	applications to ideal gas,	of this course	Tutorial		Assignment
	TOST WOLK AND IDEAL WOLK	It is briefly	Lecture		Mid Term -1
15 –	Third law of	introduced	+	1406 1	End Term
17	thermodynamics	introduced	Tutorial	1100.1	Assignment
	Property relations for	Phase equilibria	Lasture		Mid Tarra 2
18 –	homogeneous phases,	are key	Lecture	1406.2;	Find Term -2,
19	residual properties, Two	components of	Tutorial	1406.3	Assignment
	phase systems	this course	Tutoriui		rissignment
20	Thermodynamic diagrams,	Students taught	T (1406.2;	Mid Term -2,
20	Table of Thermodynamic	about property	Lecture	1406.3	End Term
	properties	Students taught			
21	Generalized property	about property	Lecture	1406.2;	Mid Term -2,
	correlations for gases	correlations	2000010	1406.3	End Term
	Property relationships,	Ideal and real			
	partial molar properties,	solutions		1406.20	Mid Term 2
22	Fugacity and fugacity	introduced to	Lecture	1406.2,	End Term
	coefficients, fugacity in	students		1100.5	
	Ideal solutions	Ideal and real			
	mixing heat effects of	solutions	Lecture		Mid Term -2
23 -	mixing process, excess	introduced to	+	1406.2;	End Term.
25	properties, activity	students	Tutorial	1406.3	Assignment
	coefficients, gas mixtures				
	Phase equilibria, nature of	Phase equilibria			
26	equilibrium, criteria of	are key	Lecture	1406.4	Mid Term -2,
	equilibrium, phase rule,	components of			End Term
	Activity coofficients	Koy concents of			
27 –	Gibbs-Duhem equation	this	Lecture		Mid Term -2
29	coexistence equation,	thermodynamics	+	1406.4	End Term
	stability	course	Tutorial		
		Key concepts of	Lecture		
30 - 33	Systems of limited liquid-	this	+	1406.4	Mid Term -2,
20 22	phase miscibility	thermodynamics	Tutorial		End Term
	Chamical reaction	Course Various kinds of			
	equilibria criteria for	free energy			
	equilibrium. standard	concepts			
	Gibb's free energy change,	introduced	Lecture	1406 5	Ded T
34	equilibrium constant,		+	1400.5;	End Ierm,
	effect of temperature,		Tutorial	1400.0	Assignment
	relations b/w equilibrium				
	constants and				
	compositions, equilibrium				

	conversions for single reactions				
35	Phase rule, Duhem's theorem for reacting systems	Phase rule is a key concept in thermodynamics	Lecture	1406.5	End Term
36	Multireaction equilibria	Concepts at the confluence of thermodynamics and chemical reactions	Lecture	1406.5; 1406.6	End Term, Assignment
39	Thermodynamics of flow processes, Fundamental equations, flow in pipes, maximum velocity in pipe flow	Thermodyanmics is able to explain the energetics of various mechanical processes	Lecture	1406.6	End Term
41 - 43	Metering and throttling process, Nozzles, compressors, ejectors, temperature measurements at high velocities	Thermodyanmics is able to explain the energetics of various mechanical processes. Practical mechanical devices discussed.	Lecture + Tutorial	1406.6	End Term, Assignment

H. Course Articulation Matrix: (Mapping of COs with POs)

C0	STA TEMENT		CORRELATION WITH PROGRAM OUTCOMES									CORRELATION WITH PROGRAM SPECIFIC OUTCOMES				
	STATEMENT	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CE1406.1	Apply the basic laws of thermodynamics to calculate heat and work requirement for industrial processes	3	3	2	1	1	2			3	1	2	1	3	2	2
CE1406.2	Analyze and evaluate data from PVT behavior of fluids and ideal gas systems	3	2			1	2	1	1	2	1	2		3	2	2
CE1406.3	Apply mass, energy and entropy balances to flow processes	3	3	2	1	1	3			3	1	2		3	3	2
CE1406.4	Evaluate and apply the concepts of phase equilibrium	3	2				2			2	1	2		2	1	2
CE1406.5	Evaluate and apply the physical and chemical equilibrium	3	2	1			2			1	1	2		2	2	2
CE1406.6	Apply the knowledge of thermodynamics to the reacting and non-reacting processes	3	3	2		1	2			3	2	2	1	3	2	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Heat Transfer Operations | CE 1407 | 3 Credits | 3 0 0 3

Session: Jan 20 – May 20 | Faculty: Ir. Nandana Chakinala | Class: Core Course

A. Introduction:

This course on Process Synthesis is a core course designed for the undergraduate students of Chemical Engineering. This course emphasizes on the principle concepts & methods of heat transfer in fluids and solids and their application in various heat transfer equipment in process industries. It provides insight in to the mechanism of heat transfer and design of heat transfer equipment.

B. Course Outcomes: At the end of the course, students will be able to

[1407.1]. Understand the basic concepts and laws of the three modes of heat transfer.

[1407.2]. To identify, formulate and solve engineering problems involving conduction, convection and radiation heat transfer

[1407.3]. To identify, formulate and solve engineering problems involving boiling, condensation, evaporation and crystallization

[1407.4]. To design heat exchangers and perform basic calculations of common heat exchangers.

[1407.5]. To develop the problem-solving skills essential to good engineering practice of heat transfer in real world applications thus enhancing the employability

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Program Outcomes for B.Tech. in chemical engineering are as follows.

POI. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

POIO. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

POIL. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

PSO.1. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

PSO.2. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.

PSO.3. Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

Criteria	Description	Maximum Marks						
	Sessional Exam I (Open Book)	20						
Internal Assessment	Sessional Exam II (Open Book)	20						
(Summative)	In class Quizzes and Assignments.	30						
End Term Exam	End Term Exam (Open Book)	30						
(Summative)								
	Total	100						
Attendance	A minimum of 75% Attendance is required to be maintained by a student							
(Formative)	to be qualified for taking up the End Se	mester examination. The allowance						
	of 25% includes all types of leaves inclu	ding medical leaves.						
Make up Assignments	No makeup for missed short quizzes	or assignments or exam will be						
(Formative)	allowed, except in extenuating circums	tances with prior permission of the						
	instructor. The decision of the instruct	or in this regard will be final.						
Homework/ Home Assignment/	There are situations where a student m	ay have to work in home, especially						
Activity Assignment	before a flipped classroom. Although these works are not graded with							
(Formative)	marks. However, a student is expected to participate and perform these							
	assignments with full zeal since the activ	vity/ flipped classroom participation						
	by a student will be assessed and marks	s will be awarded.						

D. Assessment Plan:

E. SYLLABUS

Introduction - Modes of heat transfer, heat transfer equipment.

Conduction – Steady state conduction in one dimension, Fourier's law, Thermal conductivity, Steady state conduction of heat through composite solid, variable area and in bodies with heat sources.

Convective heat transfer – Overall heat transfer coefficient, heat transfer between fluids separated by plane wall, cylindrical wall, thermal contact resistance, critical insulation thickness; Forced convection – Flow over flat plate, thermal boundary layer, flow across a cylinder, Dimensionless groups in heat transfer, correlations for heat transfer coefficient for both internal and external flows; Free convection – Heat transfer correlations, combined free and forced convection.

Radiation heat transfer – Basic concepts, blackbody radiation, Planck's Law, Wien's displacement law, Stefan-Boltzmann Law, Kirchhoff's Law, Grey body; Radiation intensity of black body, Radiation shield, View factor, combined radiation, conduction and convection.

Heat transfer in boiling and condensation – Boiling phenomena and boiling curve, Mechanism of nucleate boiling, correlations for pool boiling, forced convection boiling; Condensation phenomena, condensation outside horizontal tube or tube bank, inside a horizontal tube, effect of non-condensable gases, drop wise condensation.

Heat exchanger design – Double pipe heat exchanger design using Kern method, Shell and tube heat exchanger design using Kern method and Bell Delaware method, Effectiveness NTU method of heat exchanger analysis. **Evaporators** – Types of evaporators and their construction and operation, Principles of evaporation and evaporators – capacity & economy, boiling point rise, heat transfer coefficient, enthalpy of solution, Evaporator selection and vapor recompression.

Crystallization – Crystal geometry, principles of crystallization- equilibria & yields, nucleation, crystal growth, crystallization equipment

F. TEXT BOOKS

TI D.Q. Kern, "Process Heat Transfer", Mc Graw Hill, 1997.

T2 B.K. Dutta, "Heat Transfer Principles and Application", PHI India, 2015.

T3 J. P., Holman, "Heat Transfer", McGraw Hill, New York

G. REFERENCE BOOKS

RI L. Bergman, Theodore, Adrienne S. Lavine, Incropera, Frank P, DeWitt, David P. "Introduction to Heat Transfer", 6th Edition

R2 W.L. McCabe, J.C. Smith, P. Harriot, Unit operations of Chemical engineering, 7th edition, Mc Graw Hill.

R3 A.S. Foust, L.A. Wenzel, C.W. Clump, L. Maus, L.B. Andersen, Principles of Unit Operations, 2nd edition, Wiley India.

R4 J.M. Coulson and J.F. Richardson, Chemical Engineering, Volume 1, 6th edition, Elsevier

Lecture	TOPICS	Session	Mode of	Corresponding	Mode of
No.		Outcome	Delivery	0	assessing CO
I	Introduction to heat transfer	To understand the importance of heat transfer	Lecture	1407.1	
2-3	<i>Conduction</i> - Steady state conduction in one dimension, Fourier's law, Thermal conductivity	To understand the fundamental concepts and laws of heat transfer	Lecture	1407.1	Quiz, Mid term I, End Term
4-6	<i>Conduction</i> - Steady state conduction of heat through composite solid, variable area and in bodies with heat sources	To acquire the knowledge required in formulating and solving engineering problems related to conduction	Lecture & Tutorial	1407.1 & 1407.2	Quiz/Assignment, Mid term I, End Term
7-8	Convective heat transfer –Overall heat transfer coefficient, heat transfer between fluids separated by plane wall, cylindrical wall, thermal contact resistance, critical insulation thickness	To understand the basic principles of convective heat transfer between fluids	Lecture	1407.1 & 1407.2	Quiz/Assignment, Mid term I & End term

9-11	Convective heat transfer – Forced convection	To formulate and solve engineering problems related to convection	Lecture & Tutorial	1407.2 & 1407.5	Quiz/Assignment, Mid term I & End term
12,13	Convective heat transfer – Free convection	To identify, formulate and solve engineering problems related to convection	Lecture & Tutorial	1407.2 & 1407.5	Assignment, Mid term I & End term
14-18	Radiation heat transfer	To get acquainted with the basic concepts of radiative heat transfer	Lecture	1407.1 & 1407.2	Quiz/Assignment, Mid term II & End term
19-20	Heat transfer in boiling	To understand the boiling phenomena and mechanism of heat transfer involved	Lecture	1407.3 & 1407.5	Quiz, Mid term II & End term
21-24	Heat transfer in condensation	To acquaint the utility of correlations in estimating heat transfer coefficients in boiling and condensation	Lecture & Tutorial	1407.3 & 1407.5	Quiz, Mid term II & End term
25	Heat exchanger design – Double pipe heat exchanger design by Kern method	To acquire the knowledge of various design methods and perform the basic calculations of common heat exchange equipment used in industries	Lecture	1407.1 & 1407.4	Quiz/Assignment, Mid term II & End term
26,27	Heat exchanger design – Introduction to Shell and tube heat exchanger	To acquaint different types of heat exchangers used in process industries	Lecture	1407.1 & 1407.4	Assignment, Quiz, Mid term II & End term
28-30	Heat exchanger design – Shell and tube heat exchanger design using Kern Method	To perform the basic calculations of common heat exchangers used in industries	Lecture & Tutorial	1407.4 & 1407.5	Quiz/Assignment, Mid term II & End term
30-34	Heat exchanger design – Shell and tube heat exchanger design using Bell Delaware Method	To acquire the knowledge of various design methods and perform the basic calculations of common heat exchange equipment used in industries	Lecture & Tutorial	1407.4 & 1407.5	Quiz/Assignment, Mid term II & End term

35-37	Evaporators	To understand the mechanism of heat transfer in evaporators	Lecture	1407.1 & 1407.3	Assignment, Mid term II & End term
38-40	Crystallization	To acquaint the basic principles of crystallization and	Lecture & Tutorial	1407.1 & 1407.3	End term
		related terminology			

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES			CORRELATION WITH PROGRAM SPECIFIC OUTCOMES										
		PO I	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO	PO 12	PSO I	PSO 2	PSO 3
CE 1407.1	Understand the basic concepts and laws of the three modes of heat transfer	3	3		. 1		2	2		•		2		2		
CE 1407.2	To identify, formulate and solve engineering problems involving conduction, convection and radiation heat transfer	2	3	I			1							2		
CE 1407.3	To identify, formulate and solve engineering problems involving boiling, condensation, evaporation and crystallization	2	3	I			1						3	2	1	
CE 1407.4	To design heat exchangers and perform basic calculations of common heat exchangers		2				1	2						3	1	
CE 1407.5	To develop the problem-solving skills essential to good engineering practice of heat transfer in real world applications		2				1	2						3	1	

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Civil and Chemical Engineering Department of Chemical Engineering Course Hand-out Numerical Methods in Chemical Engineering | CE 1408 | 4 Credits | 3 | 0 4 Session: Jan 20 – May 20 | Faculty: Dr. Harsh Pandey | Class: B. Tech. (Chemical) IV Semester

- A. Introduction: In chemical engineering, problems related to momentum, heat and mass transfer, chemical reaction engineering, thermodynamics, modeling and simulation, etc. involve linear / nonlinear algebraic equations, ordinary differential equations or partial differential equations. Numerical methods give the solution of applied problems when ordinary analytical methods fail. This course is designed to give an overview of numerical methods for solving a variety of problems encountered by a process engineer. MATLAB will be used as the working environment to solve the problems using step-wise, repeated and iterative solution methods, which would otherwise be tedious or unsolvable by hand-calculations. Since the focus is on the techniques themselves, rather than specific applications, the contents should be relevant to varied fields such as engineering, management, economics, etc.
- **B. Course Outcomes:** At the end of the course, students will be able to:
 - **[CO.I]** Solve the linear and non-linear algebraic equations using direct and iterative numerical techniques
 - [CO.2] Approximate the function using appropriate numerical method
 - [CO.3] Evaluate the integral using numerical methods
 - **[CO.4]** Solve the ordinary differential equations by an appropriate numerical method
 - **[CO.5]** Solve the partial differential equations by an appropriate numerical method
 - **[CO.6]** Apply the numerical techniques to solve variety of chemical engineering problems, leading to skill enhancement of students

C. Program Outcomes and Program Specific Outcomes

- **[PO.I].** Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- **[PO.2]. Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3].** Design/development of solutions: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4].** Conduct investigations of complex problems: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions.
- **[PO.5].** Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations

- The engineer and society: Apply reasoning informed by the contextual knowledge to [PO.6]. assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- Environment and sustainability: Understand the impact of the professional [PO.7]. engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and **[PO.8]**. norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- Communication: Communicate effectively on complex engineering activities with the [PO.10]. engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
- [PSO.1]. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant.
- [PSO.2]. Process Intensification: graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.
- [PSO.3]. Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

Criteria Description Maximum Marks Sessional Exam I (Open Book) 20 Sessional Exam II (Open Book) 20 Internal Assessment Quizzes and Home/Class Assignments/Active Learning 30 (Summative) Assignments (Accumulated and Averaged) End Term End Term Exam (Open Book) 30 Exam (Summative) 100 Total A minimum of 75% Attendance is required to be maintained by a student to Attendance (Formative) be qualified for taking up the End Semester examination. The allowance of 25% includes all types of leaves including medical leaves. If a student miss a lecture, he himself has to study the topics that have been covered during that particular lecture. The student may contact the course coordinator for clarification of his/her doubts, if any. Students who miss a class will not be provided with any sort of makeup Make up Assignments assignment or make up quiz. If you miss a lecture, you yourself have to study (Formative) the topics that were covered during that particular lecture. You may contact the course coordinator for clarification of doubts, if any.

D. Assessment Plan:

Active	Students are required to develop MATLAB codes for the Numerical Methods
Learning	covered in lectures. They can develop their own programs to solve a variety
Assignments	of problems incorporating linear/ non-linear algebraic equations, curve fitting,
(Formative)	ordinary and partial differential equations.

E. Syllabus

Finite Differences, Interpolation: Newton's, Stirling's interpolation formulae, Lagrange's Interpolation for unequal intervals. Numerical Integration: Simpson's and Trapezoidal Rule, Solution of Linear Algebraic Equations: Gauss's Elimination method, Gauss's Siedel Method, LU Decomposition Method, Eigen Values and Eigen Vectors: Introduction, Power method, Solutions of Non-Linear Equations, Regula Falsi Method, Newton-Raphson technique, Secant Method, Function Approximation: least square method of curve fitting, Numerical Solutions of Ordinary Differential Equations: Runga-Kutta Method, Pridictor-corrector Methods, Boundary value problems, Shooting Method, Finite difference Technique, Partial Differential Equations, Types of PDE, Finite difference technique(Method of lines), Numerical Solution of Heat, Wave and Laplace Equations.

F. Text Books

1. Gupta, S. K., "Numerical Methods for Engineers," New Age International Ltd., New Delhi, 1995.

G. Reference Books

- 1. Srimantha Pal, "Numerical Methods", Oxford University Press, 2012.
- 2. Saumeyen Guha, Rajesh Srivastava, "Numerical Methods for Engineering and Science," Oxford University Press, 2012.
- 3. Carnahan, B., Luther, H. A., and Wilkes, J.O., "Applied Numerical Methods", John Wiley, New York, 1969.
- 4. Constantinides, A., and Mostoufi, N., "Numerical Methods for Chemical Engineers with MATLAB Applications," Prentice Hall, 1999.
- 5. Hanna, O.T. and Sandall,O.C., "Computational Methods in Chemical Engineering," Prentice-Hall, 1995.
- 6. Sastry, S. S., "Introductory Methods of Numerical Analysis", PHI, 2012.

H. Lecture Plan:

Class Number	Topics	Session Outcome	Mode of Delivery	Correspon ding Course Outcome	Mode of Assessi ng the Outco me
Ι	Introduction to Numerical	To introduce numerical methods to	Lecture,		NA
	Methods	the students	Interaction	CE1408.1	
2	Linear algebraic equations	To acquaint students to the basics of	Interaction,		Assign
		linear algebraic equations	Discussion	CE1408.1	ment
3, 4	Gauss Elimination	This key concept for solving	Interaction,		Assign
		equations is introduced	Discussion	CE1408.1	ment
5,6	LU Decomposition	This key concept for solving	Interaction,		Assign
	-	equations is introduced	Discussion	CE1408.1	ment
7,8	Gauss-Jordan Elimination	This key concept for solving	Interaction,		Assign
		equations is introduced	Discussion	CE1408.1	ment
9,10	Gauss-Siedel Elimination	This key concept for solving	Interaction,		Assign
		equations is introduced	Discussion	CE1408.1	ment
11,12	Eigen Values and Eigen Vectors:	The significance of these in linear	Interaction,		Assign
	Introduction, Power Method	algebra is discussed	Discussion	CE1408.1	ment
13	Pre-Sessional Review	Review of Syllabus Covered	Discussion	CE1408.1	NA
		FIRST SESSIONAL EXAM			
14	Review of First Sessional Exam	Review	Interaction,		NA
			Discussion	CE1408.1	

15, 16	Non-linear algebraic equations, Introduction, Regula Falsi Method	Introducing non-linear equations to the students	Interaction, Discussion	CE1408.1	Assign ment
17,18	Newton-Raphson technique	This key technique for solving non- linear equations is introduced	Discussion, Chalkboard problem solving	CE1408.1	Assign ment, Quiz
19	Secant Method	This key technique for solving non- linear equations is introduced	Discussion, Chalkboard problem solving	CE1408.1	Assign ment
20	Function Evaluation, least square method of curve fitting	Curve fitting is a key concept in this course, and is introduced	Discussion, Chalkboard problem solving	CE1408.2, CE1408.3	Assign ment
21,22	Newton's, Stirling's interpolation formulae	Curve fitting and interpolation is a key concept in this course, and is introduced	Discussion, Chalkboard problem solving	CE1408.2, CE1408.3	Assign ment
23,24	Lagrange's Interpolation for unequal intervals	Curve fitting and interpolation is a key concept in this course, and is introduced	Discussion, Chalkboard problem solving	CE1408.2, CE1408.3	Assign ment
25,26	Numerical Solutions of Ordinary Differential Equations, Predictor-corrector Methods	ODEs form a key backbone of this course, and are introduced here	Discussion, Chalkboard problem solving	CE1408.4	Assign ment
27,28	Runge-Kutta Method	RK method is a key concept in solving ODEs and PDEs numerically, and is covered	Discussion, Chalkboard problem solving	CE1408.4	Assign ment
29	Pre-Sessional Review	Review	Interaction, Discussion	CE1408.1, CE1408.2, CE1408.3, CE1408.4	NA
		SECOND SESSIONAL EXAM			
30	Review of Second Sessional Exam	Review	Interaction, Discussion	CE1408.1, CE1408.2, CE1408.3, CE1408.4	NA
31,32	Boundary value problems, Finite difference Technique	Is a key concept in solving ODEs numerically, and is covered	Interaction, Discussion	CE1408.4	Assign ment
33, 34	Shooting Method	Is a key concept in solving ODEs numerically, and is covered	Interaction, Discussion	CE1408.4	Assign ment
35,36	Partial Differential Equations, Types of PDE	PDEs are introduced to the students	Interaction, Discussion	CE1408.5	Assign ment
37,38	Finite difference technique (Method of lines)	Is a key concept in solving PDEs numerically, and is covered	Discussion, Chalkboard problem solving	CE1408.5	Assign ment
39, 41	Numerical Solution of Heat, Wave and Laplace Equations	Extremely useful for Chemical Engineering students, are introduced and solved here	Discussion, Chalkboard problem solving	CE1408.4, CE1408.5, CE1408.6	Assign ment
42	Pre-End Term Exam Review	Review	Interaction, Discussion	CE1408.1, CE1408.2, CE1408.3, CE1408.4,	NA

		CE1408.5, CE1408.6	
		CET 100.0	
	END TERM EXAM		

I. Course Articulation Matrix: (Mapping of COs with POs & PSOs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES									CORRELATION WITH PROGRAM SPECIFIC OUTCOMES				
		PO I	P O 2	P O 3	Р О 4	P O 5	P 0 6	P O 7	P 0 8	P 0 9	P 0 10	P O II	PO 12	PSO I	PSO 2	PSO 3
CE1408.1	Solve the linear and non-linear algebraic equations using direct and iterative numerical techniques	3	2			2	Ι	3		2	2	2		2	Ι	I
CE1408.2	Approximate the function using appropriate numerical method	3	2			2	I	2		2	2	2		I	I	
CE1408.3	Evaluate the integral using numerical methods	3	2			2	I			2	2	2		I	I	I
CE1408.4	Solve the ordinary differential equations by an appropriate numerical method	3	2			2	I	3		2	2	2		2	2	2
CE1408.5	Solve the partial differential equations by an appropriate numerical method	3	2			2	I	2		2	2	2		2	2	2
CE1408.6	Apply the numerical techniques to solve variety of chemical engineering problems, leading to skill enhancement of students	3	3	Ι			2	2	I	2	2	3	Ι	3	3	3

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Basic Sciences

Department of Chemistry Course Hand-out

Physical and Analytical Chemistry | CY1421 | 4 Credits | 3104

Session: Jan 20 – May 20 | Faculty: Dr. Praveen Kumar Surolia | Class: Chemical Engineering 4th Semester B. Tech

- A. Introduction: This course is offered by Dept. of Chemistry for 2nd year chemical engineering B. Tech. students. The objective of the course is to acquaint the students with the basic concepts of physical and analytical chemistry. The student with the knowledge of the topics covered such as surface chemistry, colloids, phase rules, photochemistry and various analytical techniques will understand about various physical systems, alloys, surface phenomenon and characterization of reaction products at molecular level, relevant in the industry/engineering field.
- B. Course Outcomes: At the end of the course, students will be able to
 - [CY1421.1]. Discuss surface chemistry, colligative properties, colloids and apply concepts of adsorption and catalysis.
 - **[CY1421.2].** Explain the basics of phase rule and recognize single and two components systems.
 - [CY1421.3]. Elaborate photochemical and photophysical processes to explain photochemical energy conversion and other related issues.
 - [CY1421.4]. Discuss instrumental analysis techniques and skills in advanced methods of separation and analysis.
 - [CY1421.5]. Illustrate spectroscopic and electrochemical techniques for skill enhancement for the successful chemical analysis.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. **Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and <u>design</u> <u>system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- [PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern engineering</u> and <u>IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal</u>, <u>health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the <u>impact of the professional engineering solutions in</u> <u>societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. **Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices

- [PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader in diverse</u> teams, and in multidisciplinary settings
- [PO.10]. **Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change Understand the basic principles of chemistry and to explain them clearly.
- [PSO.1]. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concers.
- [PSO.2]. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments

[PSO.3]. Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields

D. Assessment Plan:

Criteria	Description	Maximum Marks				
	Sessional Exam I (Close Book)	20				
Internal Assessment	Sessional Exam II (Close Book)	20				
(Summative)	Quiz tests and presentations	30				
	(Accumulated and Averaged)					
End Term Exam	End Term Exam (Close Book)	30				
(Summative)						
	Total	100				
Attendance	A minimum of 75% Attendance is requir	ed to be maintained by a student to be				
(Formative)	qualified for taking up the End Semest	er examination. The allowance of 25%				
	includes all types of leaves including med	ical leaves.				
Homework/ Home Assignment/ Activity	There are situations where a student ma	y have to work in home. Although these				
Assignment	works are not graded with marks. However, a student is expected to participate					
(Formative)	and perform these assignments with full	zeal since the activity will help the				

E. SYLLABUS

Surface Chemistry: Ideal and non- ideal solutions, Henry's & Raoult's law, Colligative properties, Colloids, Adsorption and catalysis.

Phase Diagram And Phase Transformations: Phase rule, Single component systems, Binary Phase Diagrams, Lever rule, Typical Phase diagrams for Magnesia-Alumina, Copper-Zinc, Iron-carbon system.

Photochemistry: Jablonski diagram, Laws of photochemistry and quantum yield, Some examples of photochemical reactions, Applications of photochemistry.

Instrumental Analysis: Gas chromatography and High pressure liquid chromatography, Ion exchange separation, Electro analytical techniques, Spectral Techniques and Structural elucidation: UV- Vis, IR, NMR and Mass, Fuel analysis, Food analysis, Drug analysis.

F. TEXT BOOKS

A book or a set of books which covers 60% or more of the syllabus can be written under this category. (Not more than 3)

T.1. Atkins, P., and de Paula, J., Atkin's Physical Chemistry, 9th ed., W. H. Freeman & Co., 2009

T.2. Puri, B.R., Sharma, L.R., and Pathania, M. S., Principles of Physical Chemistry, S.N. Chand and Co. Jalandhar, 31st ed., 1990.

T.3. Adamson, A.W., Physical Chemistry of Surfaces, Inter science Publishers Inc. New York 1997.

G. REFERENCE BOOKS

- R.1. Harvey, D., Modern Analytical Chemistry, McGraw Hill, 2000.
- R.2. Nelson, W.L., Petroleum Refinery Engineering, Mc Graw-Hill Book Company, 1969.

R.3. Speight, J. G., Fuel Science & Technology Hand Book, Marcel Dekker, New York 1990.

H. Lecture Plan:

Lecture No.	Topics	Session Outcome	Mode of Delivery	Corresponding Course Outcome	Mode of Assessing the Outcome
1.	SurfaceChemistry:Solubility,Henry'slaw,Differentconcentration terms	Understanding the concept of solubility and solution	Lecture	CY1421.1	Mid Term I End Term
2.	Surface Chemistry: Numerical based on Solubility, Henry's law, Different concentration terms	NA	Interactive/Self study	CY1421.1	Mid Term I End Term
3.	Surface Chemistry: Vapour pressure, Raoult's law and its modification, Relative lowering of vapour pressure	Interpretation of vapour pressure and colligative properties	Lecture	CY1421.1	Mid Term l End Term
4.	Surface Chemistry: Numerical based on Vapour pressure, Raoult's law and its modification, Relative lowering of vapour pressure	NA	Interactive/Self study	CY1421.1	Mid Term I End Term
5.	Surface Chemistry: Ideal solutions and non-ideal solutions, Maximum and minimum boiling solutions	Understanding the concept of solutions and respective boiling point	Lecture	CY1421.1	Mid Term l End Term
6.	Surface Chemistry: Numerical	NA	Interactive/Self study	CY1421.1	Mid Term I End Term
7.	Surface Chemistry: Colligative Properties, Vapour pressure, Boiling point	Interpretation of vapour pressure and colligative properties	Lecture	CY1421.1	Mid Term I End Term
8.	Surface Chemistry: Numerical based on Colligative Properties: Vapour pressure, Boiling point	NA	Interactive/Self study	CY1421.1	Mid Term I End Term
9.	Surface Chemistry: Freezing point, Osmotic pressure	Interpretation of colligative properties	Lecture	CY1421.1	Mid Term I End Term
10.	Surface Chemistry: Numerical based on Colligative Properties: Freezing point, Osmotic pressure	NA	Interactive/Self study	CY1421.1	Mid Term I End Term
11.	Surface Chemistry:Adsorption,Adsorptionversusabsorption,Typesofadsorption:physisorption and chemisorption,Desorption	Understanding the concept of adsorption	Lecture	CY1421.1	Mid Term I End Term

12.	Surface Chemistry: Adsorption isotherms: Freundlich and Langmuir, Adsorption isobar	Construct the various adsorption isotherms	Lecture	CY1421.1	Mid Term I End Term
13.	Surface Chemistry: Numerical problems based on adsorption	NA	Interactive/Self study	CY1421.1	Mid Term I End Term
14.	Surface Chemistry: Colloids, Dispersed Systems and their classification, Size and shape of colloids	Discuss and understand colloidal systems	Lecture	CY1421.1	Mid Term I End Term
15.	Surface Chemistry:Purificationofcolloidalsolutions,Applicationsofcolloidalsolutions,typesofcolloids:lyophobic and lyophilic	Elaborate the applications of colloidal systems	Lecture	CY1421.1	Mid Term I End Term
16.	SurfaceChemistry:OpticalProperties,KineticProperties,Electric Properties	Recallthepropertiesofcolloidal systems	Lecture	CY1421.1	Mid Term I End Term
17.	Surface Chemistry: Stability of colloids, Coagulation, Hardy Schulze law, Protective action of lyophilic colloids, Applications of colloids	Discuss the protective action and applications of colloids	Lecture	CY1421.1	Mid Term I End Term
18.	Surface Chemistry: Catalytic activity at surfaces, Adsorption and Catalysis, The Langmuir- Hishelwood (LH) mechanism, The Eley-Rideal (ER) mechanism	Elaborate the catalytic activity at surface	Lecture	CY1421.1	Mid Term I End Term
19.	Surface Chemistry: Unimolecular Reactions, Bimolecular Reactions	Recall the reactions at surfaces	Lecture	CY1421.1	Mid Term I End Term
20.	PhaseDiagramAndPhaseTransformations:Phaserule,Introduction,Definitionandexamplesofphase,componentanddegreesoffreedom	Construct phase diagrams with examples	Lecture	CY1421.2	Mid Term II End Term
21.	PhaseDiagramAndPhaseTransformations:Onecomponentsystem,watersystem,CarbondioxideSystem,SulphurSystem	Understand and construct phase diagrams with examples	Lecture	CY1421.2	Mid Term II End Term
22.	PhaseDiagramAndPhaseTransformations:Problemsbasedonsinglecomponentsystems	Explain one component system	Lecture	CY1421.2	Mid Term II End Term
23.	Phase Diagram And Phase Transformations: Binary phase diagrams, Condensed phase rule, Lever rule, Eutectic, Eutectoid, & Peritectic	Explain two component system	Lecture	CY1421.2	Mid Term II End Term
24.	PhaseDiagramAndPhaseTransformations:Numericalbased on Lever rule	NA	Interactive/Self study	CY1421.2	Mid Term II End Term

25.	Phase Diagram And Phase	Elaborate Iron-	Lecture	CY1421.2	Mid Term II
	Transformations: Iron-Carbon	Carbon phase			End Term
26	system	system		014424.2	
26.	Phase Diagram And Phase	Elaborate Cu-Zn,	Lecture	CY1421.2	Mid Term II
	system Magnesia-Alumina	nhase system			Liid reini
	system	phase system			
27	Photochemistry: Laws Governing	Recall the basics	Lecture	CY1421 3	Mid Term II
-/.	Absorption Of Light, Lambert's	of		01112110	End Term
	Law, Beer's Law	photochemistry			
28.	Photochemistry: Laws Governing	Recall the laws of	Lecture	CY1421.3	Mid Term II
-	Photochemistry, Grotthus-	photochemistry			End Term
	Draper Law, Stark-Einstein's Law (
	Second Law of Photochemistry),				
	Interpretation Of Einstein's Law,				
	Quantum Yield				
29.	Photochemistry: Luminescence,	Understanding of	Lecture	CY1421.3	Mid Term II
	Chemiluminecence,	Jablonski			End Term
	Fluorescence, Phosphorescence,	Diagram			
	Jablonski Diagram				
30.	Photochemistry: Fluorescence	Explain radiative	Lecture	CY1421.3	Mid Term II
	process: Population of energy	and non-			End Term
	levels, Stokes shift, Invariance of	radiative			
	emission wavelength with	processes			
	excitation wavelength, Mirror				
	image rule, Internal conversion				
	vs. fluorescence emission				
31.	Photochemistry:	Explain the	Lecture	CY1421.3	Mid Term II
	Photosensitization, The Born-	Franck-Condon			End Term
	Franck-Condon Principle	Principie			
30	Photochemistry: Examples of	Recall the	Lecture	CV1/121 3	Mid Term II
52.	photochemical reactions.	organic		011421.5	End Term
	Isomerization. Paternò-Büchi	photochemical			
	Reaction, Norrish reaction	reactions			
33.	Photochemistry: H ₂ -Cl ₂ reaction,	Recall the	Lecture	CY1421.3	Mid Term II
	H ₂ -Br ₂ reaction	photochemical			End Term
		chain reactions			
34.	Photochemistry: Quenching of	Understand the	Lecture	CY1421.3	Mid Term II
	Fluorescence, STERN-VOLMER	fundaments of			End Term
	EQUATION	quenching			
35.	Instrumental Analysis:	Recall the basics	Lecture	CY1421.4	End Term
	Introduction to Chromatography,	of			
	Types of Chromatography,	chromatography			
	Number of theoretical plates, Van				
	Deemter equation				
36.	Instrumental Analysis: Gas	Explain gas	Lecture	CY1421.4	End Term
27	cnromatography	chromatography	1 1	0/4 424 5	
37.	Instrumental Analysis: High	Explain HPLC	Lecture	CY1421.4	End Term
	performance liquid				
20		Evalaia iara	Locture	CV1421 4	End Tarra
50.	instrumental Analysis: Ion		Lecture	CT1421.4	End rerm
	exchange chromatography	exchange			
1		chromatography			

39.	Instrumental Analysis:	Recall basics of	Lecture	CY1421.5	End Term
	Introduction to spectroscopy, UV	UV-Vis			
	and Visible Spectroscopy,	spectroscopy			
	chromophores and				
	auxochromes, Electronic				
	transitions, Orbital Spin States				
40.	Instrumental Analysis: UV and	Elaborate	Lecture	CY1421.5	End Term
	Visible Spectroscopy, Selection	principle and			
	Rules of electronic transition,	application of			
	Spectral nomenclature of shifts	UV-Vis			
	(Bathochromic shift,	spectroscopy			
	Hysochromic shift,				
	Hyperchromism, Hypochromism)				
41	Instrumental Analysis: UV/VIS	Elaborate	Lecture	CY1421.5	End Term
	of Aromatic compound,	principle and			
	unsaturated ketones, Polyenes,	application of			
	and Unsaturated Carbonyl	UV-Vis			
	groups, Woodward-Fieser rule-	spectroscopy			
	examples and applications				
42.	Instrumental Analysis: Charge-	Understand	Lecture	CY1421.5	End Term
	Transfer Absorption, d \rightarrow d	charge transfer			
	electronic transitions	absorption			
43.	Instrumental Analysis: Infrared	Recall basics of	Lecture	CY1421.5	End Term
	Spectroscopy, Introduction,	IR spectroscopy			
	Vibrational Modes, Vibrational				
	Frequencies of Bonds, Hooke's				
	Law				
44.	Instrumental Analysis: The IR	Elaborate	Lecture	CY1421.5	End Term
	Spectrum – The detection of	principle and			
	different bonds, Examples	application of IR			
		spectroscopy			
45.	Instrumental Analysis: Mass	Recall basics of	Lecture	CY1421.5	End Term
	Spectroscopy, Introduction,	mass			
	General Schematic of mass	spectroscopy			
	spectrophotometer				
46.	Instrumental Analysis:	Elaborate	Lecture	CY1421.5	End Term
	Fragmentation Processes, The	principle and			
	Even-Even Rule, The Nitrogen	application of			
	Rule, Rule of Thirteen,	mass			
	Metastable peaks, examples	spectroscopy			
47.	Instrumental Analysis: Nuclear	Recall basics of	Lecture	CY1421.5	End Term
	Magnetic Resonance	NMR			
	Spectroscopy, Introduction,	spectroscopy			
	Theory of NMR, Shielding and				
	De-shielding of protons				
48.	Instrumental Analysis:	Elaborate	Lecture	CY1421.5	End Term
	, Chemical Shift, Spin-Spin	principle and			
	splitting, The N + 1 Rule,	application of			
	Coupling constant, examples	NMR			
	· - · ·	spectroscopy			
				1	

I. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES									CORRELATION WITH PROGRAM SPECIFIC OUTCOMES				
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CY 1421.1	Discuss surface chemistry, colligative properties, colloids and apply concepts of adsorption and catalysis	2						3			2		2	3	1	2
CY 1421.2	Explain the basics of phase rule and recognize single and two components systems			2					2				3	1	0	3
CY 1421.3	Elaborate photochemical and photophysical processes to explain photochemical energy conversion and other related issues	2				3					3		2	2	1	3
CY 1421.4	Discuss instrumental analysis techniques and skills in advanced methods of separation and analysis								2				2	2	1	1
CY 1421.5	Illustrate spectroscopic and electrochemical techniques for the successful chemical analysis		2			2			2				3			2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Process Modelling and Simulation | CE 1505/04 | 3/4 Credits | 3 0 0 3/3 | 0 4

Session: July 19 - Dec 19 | Faculty: Dr Gaurav Kataria| Class: B.Tech III Year

A. Introduction: This course is offered by Dept. of Chemical Engineering as a core course. This course focuses on the modelling and simulation of processes involved in chemical engineering operations. In this unit, the students will learn the fundamentals of process synthesis and design using mathematical modelling tools. By the end of this course, the students will have a clear understanding required for analysis of process engineering solutions of real world problems.

B. Course Outcomes: At the end of the course, students will be able to

[1505.1] Understand the basic principles of process modelling and simulation

[1505.2] Carry out the analysis of lumped and distributed models used in process intensive industries

[1505.3] Perform the validation, parametric estimation and optimization of a process model

[1505.4] Develop the skills to generate process flowsheet using different unit operations in a process simulator

[1505.5] Carry out the simulation for generation of material and energy balances for overall system

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- **PO.1** Engineering Knowledge: A thorough knowledge of the basic science, engineering and mathematics and apply that to the underline practice of Chemical Engineering.
- **PO.2 Problem Analysis:** Ability to apply these basic principles to solve real world problems in a broad range of career paths.
- **PO.3 Project management and finance:** The skills of making smart decisions on process feasibility based in technical and economic evaluation.
- **PO.4 Ethics**: The ability to appreciate the social, ethical, cultural, environmental and safety issues related to chemical engineering profession.
- **PO.5** Conduct investigations of complex problems: The ability to develop experimental procedure/protocol to test hypothesis and analysis meaningful interpretation of the generated data.
- **PO.6** Environment and sustainability: The skill to generate sustainable engineering solutions to societal and industrial problems.
- **PO.7** Modern tool usage: Proficiency to use computational tools for problem solving.
- **PO.8 Communication**: ability to communicate effectively (technical and non-technical context) in written and oral form.
- **PO.9 Design/development of solutions**: Skills to work effectively and professionally in multi-disciplinary groups to solve complex chemical engineering problems.
- **PO.10** Individual and team work: The ability to work effectively and professionally on projects both independently and as a part of a group/team.
- **PO.11** Life-long learning: The ability to be self-learners and lifelong learners.
- **PO.12** The engineer and society: The motivation to develop and lead entrepreneurial projects for societal benefit.

Degree Specific Outcomes for chemical engineering are as follows:

PSO.1 Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant.

- **PSO.2 Process Intensification:** Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.
- **PSO.3** Specialization: students will be specialized in the areas of petroleum, energy and environment related fields.

D. Assessment Plan:

Criteria	Description	Maximum Marks					
	Sessional Exam I (Open Book)	20					
Internal Assessment	Sessional Exam II (Open Book)	20					
(Summative)	In class Quizzes, Assignments, Projects	30					
End Term Exam	End Term Exam (Open Book)	30					
(Summative)							
	Total	100					
Attendance	A minimum of 75% Attendance is required to be maintained by a student to be						
(Formative)	qualified for taking up the End Semest	er examination. The allowance of 25%					
	includes all types of leaves including medi	cal leaves.					
Make up Assignments	No makeup assignments will be given.						
(Formative)							
Projects	Each group of 2-3 students will subm	it a project on a topic relevant to the					
	industrial application of process modelling and simulation. The details of this						
	component will be discu	ssed during the lectures.					

E. SYLLABUS

Pre-requisites: CE1401 and CE1404

Fundamentals and industrial applications of process modeling and simulation, Macroscopic mass, energy and momentum balances, integration of fluid thermodynamics, chemical equilibrium, reaction kinetics and feed/ product property estimation in mathematical models. Steady state lumped systems, modeling of chemical process equipment (reactors, distillation, absorption, extraction columns, evaporators, and heat exchangers). Modelling and simulation of complex industrial systems in petroleum, petrochemicals, polymer, basic chemical industries; Commercial steady state and dynamic simulators; Simulation of process flow sheets.

F. BOOKS

- Luyben, W. L., *Process Modeling, Simulation and Control for Chemical Engineers*, McGraw Hill, 1989.
- Ramirez, W.F., *Computational Methods for Process Simulation*, 2nd ed., Butterworth-Heinemann, 1997.
- Ingham, J., Dunn, I. J., Heinzle, E., Prenosil, J.E., Snape, J.B., *Chemical Engineering Dynamics: An Introduction to Modelling and Computer Simulation*, 3rd ed., Wiley-VCH Verlag GmbH & Co. KGaA, 2007.
- Holland, C. D., Fundamentals and Modeling of Separation Processes, Prentice Hall, 1975.
- Himmelblau, D. M., & Bischoff, K. B., *Process analysis and simulation: Deterministic systems*, John Wiley, New York, 1968.

G. Lecture Plan:

LEC NO	TOPICS	Session Outcome	Mode of	Corresponding	Mode of
			Delivery	Course	Assessing
				Outcome	Outcome
I	Modelling Overview and	Understanding the basic	Lecture	CE1505.1	Mid Term I
	Industrial Applications of	need of modelling and			End Term
	Process Modelling	simulation in chemical			
		engineering.			
2	Modelling Process	Understanding the basic	Lecture	CE1505.1	Mid Term I
		7 step modeling process.			End Term
3	Process Model Characteristics	Understanding the use of	Lecture	CE1505.4	Mid Term I
	and introduction to Matiab	MATLAD in the course.			End Term
4	System Definition; White, Understanding the			CE1505.1	Mid Term I
	Black and Grey Box Models	difference between			End Term
		models			
5.6	Systematic Modelling	Applying 7 step	Lecture	CE1505.1	Mid Term I
- , -	Procedure	modelling process in			End Term
		chemical engineering			
		applications.			
7	Introduction to Matlab Files	Understanding the use of	Lecture	CE1505.4	Mid Term I
Q	Fundamental Concepts	MAILAB in the course.	Locturo		End Term
0	i undamental Concepts	concepts used in the	Lecture	CE1505.1	Find Term
		modeling of chemical			
		engineering equipment's.			
9,10,11	Conservation Equations	Understanding the basics	Lecture	CE1505.5	Mid Term I
		of using mass, material			End Term
12.12		and energy balance.	1		
12,13	Constitutive Relations	Onderstanding the	Lecture	CE1505.5	Find Term I
		used in chemical			
		engineering.			
14	Matlab Applications	Apply MATLAB in the	Lecture	CE1505.1/2	Mid Term I
		chemical engineering			End Term
		applications.			
15	Introduction to Lumped	Understanding the	Lecture	CE1505.1/2	Mid Term I
	l'iodeis	variation of variable with			
		time.			
16	Solution of Ordinary	Use of Runge Kutta and	Lecture	CE1505.1/2	Mid Term I
	Differential Equations	other ODE solvers.			End Term
		MID TERM I			N 4: 1
17	Matlab Applications	Use of Kunge Kutta and	Lecture	CE1505.1/2	Mid Term II
		MATIAR			Endlerm
18	Introduction to Distributed	Understanding the	Lecture	CE1505.1/2	Mid Term II
-	Models	concept of having			End Term
		variation of variable with			
	·	time and space.			.
9	Initial and Boundary	Understanding the	Lecture	CE1505.1/2	Mid Term II
	Conditions	concept of using initial			End Ferm
20	Real Time Applications	Use the concepts for real	lecture	CE1505 1/2	Mid Term II
20		applications of chemical			End Term
		engineering.			
21	Partial Differential Equations	Understanding the	Lecture	CE1505.1/2	Mid Term II
	Solving Methods	concept of solving PDEs.			End Term

22	Finite Difference	Understanding the	Lecture	CE1505.1/2	Mid Term II									
	Approximation and Boundary	concept of solving PDEs.			End Term									
	Conditions Handling	1 0												
23	Matlab Applications	Apply MATLAB to solve	Lecture	CE1505.4	Mid Term II									
		PDEs.			End Term									
24,25	Model Validation and	Applying the simulation	Lecture	CE1505.1/2	Mid Term II									
	Verification, Model Calibration	to validate and verify the			End Term									
		model.												
26	Model Optimization and	Applying the simulation	Lecture	CE1505.1/2	Mid Term II									
	Parameter Estimation	to validate and verify the			End Term									
		model.												
27	Matlab Applications	Apply MATLAB in the	Lecture	CE1505.4	Mid Term II									
		chemical engineering			End Term									
		applications												
28,29	Process Synthesis and Design	Applying the simulation	Lecture	CE1505.4	Mid Term II									
		to provide the design of			End Term									
		the equipment.												
MID TERM II														
30	Aspen Hysys Introduction	Understanding the use of	Lecture	CE1505.4	End Term									
		ASPEN in the course.												
31	Convergence Methods	Understand the	Lecture	CE1505.1	End Term									
	<u> </u>	convergence and												
		divergence of the												
		solution.												
32	Sequential Modular vs	Understand the	Lecture	CE1505.1	End Term									
	Equation Oriented Simulation	convergence and												
		divergence of the												
		solution.												
33	Aspen Hysys Unit Models	Apply ASPEN in the	Lecture	CE1505.4	End Term									
		chemical engineering												
24		applications			-									
34	Reactor Design	Use the balances to	Lecture	CE1505.3/4/5	End Term									
25	The sum of sum o	design a reactor.			La d Tama									
35	I nermodynamic Package	Understand the uses of	Lecture	CE1505.1	End Term									
	Selection	in the software's												
36	Package Selection	In the software's.	Locturo	CE1505 1	End Torm									
50	Recommendations	thermodynamic packages	Lecture	CEISUS.I										
	Recommendations	in the software's												
38	Types of Heat Exchanger	Use the balances to	Lecture	CE1505.3/4/5	End Term									
	Types of Flear Excitation	design a heat exchanger.												
39	Heat Exchanger Balance	Use the balances to	Lecture	CE1505.3/4/5	End Term									
		design a reactor.												
40,41	Heat Exchanger Design	Use the balances to	Lecture	CE1505.3/4/5	End Term									
,	5 6	design a reactor.	_											
42	Degree of Freedom Analysis,	Understand the concept	Lecture	CE1505.3/4/5	End Term									
	Control Synthesis using	of DoF to assume the												
	Industry Example	parameters constant for												
		solving the model.												
		END TERM												

H. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES										CORRELATION WITH PROGRAM SPECIFIC OUTCOMES			
		PO 1	PO 2	PO 2	PO 4	PO	PO	PO 7	PO °	PO	PO	PO	PO	PSO 1	PSO 2	PSO 3
CE 1505.1	Understand the basic principles of process modelling and simulation	2	1	0	0	2	2	0	0	3	0	0	1	2	0	0
CE 1505.2	Carry out the analysis of lumped and distributed models used in process intensive industries	3	3	0	0	2	1	3	0	3	0	0	0	2	2	1
CE 1505.3	Perform the validation, parametric estimation and optimization of a process model	2	3	0	1	2	0	3	0	3	0	0	0	1	2	1
CE 1505.4	Develop the skills to generate process flowsheet using different unit operations in a process simulator	3	3	0	0	2	0	3	0	3	2	0	0	3	2	1
CE 1505.5	Carry out the simulation for generation of material and energy balances for overall system	3	3	0	0	2	0	3	0	3	1	0	0	3	2	1

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR School of Civil and Chemical Engineering Department of Chemical Engineering Course Handout Mass Transfer I | CE1506 | 3 Credits | 3 0 0 3 Session: Jul'19 – Dec'19 | Faculty: Dr. Manisha Sharma | Class: B. Tech. (Chemical) V Semester

A. INTRODUCTION

This course is offered by Department of Chemical Engineering as a core course. The course focuses on the fundamentals of molecular diffusion, convective mass transfer, and interphase mass transfer. It deals with the design of various mass transfer equipment related to absorption, stripping, adsorption, and humidification.

B. COURSE OUTCOMES

At the end of the course, students will be able to:

- [CE1506.1] Understand the basics of diffusional mass transfer
- [CE1506.2] Understand the concepts of interphase mass transfer and mass transfer coefficients
- [CE1506.3] Understand the mechanism of various mass transfer operations such as absorption, stripping, adsorption, and humidification
- [CE1506.4] Develop skills to perform design calculations involved in various mass transfer operations

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

PSO.1. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

PSO.2. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.

PSO.3. Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

Criteria	Description	Maximum							
		Marks							
Internal	Sessional Exam I (Open Book)	20							
Assessment	Sessional Exam II (Open Book)	20							
(Summative)	Quizzes and Home Assignments / Class Assignments	30							
	(Accumulated and Averaged)'ermEnd Term Exam (Open Book)								
End Term	End Term Exam (Open Book)								
Exam									
(Summative)									
	100								
Attendance	A minimum of 75% Attendance is required to be maintained by a student to								
(Formative)	be qualified for taking up the End Semester examination	. The allowance of							
	25% includes all types of leaves including medical leaves.								
Assignments	Assignments are an integral part of the course. Home a	ssignments / Class							
(Formative)	assignments will be provided from time to time. No late s	submissions will be							
	entertained. It is expected that the students will work of	on the assignments							
	independently. If any assignment is found copied from any	source, marks will							
	be deducted for the same.								
Make up	Students who miss a class will not be provided with an	ny sort of makeup							
Assignments	assignment or make up quiz. If you miss a lecture, you you	urself have to study							
	the topics that were covered during that particular lecture(s	s). You may contact							
	the course coordinator for clarification of doubts, if any.								

D. ASSESSMENT PLAN

E. SYLLABUS

Introduction to mass transfer operations. Theory of interphase mass transfer, estimation of mass transfer coefficient, individual and overall mass transfer coefficients for gas-liquid and liquid-liquid operations. Gas Absorption, graphical calculation of number of theoretical stages for absorption and stripping column. Adsorption, adsorption isotherm, batch and continuous stage adsorption, design of adsorption column, and adsorption equipment. Vapor gas mixtures, terminology, Psychometric chart, Water cooling operations, Gas-Liquid contact operations, adiabatic operations, Types of equipment, Design calculations, Cooling towers, design of cooling towers, Recirculating Liquid-gas humidification cooling.

F. TEXT BOOKS

- T1. Treybal, R. E., Mass Transfer Operations, 3rd ed., McGraw Hill, 2012.
- T2. Seader, J. D. and Henley, E. J., Separation Process Principles, 2nd ed., Wiley, 2010.

G. REFERENCE BOOKS

- R1. Geankoplis, C. J., Transport Processes and Unit Operations, 3rd ed., PHI, New Delhi, 2000.
- R2. Foust, A.S., Wenzel, L.A., Clump, C.W., Naus, L., and Anderson, L.B., Principles of Unit operations, 2nd ed., John Wiley and Sons, 1980.
- R3. McCabe and Smith, Unit Operations in Chemical Engineering, 5th ed., McGraw-Hill, NY, 1993
- R4. Hill, G. B., Cooling towers principles and practice, BH, London, 1990.
- R5. Sinnott, R. K., Coulson & Richardson's Chemical Engineering Design: Chemical Engineering Design: Vol. 6, 2006.

Lecture No.	Topics	Session Outcome	Mode of Delivery	Corresponding CO	Mode Of Assessing CO
1.	Introduction	Learn the mechanism and Classification of mass transfer operation	Lecture	CE1506.1	Assignment / quiz / Mid Term I
2.	Introduction	Gain knowledge about selection of separation method, methods of conducting mass transfer operations, Design principles	Lecture	CE1506.1	Assignment / quiz / Mid Term I
3.	Molecular diffusion in fluids	Learn the basics of steady state molecular diffusion in fluids at rest	Lecture	CE1506.1	Assignment / quiz / Mid Term I
4.	Molecular diffusion in fluids	Learn the basics of steady state molecular diffusion in fluids at rest and in laminar flow	Lecture	CE1506.1	Assignment / quiz / Mid Term I
5.	Molecular diffusion in fluids	Learn the basics of steady state molecular diffusion in fluids in laminar flow	Lecture	CE1506.1	Assignment / quiz / Mid Term I
6.	Mass Transfer coefficients	Gain knowledge about the significance of mass transfer coefficients and must be able to calculate the Mass Transfer Coefficients	Lecture	CE1506.2	Assignment / quiz / Mid Term II
7.	Mass Transfer coefficients	Gain knowledge about the significance of mass transfer coefficients and must be able to calculate the Mass Transfer Coefficients	Lecture	CE1506.2	Assignment / quiz / Mid Term II
8.	Mass Transfer coefficients	Gain knowledge about the significance of mass transfer coefficients and must be able to calculate the Mass Transfer Coefficients	Lecture	CE1506.2	Assignment / quiz / Mid Term II
9.	Mass Transfer coefficients	Gain knowledge about the significance of mass transfer coefficients and must be able to calculate the Mass Transfer Coefficients	Lecture	CE1506.2	Assignment / quiz / Mid Term II
10.	Interphase mass transfer	Learn the basics of Interphase mass transfer and equilibrium conditions	Lecture	CE1506.2	Assignment / quiz / Mid Term II
11.	Interphase mass transfer	Learn the basics of Interphase mass transfer and equilibrium conditions	Lecture	CE1506.2	Assignment / quiz / Mid Term II
12.	Interphase mass transfer	Learn the basics of Interphase mass transfer and equilibrium conditions	Lecture	CE1506.2	Assignment / quiz / Mid Term II
13.	Interphase mass transfer	Able to apply the material balances and calculate the number of stages	Lecture	CE1506.2	Assignment / quiz / Mid Term II

H. LECTURE PLAN

14.	Interphase mass	Able to apply the material balances and	Lecture	CE1506.2	Assignment /
	transfer	calculate the number of stages			quiz / Mid Term
					II
15.	Gas-Liquid	Students will be introduced to the	Lecture	CE1506.3	Assignment /
	Operations	equipment for Gas-Liquid Operations		CE1506.4	quiz / Mid Term
					II
16.	Gas-Liquid	Students will be introduced to the	Lecture	CE1506.3	Assignment /
	Operations	equipment for Gas-Liquid Operations		CE1506.4	quiz / Mid Term
					II
17.	Gas-Liquid	Students will be introduced to the	Lecture	CE1506.3	Assignment /
	Operations	equipment for Gas-Liquid Operations		CE1506.4	quiz / Mid Term
					II
18.	Gas-Liquid	Students will be introduced to the	Lecture	CE1506.3	Assignment /
	Operations	equipment for Gas-Liquid Operations		CE1506.4	quiz / Mid Term
10	a		.	0715060	
19.	Gas-Liquid	Students will be introduced to the	Lecture	CE1506.3	Assignment /
	Operations	equipment for Gas-Liquid Operations		CE1506.4	quiz / Mid Term
20	Con Lin il	Of the star in the instance of the star star star	T	OF1506.2	
20.	Gas-Liquid	Students will be introduced to the	Lecture	CE1506.3	Assignment /
	Operations	equipment for Gas-Liquid Operations		CE1300.4	
21	Gas Liquid	Students will understand the basics of	Locturo	CE1506.3	11 Assignment /
21.	Operations	Humidification operations	Lecture	CE1506.5	auiz / Mid Term
	Operations	Tumumeation operations		CE1500.4	II
22	Gas-Liquid	Students will understand the basics of	Lecture	CE1506 3	Assignment /
22.	Operations	Humidification operations	Lecture	CE1506.5	auiz / Mid Term
	operations	Trainenteation operations		CE1500.1	II
23.	Gas-Liquid	Students will understand the basics of	Lecture	CE1506.3	Assignment /
	Operations	Humidification operations	Looture	CE1506.4	auiz / Mid Term
	• F · · · · · · · ·				II
24.	Gas-Liquid	Gain knowledge about the types of	Lecture	CE1506.3	Assignment /
	Operations	Humidification equipment		CE1506.4	quiz / Mid Term
	•				Î
25.	Gas-Liquid	Be able to Design a cooling tower	Lecture	CE1506.3	Assignment /
	Operations			CE1506.4	quiz / Mid Term
					II
26.	Gas-Liquid	Be able to Design a cooling tower	Lecture	CE1506.3	Assignment /
	Operations			CE1506.4	quiz / Mid Term
27	Q I: 11		T /	OF1506.2	
27.	Gas-Liquid	Be able to Design a cooling tower	Lecture	CE1506.3	Assignment /
	Operations			CE1500.4	quiz / Mid Term
28	Gas Liquid	Able to learn the fundamentals of Gas	Lastura	CE1506.2	II Assignment /
20.	Operations	absorption	Lecture	CE1506.5	auiz / Mid Term
	operations			CE1500.4	II
29	Gas-Liquid	Able to learn the fundamentals of Gas	Lecture	CE1506 3	Assignment /
29.	Operations	absorption	Lecture	CE1506.4	auiz / Mid Term
	operations			02100011	II
30.	Gas-Liquid	Students will be introduced to gas	Lecture	CE1506.3	Assignment /
	Operations	absorption equipment		CE1506.4	quiz / Mid Term
	1				Î
31.	Gas-Liquid	Be able to Design Gas absorption towers	Lecture	CE1506.3	Assignment /
	Operations			CE1506.4	quiz / End Term
32.	Gas-Liquid	Be able to Design Gas absorption towers	Lecture	CE1506.3	Assignment /
	Operations			CE1506.4	quiz / End Term
33.	Gas-Liquid	Be able to Design Gas absorption towers	Lecture	CE1506.3	Assignment /
	Operations			CE1506.4	quiz / End Term
34.	Gas-Liquid	Be able to Design Gas absorption towers	Lecture	CE1506.3	Assignment /
	Operations			CE1506.4	quiz / End Term
35.	Gas-Liquid	Be able to Design Gas absorption towers	Lecture	CE1506.3	Assignment /
	Operations			CE1506.4	quiz / End Term
36.	Gas-Liquid	Be able to Design Gas absorption towers	Lecture	CE1506.3	Assignment /
	Operations			CE1506.4	quiz / End Term

37.	Solid-Fluid	Be able to Design Gas absorption towers	Lecture	CE1506.3	Assignment /	
	Operations			CE1506.4	quiz / End Term	
38.	Solid-Fluid	Understand the Fundamentals of	Lecture	CE1506.3	Assignment /	
	Operations	Adsorption		CE1506.4	quiz / End Term	
39.	Solid-Fluid	Understand the Fundamentals of	Lecture	CE1506.3	Assignment /	
	Operations	Adsorption		CE1506.4	quiz / End Term	
40.	Solid-Fluid	Be able to design equipment for adsorption	Lecture	CE1506.3	Assignment /	
	Operations			CE1506.4	quiz / End Term	
41.	Solid-Fluid	Be able to design equipment for adsorption	Lecture	CE1506.3	Assignment /	
	Operations			CE1506.4	quiz / End Term	
42.	Solid-Fluid	Be able to design equipment for adsorption	Lecture	CE1506.3	Assignment /	
	Operations			CE1506.4	quiz / End Term	
43.	Solid-Fluid	Be able to design equipment for adsorption	Lecture	CE1506.3	Assignment /	
	Operations			CE1506.4	quiz / End Term	

I. COURSE ARTICULATION MATRIX: (Mapping of COs with POs)

СО	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES										CORRELATION WITH PROGRAM SPECIFIC OUTCOMES			
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
[CE1506.1]	Understand the basics of diffusional mass transfer	3	2					1		1			2	3		1
[CE1506.2]	Understand the concepts of interphase mass transfer and mass transfer coefficients	2	2		1			1					1	2	1	
[CE1506.3]	Understand the mechanism of various mass transfer operations such as absorption, stripping, adsorption, and humidification	2	2	1	2			1				1	2	2	1	2
[CE1506.4]	Develop skills to perform design calculations involved in various mass transfer operations	3	1	3		1	2		1	1		1	2	2	1	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Civil and Chemical Engineering Department of Chemical Engineering Course Hand-out Chemical Reaction Engineering I | CE 1507 | 3 Credits | 3 0 0 3 Session: Jul'19 – Nov'19 | Faculty: Dr. Abhishek Sharma | Class: B. Tech. (Chemical) V Semester

- A. Introduction: The aim of a chemical engineer is to conduct the chemical reactions at controlled conditions in such a manner so as to achieve maximum selectivity, yield and energy efficiency. This course on chemical reaction engineering combines the knowledge of chemical kinetics and thermodynamics that enables to decide upon the extent of reaction, rate of reaction, and process conditions. It introduces the basic concepts of reactor designing including elucidation of reaction rate and reaction mechanism, principles of chemical reactor design and analysis for homogeneous reactions, multiple reactors and their sequence, temperature and pressure effects, and selection of appropriate reactor and optimizing the reactor conditions.
- **B. Course Outcomes:** At the end of the course, students will be able to:
 - [1507.1] Analyze and interpret the reaction systems and reaction kinetics
 - [1507.2] Analyze experimental kinetic data to determine reaction mechanisms
 - [1507.3] Design the ideal reactors (isothermal Batch, CSTR, and PFR)
 - [1507.4] Develop skills to choose the right reactor among single, multiple, recycle reactors
 - [1507.5] Understand and apply the concepts of heat capacity and heat of reaction in nonisothermal systems

C. Program Outcomes and Program Specific Outcomes

[PO.1]. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. **[PO.2].** Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

[PO.3]. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

[PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

[PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

[PO.6]. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

[PO.7]. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

[PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
[PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

[PO.10]. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

[PO.11]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

[PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

- **[PSO.1]. Concept to Commissioning:** The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant.
- **[PSO.2]. Process Intensification:** graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.
- **[PSO.3]. Specialization:** Students will be specialized in the areas of petroleum, energy and environment related fields.

Criteria	Description	Maximum Marks
	Sessional Exam I (Open Book)	20
Internal	Sessional Exam II (Open Book)	20
Assessment (Summative)	Quizzes/Home and Class Assignments (Accumulated and Averaged)	30
End Term Exam (Summative)	End Term Exam (Open Book)	30
	Total	100
Attendance (Formative)	A minimum of 75% Attendance is required to be maintain be qualified for taking up the End Semester examination 25% includes all types of leaves including medical leaves.	ned by a student to . The allowance of
Make up Assignments (Formative)	Students who miss a class will not be provided with an assignment or make up quiz. If you miss a lecture, you you the topics that were covered during that particular lecture. contact the course coordinator for clarification of doubts, i	ny sort of makeup urself have to study However, you may f any.

D. Assessment Plan:

E. Syllabus

Kinetics of homogeneous chemical reactions, Rate expressions, Temperature dependence of rate Differential, integral, half-life and total pressure method theories, Elementary and Non elementary reaction kinetics - Pseudo, steady state hypothesis mechanism. Isothermal reactor design. Design of batch, semi-batch, CSTR's and PFR's. Multiple reactor systems, Reactors in series or/and parallel, CSTRs series Performance analysis, Batch, Semi-Batch, Continuous and Recycle reactors. Multiple reaction systems, Series and parallel reactions in flow reactors, Product distribution, Yield and

selectivity. Maximizing the desired product in parallel reactions, Different reactors and schemes for minimizing the unwanted product, maximizing the desired product in series reactions.

F. Books

- Levenspiel, O., Chemical Reaction Engineering, 3rd ed., Wiley India Pvt Ltd
- Fogler, H. S., Elements of Chemical Reaction Engineering, 4th ed., Prentice-Hall of India, Delhi, 2003.

G. Reference Books

- Smith, J. M., Chemical Engineering Kinetics, 3rd ed., McGraw-Hill, 1981.
- Levenspiel, O., The Chemical Reactor Omnibook, OSU Bookstores, Corvallis Oregon, 1993.
- Froment, G. F., and Bischoff, K. B., Chemical Reactor Analysis and Design, 3rd ed., John Wiley and Sons, 2010.
- Richardson, J.F., and Peacock D.G., Coulson and Richardson's Chemical Engineering, vol. 3, 3rd ed., Asian Books Pvt. Ltd., New Delhi, 1998.

lecture	Topics	Session Outcome	Mode of Delivery	Corresponding CO	Mode Of Assessing CO
I	Overview of Chemical Reaction Engineering	Acquainted with basic knowledge of chemical reactions	Lecture	1507.1	Mid Term I, Quiz/Assignment & End Term
2	Kinetics of homogeneous chemical reactions, reactor types, rate expressions, Concentration dependent term of a rate equation, kinetic models, testing and validation.	Understanding the fundamentals of chemical rate equations	Lecture	1507.1	Mid Term I, Quiz/Assignment & End Term
3	Temperature dependent term of rate equation and reaction mechanism	Understanding the fundamentals of chemical rate equations	Lecture	1507.1	Mid Term I, Quiz/Assignment & End Term
4	Temperature dependent term of rate equation and reaction mechanism	Understanding the fundamentals of chemical rate equations	Lecture	1507.1	Mid Term I, Quiz/Assignment & End Term
5	Interpretation of Batch reactor data: Constant volume batch reactor, Integral Method of data analysis: Irreversible unimolecular type I order reactions	Acquiring the knowledge of methods for calculating reaction rate parameters	Lecture	1507.2	Mid Term I, Quiz/Assignment & End Term

H. Lecture Plan

6	Irreversible bimolecular type II order reactions	Acquiring the knowledge of methods for calculating reaction rate parameters	Lecture	1507.2	Mid Term I, Quiz/Assignment & End Term
7	Irreversible trimolecular type III order reactions, empirical nth order reactions	Acquiring the knowledge of methods for calculating reaction rate parameters	Lecture	1507.2	Mid Term I, Quiz/Assignment & End Term
8	Irreversible trimolecular type III order reactions, empirical nth order reactions	Acquiring the knowledge of methods for calculating reaction rate parameters	Lecture	1507.2	Mid Term I, Quiz/Assignment & End Term
9	Zero-order reactions, Overall order by half-life and fractional-life method	Acquiring the knowledge of methods for calculating reaction rate parameters	Lecture	1507.2	Mid Term I, Quiz/Assignment & End Term
10	Irreversible reaction in parallel, homogeneous catalyzed reactions, Autocatalytic reactions	Acquiring the knowledge of methods for calculating reaction rate parameters	Lecture	1507.2	Mid Term I, Quiz/Assignment & End Term
11	Irreversible reactions in series, first-order and second- order reversible reactions, reversible reactions in series	Acquiring the knowledge of methods for calculating reaction rate parameters	Lecture	1507.2	Mid Term I, Quiz/Assignment & End Term
12	Irreversible reactions in series, first-order and second- order reversible reactions, reversible reactions in series	Acquiring the knowledge of methods for calculating reaction rate parameters	Lecture	1507.2	Mid Term I, Quiz/Assignment & End Term
13	Differential method of data analysis, varying volume batch reactor	Acquiring the knowledge of methods for calculating reaction rate parameters	Lecture	1507.2	Mid Term I, Quiz/Assignment & End Term
14	Introduction to reactor design, ideal reactors for a single reactions, ideal batch reactor, space time and space velocity	Grasping the principles for solving chemical	Lecture	1507.3	Mid Term I, Quiz/Assignment & End Term

		reactor design problems			
15	Review I		Lecture		Mid Term I, Quiz/Assignment & End Term
16	Steady-State Mixed flow reactor	Grasping the principles for solving chemical reactor design problems	Lecture	1507.3	Mid Term II, Quiz/Assignment & End Term
17	Steady-State Plug flow reactor	Grasping the principles for solving chemical reactor design problems	Lecture	1507.3	Mid Term II, Quiz/Assignment & End Term
18	Holding time and space time for flow reactors	Grasping the principles for solving chemical reactor design problems	Lecture	1507.3	Mid Term II, Quiz/Assignment & End Term
19	Design for single reactions, Size comparison of single reactors	Grasping the principles for solving chemical reactor design problems	Lecture	1507.3	Mid Term II, Quiz/Assignment & End Term
20	Multiple reactor systems, Plug flow reactor in series	Developing the fundamental knowledge for solving complex chemical reactor design problems	Lecture	1507.4	Mid Term II, Quiz/Assignment & End Term
21	Mixed flow reactors in series	Developing the fundamental knowledge for solving complex chemical reactor design problems	Lecture	1507.4	Mid Term II, Quiz/Assignment & End Term
22	Recycle reactors	Developing the fundamental knowledge for solving complex chemical	Lecture	1507.4	Mid Term II, Quiz/Assignment & End Term

		reactor design problems			
23	Autocatalytic reactions	Developing the fundamental knowledge for solving complex chemical reactor design problems	Lecture	1507.4	Mid Term II, Quiz/Assignment & End Term
24	Design for parallel reactions: introduction to multiple reactions	Developing the fundamental knowledge for solving complex chemical reactor design problems	Lecture	1507.4	Mid Term II, Quiz/Assignment & End Term
25	Quantitative treatment of product distribution and of reactor size	Developing the fundamental knowledge for solving complex chemical reactor design problems	Lecture	1507.4	Mid Term II, Quiz/Assignment & End Term
26	Quantitative treatment of product distribution and of reactor size	Developing the fundamental knowledge for solving complex chemical reactor design problems	Lecture	1507.4	Mid Term II, Quiz/Assignment & End Term
27	Multiple reactions: Irreversible first order reaction in series	Developing the fundamental knowledge for solving complex chemical reactor design problems	Lecture	1507.4	Mid Term II, Quiz/Assignment & End Term
28	First order followed by zero- order reaction, Zero-order followed by first order reaction	Developing the fundamental knowledge for solving complex chemical	Lecture	1507.4	Mid Term II, Quiz/Assignment & End Term

		reactor design problems			
29	Reversible reactions	Developing the fundamental knowledge for solving complex chemical reactor design problems	Lecture	1507.4	Mid Term II, Quiz/Assignment & End Term
30	Irreversible series parallel reactions	Developing the fundamental knowledge for solving complex chemical reactor design problems	Lecture	1507.4	Mid Term II, Quiz/Assignment & End Term
31	Review II		Lecture		Mid Term II, Quiz/Assignment & End Term
32	Temperature and Pressure Effects: Single reactions	Analyzing the effect of operating conditions on Reaction kinetics	Lecture	1507.5	Quiz/Assignment & End Term
33	Equilibrium constants from thermodynamics	Analyzing the effect of operating conditions on Reaction kinetics	Lecture	1507.5	Quiz/Assignment & End Term
34	Multiple reactions	Developing the fundamental knowledge for solving complex chemical reactor design problems	Lecture	1507.4	Quiz/Assignment & End Term
35	Choosing the right kind of reactor	Developing the fundamental knowledge for solving complex chemical reactor design problems	Lecture	1507.4	Quiz/Assignment & End Term

36	Overall Review	Lecture	Quiz/Assignment
			& End Term

I. Course Articulation Matrix: (Mapping of COs with POs)

СО	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES										CORRELATION WITH PROGRAM SPECIFIC OUTCOMES			
		PO 1	O PO PO </th <th>PSO 1</th> <th>PSO 2</th> <th>PSO 3</th>					PSO 1	PSO 2	PSO 3						
[1507.1]	Analyze and interpret the reaction systems and reaction kinetics	2	3	1	1		1	1		1	1	1	2	1	1	
[1507.2]	Analyze experimental kinetic data to determine reaction mechanisms	2	2	1	2	1		1		1	2			2		1
[1507.3]	Design the ideal reactors (isothermal Batch, CSTR, and PFR)	2	3		2		1	1		1			2	1	2	
[1507.4]	Develop skills to choose the right reactor among single, multiple, recycle reactors	1	3	1			2	2		2	1		2	2	3	1
[1507.5]	Understand and apply the concepts of heat capacity and heat of reaction in non-isothermal systems	1	1	1		1	1	2		1		1		1	1	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

J. Course Outcome Attainment Level Matrix:

СО	STATEMENT	ATTAINMENT OF PROGRAM OUTCOMES THRESHOLD VALUE: 30%											ATTAINMENT OF PROGRAM SPECIFIC OUTCOMES			
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
[1507.1]	Analyze and interpret the reaction systems and reaction kinetics															
[1507.2]	Analyze experimental kinetic data to determine reaction mechanisms															
[1507.3]	Design the ideal reactors (isothermal Batch, CSTR, and PFR)															
[1507.4]	Develop skills to choose the right reactor among single, multiple, recycle reactors															
[1507.5]	Understand and apply the concepts of heat capacity and heat of reaction in non-isothermal systems															

0-No Attainment; 1- Low Attainment; 2- Moderate Attainment; 3- Substantial Attainment

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Petroleum Production Technologies | CE 1553 | 3 Credits | 3 0 0 3

Session: Aug 18 - Dec 18 | Faculty: Anand Chakinala | Class: Program Elective

- A. Introduction: This material on Petroleum Production Technologies is a program elective designed for the undergraduate students of Chemical Engineering under petroleum engineering as minors. The objective of the course is to provide a handy guideline to designing, analysing and optimizing petroleum production systems. The students are introduced to the concepts of petroleum production systems, properties of oil, gas and produced water and performance of oil & gas production wells as well as addressing production enhancement techniques such as matrix acidizing, hydraulic fracturing. They are also introduced to the concepts of midstream operations of natural gas processing like acid gas treatment, natural gas compression. This course also addresses designing acidizing jobs, tubing design and separation and dehydration systems.
- **B. Course Outcomes:** At the end of the course, students will be able to

[1553.1]. Understand the basic operations of an upstream & midstream petroleum production process

- [1553.2]. Estimate the properties of oil, natural gas and produced water using correlations
- [1553.3]. Calculate the reservoir deliverability and well deliverability
- [1553.4]. Design equipment's for the upstream and midstream processes thus developing the skills required for employment
- [1553.5]. Design acidizing jobs for enhanced oil production

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Program Outcomes for B.Tech. in chemical engineering are as follows.

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

[PSO.1]. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

[PSO.2]. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments. **[PSO.3]. Specialization:** Students will be specialized in the areas of petroleum, energy and environment related fields.

Criteria	Description	Maximum Marks
	Sessional Exam I (Open Book)	20
	Sessional Exam II (Open Book)	20
Internal Assessment	In class Quizzes, Assignments,	
(Summative)	Projects, Case studies (Accumulated	30
End Term Exam (Summative)	End Term Exam (Open Book)	30
	Total	100
Attendance (Formative)	quired to be maintained by a ne End Semester examination. es of leaves including medical	
Make up Assignments (Formative)	No make-up for missed short quizzes allowed except in extenuating circumsta the instructor(s), and the decision of t shall be final.	/assignments or exam will be ances, with prior permission of the instructor(s) in this regard
Homework/ Home Assignment/ Project (Formative)	een the lectures along with the signments handed after the due nstance. It is expected that the independently and not 'copy' projects are assigned which is ts submitted.	

D. Assessment Plan:

E. SYLLABUS

Introduction to Petroleum production technologies: Reservoir, well, separators, pumps and pipelines, compressors, safety controls, Properties of crude oil, natural gas and produced water: Review of gas properties, crude oil properties, produced water properties, Petroleum production from: *Under saturated oil reservoirs*- Transient flow, pseudo steady state flow, steady state well performance, horizontal well production, effect of water production, *Two-phase reservoirs*- Two phase flow, inflow performance relationship (IPR), Generalized VOGEL IPR, other approximations, *Natural gas reservoirs*- Gas well deliverability, approximations, transient flow, horizontal IPR, Well bore and choke performance: Single phase flow of incompressible and compressible, Multiphase flow, Flow through chokes-Single phase liquid flow and gas flow, Artificial lift methods: Sucker rod pumping, Gas lift, Plunger lift, Introduction to enhanced oil recovery, Matrix acidizing: Acid rock interaction, Carbonate acidizing design, sandstone acidizing design, Hydraulic fracturing,

Midstream operations of natural gas processing: Process modules, Processing objectives, effect of gas type in field processing, Phase separation, Gravity separators, Multistage separation, Centrifugal separators, Slug catchers, gas-liquid coalescers, Acid gas treatment, Batch processes, amine processes, carbonate washing and water washing, Methanol based process, other processes, process selection, Sulfur recovery process, Natural gas compression: Thermodynamics of gas compression, Liquefaction processes, types and selection of compressors, Compressor design, control and performance maps, Equipment design and selection: Well tubing, separation systems, transportation systems.

F. TEXT BOOKS

1) B.Guo, W.C. Lyons, A. Ghalambor, Petroleum Production Engineering, 3rd ed., Gulf professional publishing, 2007.

G. **REFERENCE BOOKS**

- 1) B.Guo, A. Ghalambor, Natural Gas Engineering Handbook, Gulf professional publishing, 2005.
- 2) Dake L.P., Fundamentals of reservoir engineering, Elsevier, 1978.
- **3**) Smith H.C., Tracy G.W., Farrar R.L., Applied Reservoir Engineering, Vol I and II, OGCL, 1999.
- 4) Economides, M.J., Daniel Hill, A., Economides, C.E., Petroleum Production Systems, Prentice Hall Inc., 1994.
- 5) Abdel-Aal, H.K., Aggour, M., Fahim, M.A., Petroleum and Gas Field Processing, Marcel Dekker Inc., 2003.

Lecture Plan:

LEC NO	TOPICS	Session outcome	Mode of Delivery	Corresponding CO	Mode of assessing CO
1-2	Introduction to Petroleum production technologies	Brief overview of Crude oil production	Lecture	1553.1	Mid Term-1, End term
3-5	Properties of crude oil, natural gas and produced water	Estimation of the crude properties using empirical equations	1553.2	Mid Term-1, End term	
6-10	Petroleum production from: Under saturated oil reservoirs, Two-phase reservoirs, Natural gas reservoirs	Prediction of IPR for different reservoirs	Lecture + Tutorial	1553.3	Mid Term-1, End term, Assignment- 1
11-14	Well bore and choke performance	Prediction of TPR and pressure drop	Lecture + Tutorial	1553.3	Mid Term-2, End term, Assignment- 2
5-9	Artificial lift methods	To acquaint with several lift methods	Lecture	1553.3	Mid Term-2, End term
10-13	Matrix acidizing	To be able to determine the amount of acid consumption	Lecture + Tutorial	1553.5	Mid Term-2, End term
14	Hydraulic fracturing	Brief overview of the concept	Lecture	1553.5	Mid Term-2, End term, Assignment- 3
15-19	Midstream operations of natural gas processing	To familiarize with mid- stream operations and phase	Lecture	1553.4	End term
20-23	Phase separation	seperation	Lecture	1553.4	End term
24-29	Acid gas treatment	To be able to design separation systems	Lecture	1553.4	End term
30-32	Natural gas compression		Lecture	1553.4	End term
33 - 36	Equipment design and selection	To be able to design tubing, separation systems and transportation systems	Lecture + Tutorial	1553.4	End term, Assignment-4

H. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES												CORRELATION WITH PROGRAM SPECIFIC OUTCOMES	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CE1553.1	Understand the basic operations of an upstream & midstream petroleum production process	2	1		1									1		3
CE1553.2	Estimate the properties of oil, natural gas and produced water using correlations	2	1		1	2								1		3
CE1553.3	Calculate the reservoir deliverability and well deliverability	2	1		1	2								1		3
CE1553.4	Design equipment's for the upstream and midstream processes		2	1	1	2	1	1	1					2	1	3
CE1553.5	Design acidizing jobs for enhanced oil production		1	1	1	2	1	2	1					2	1	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

I. Course Outcome Attainment Level Matrix:

со	STATEMENT		ATTAINMENT OF PROGRAM OUTCOMES THRESHOLD VALUE: 30%											ATTAINMENT OF PROGRAM SPECIFIC OUTCOMES		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CE1553.1	Understand the basic operations of an upstream & midstream petroleum production process															
CE1553.2	Estimate the properties of oil, natural gas and produced water using correlations															
CE1553.3	Calculatethereservoirdeliverabilityandwelldeliverability															
CE1553.4	Design equipment's for the upstream and midstream processes															
CE1553.5	Design acidizing jobs for enhanced oil production															

0-No Attainment; 1- Low Attainment; 2- Moderate Attainment; 3- Substantial Attainment

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Conventional and Non-Conventional Energy Resources | CE 1554 | 3 Credits | 3 0 0 3

Session: July 19 - Nov 19 | Faculty: Dr. Anees Ahmed Yunus Khan| Class: B.Tech III Year

Introduction: This course focuses on the generation of available and derived forms of energy for different industrial applications. In this course, the students will learn about both conventional and non-conventional energy resources such as coal, natural gas, oil, biomass, hydro, wind and solar. By the end of this course, the students will have a better understanding of energy harnessing methods from different sources around the world.

A. Course Outcomes: At the end of the course, students will be able to

[1554.1] List and explain the main sources of energy and their primary applications.

[1554.2] Describe the challenges and problems associated with the use of various energy resources, including fossil fuels, with regard to future supply and the environment.

[1554.3] Develop the skills to explain the principles and outline the technologies to deliver useable energy from conventional and non-conventional energy resources.

[1554.4] Identify issues facing the non-conventional energy industries.

[1554.5] Identify planning and environmental issues related to non-conventional energy systems.

B. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- **PO.1** Engineering Knowledge: A thorough knowledge of the basic science, engineering and mathematics and apply that to the underline practice of Chemical Engineering.
- **PO.2 Problem Analysis:** Ability to apply these basic principles to solve real world problems in a broad range of career paths.
- **PO.3 Project management and finance:** The skills of making smart decisions on process feasibility based in technical and economic evaluation.
- **PO.4 Ethics**: The ability to appreciate the social, ethical, cultural, environmental and safety issues related to chemical engineering profession.
- **PO.5** Conduct investigations of complex problems: The ability to develop experimental procedure/protocol to test hypothesis and analysis meaningful interpretation of the generated data.
- **PO.6** Environment and sustainability: The skill to generate sustainable engineering solutions to societal and industrial problems.
- **PO.7** Modern tool usage: Proficiency to use computational tools for problem solving.
- **PO.8 Communication**: ability to communicate effectively (technical and non-technical context) in written and oral form.
- **PO.9 Design/development of solutions**: Skills to work effectively and professionally in multi-disciplinary groups to solve complex chemical engineering problems.
- **PO.10** Individual and team work: The ability to work effectively and professionally on projects both independently and as a part of a group/team.
- PO.11 Life-long learning: The ability to be self-learners and lifelong learners.
- **PO.12** The engineer and society: The motivation to develop and lead entrepreneurial projects for societal benefit.

Degree Specific Outcomes for chemical engineering are as follows:

- **PSO.1** Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant.
- **PSO.2 Process Intensification:** Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.
- **PSO.3** Specialization: students will be specialized in the areas of petroleum, energy and environment related fields.

C. Assessment Plan:

Criteria	Description	Maximum Marks						
	Sessional Exam I (Closed Book)	20						
Internal Assessment	Sessional Exam II (Closed Book)	20						
(Summative)	In class Quizzes, Assignments AND	15+15						
	Projects (Accumulated and Averaged)							
End Term Exam	End Term Exam (Closed Book)	30						
(Summative)								
	Total	100						
Attendance	A minimum of 75% Attendance is requir	red to be maintained by a student to be						
(Formative)	qualified for taking up the End Semest	er examination. The allowance of 25%						
	includes all types of leaves including medi	cal leaves.						
Make up Assignments	No makeup assignments will be given.							
(Formative)								
Projects	Each group of 2-3 students will submit a project on a topic relevant to relevant to							
	conventional and non-conventional energy	gy production techniques. The details of						
	this component will be discussed during t	he lectures.						

D. SYLLABUS

Introduction of coal, natural gas and oil as sources of energy. Application of coal in industries. In situ Coal Gasification. Oil and Gas from condensate and oilfields. Scope of Oil and Natural gas industry. Concepts of thermodynamics and system energy in Natural Gas Engineering. Physical properties of natural gas and the associated hydrocarbon liquids. Reservoir aspects of natural gas and oil. Conversion of coal and gas to liquid. Introduction to world energy scenario, Renewable energy resources, Radiation, Solar Geometry, radiation models; Solar Thermal, Optical efficiency, thermal efficiency, concentrators, testing procedures, introduction to thermal systems (flat plate collector), Biomass, Biomass resources, wood composition, biogas, biodiesel, ethanol; Wind, types of wind machines, Hydro resources, types of hydro turbine, small hydro systems; Other systems, Geothermal, wave energy, ocean energy.

E. BOOKS

Reference Books:

- Probstein, R. F., and Hicks, R. E., Synthetic Fuels, Dover Publications, 2013.
- S. Rao and B.B. Parulekar, Energy technology, Khanna Publishers, 2017.
- P.C. Jain, Engineering Chemistry, Dhanpat Rai Publishing Company, 2018.
- D. D. Hall and R. P. Grover, Biomass Regenerable Energy, John Wiley, 1987.
- J. Twidell and T. Weir, Renewable Energy Resources, E & F N Spon Ltd, 1986.
- Sukhatme, S. P., Solar Energy Principles of Thermal Collection and Storage, 3rd ed., Tata McGraw-Hill, 1996.
- Duffie, J. A., and Beckman, W. A., Solar Engineering of Thermal Processes, 4th ed., John Wiley, 2013.
- Goswami, D. Y., Kreith, F., and Kreider, J. F., Principles of Solar Engineering, Taylor and Francis, 2000.
- Green, Solar Cells, Prentice-Hall, Englewood Cliffs, 1982.

F. Lecture Plan:

Class Number	Topics	Session Outcome	Mode of Delivery	Correspon ding Course Outcome	Mode of Assessing the Outcome
1	Introduction to World Energy Resources	List and explain the main sources of energy and their primary applications	Lecture and interaction	COI	Quiz
2	Introduction of coal, natural gas and oil as sources of energy. Application of coal in industries	List and explain the main sources of energy and their primary applications	Lecture and interaction	CO I CO 2	
3	Oil and Gas from condensate and oilfields. Scope of Oil and Natural gas industry. Concepts of thermodynamics	Describe the challenges and problems associated with the use of various energy resources, including fossil fuels, with regard to future supply and the environment.	Lecture and interaction	CO I CO 2	
5-6	and system energy in Natural Gas Engineering. Physical properties of natural				Quiz
	gas and the associated hydrocarbon liquids. Reservoir aspects of natural gas and oil. Conversion of coal and gas to liquid.				I st Sessional ET Exam Home Assignment
7-12	Oil and Natural Gas Production Techniques		Lecture and interaction	CO I CO 2	∣ st Sessional

13-20	Nuclear Processes, Nuclear decay, Nuclear fuel processing, Life cycle of nuclear fuel, Nuclear reactor types and applications.	Explain the principles and outline the technologies to deliver useable energy from conventional and non-conventional energy resources.			ET Exam Home Assignment Quiz Project
	Hydroelectric power: Design considerations for a hydroelectric power plant, classification of hydroelectric power plants, flow duration and power duration curve, Selection of turbine, power load factor.	Identify issues facing the non- conventional energy industries. Identify planning and environmental issues related to non-conventional energy systems.	Lecture and interaction	CO I CO 2 CO 3 CO 4	
		First sessional exam			
21-23	Biomass, Biomass resources, wood composition, biogas, biodiesel, ethanol.	Identify planning and environmental issues related to non-conventional energy systems.	Lecture and interaction	CO 3 CO 4 CO 5	
24-26	Wind, types of wind machines, Energy generation from wind.	Identify planning and environmental issues related to non-conventional energy systems.	Lecture and interaction	CO 3 CO 4 CO 5	
27-28	Introduction to world energy scenario, Renewable energy resources, Radiation, Solar Geometry, radiation models	Identify planning and environmental issues related to non-conventional energy systems.	Lecture and interaction	CO 3 CO 4 CO 5	Quiz II Sessional
29-30	Solar Thermal, Optical efficiency, thermal efficiency, concentrators, testing procedures,	Identify planning and environmental issues related to non-conventional energy systems.	Lecture and interaction	CO 3 CO 4 CO 5	Home Assignment Project

30-32	Introduction to solar thermal systems (flat plate collector).	Second sessional exam List and explain the main sources of energy and their primary applications	Lecture and interaction	CO 3 CO 4 CO 5	ET Exam Home
33-40	Other non-conventional energy sources such as Geothermal, wave energy, ocean energy.	List and explain the main sources of energy and their primary applications Identify planning and environmental issues related to non-conventional energy systems.	Lecture and interaction		Assignment Quiz Project
		End term exam			

G. Course Articulation Matrix: (Mapping of COs with POs)

СО	CORRELATION WITH PROGRAM OUTCOMES STATEMENT								CORRELATION WITH PROGRAM SPECIFIC OUTCOMES							
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
[1554.1]	List and explain the main sources of energy and their primary applications.			1			1	I								3
[1554.2]	Describe the challenges and problems associated with the use of various energy resources, including fossil fuels, with regard to future supply and the environment.			1			2	3			I					3
[1554.3]	Explain the principles and outline the technologies to deliver useable energy from conventional and non-conventional energy resources.			I			2	2								3
[1554.4]	Identify issues facing the non-conventional energy industries.		3		1				I	Ι						3
[1554.5]	Identify planning and environmental issues related to non-conventional energy systems.					3	Ι	I					I			3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Process Safety Analysis | CE 1604 | 3 Credits | 3 0 0 3

Session: Jan 20 - May 20 | Faculty: Dr. Harsh Pandey | Class: Core course

A. Introduction: This material on Process Safety Analysis is designed for the undergraduate students of Chemical Engineering. This course introduces the basic concepts relating to chemical hazards, risk, and ethics. The interaction and trade-offs of these concepts are stressed in order to establish approaches to the proper selection and evaluation of processes and their implementation into small and large scale plants/laboratories. Quantitative analyses of chemical releases and dispersion using thermodynamic, transport, and reaction/reactor considerations are used to develop an appreciation for and understanding of chemical incidents and the possible consequences to plant facilities, workers, and the general public. Examples of problems that may arise due to inadequate process design, improper process modification, and disregard for ethical decision making are discussed using numerous case studies.

B. Course Outcomes: At the end of the course, students will be able to

- [1604.1] Develop safety culture
- **[1604.2]** Evaluate effect of toxicants and other hazards
- [1604.3] Quantitatively analyse release and dispersion rates of liquid and vapors
- [1604.4] Analyse fire and explosion hazards
- [1604.5] Integrate safety concepts and ethics into chemical process design
- **[1604.6]** Perform hazard identification, risk assessment, enhancing employability.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Program Outcomes for B. Tech. in chemical engineering are as follows.

The Graduates of Chemical Engineering from MUJ will have:

- **[PO.I].** Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- **[PO.2]. Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3]. Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4].** Conduct investigations of complex problems: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions.
- **[PO.5].** Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- **[PO.6].** The engineer and society: Apply reasoning informed by the <u>contextual knowledge</u> to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice

- **[PO.7].** Environment and sustainability: Understand the <u>impact of the professional</u> <u>engineering solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8].** Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- **[PO.9].** Individual and team work: Function effectively as an individual, and as a <u>member or</u> leader in diverse teams, and in multidisciplinary settings
- **[PO.10].** Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II].** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change
- **[PSO.1].** Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant.
- **[PSO.2].** Process Intensification: graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.
- **[PSO.3].** Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

Criteria	Description	Maximum Marks						
	Sessional Exam I (Open Book)	20						
	Sessional Exam II (Open Book)	20						
Internal Assessment	In class Quizzes, Assignments,							
	Projects, Case Studies (Accumulated	30						
	and Averaged)							
End Term Exam	End Term Exam (Open Book)	30						
	Total	100						
	A minimum of 75% Attendance is re-	quired to be maintained by a						
Attendance	student to be qualified for taking up the End Semester examination.							
Attendance	The allowance of 25% includes all types of leaves including medical							
	leaves.							
	No make-up for missed short quizzes	assignments or exam will be						
Make up Assignments	allowed except in extenuating circumstances, with prior permission							
Thake up Assignments	of the instructor(s), and the decision of	the instructor(s) in this regard						
	shall be final.							
	Home works will be assigned in betwe	en the lectures along with the						
	due date for handing it over. No late	assignments handed after the						
Homework/ Home	due date shall be accepted under any circumstance. It is expected that							
Assignment/ Project	the students shall work on the assign	ments independently and not						
	'copy' the solutions from each other. A case study is given which is							
	assessed in form of individual reports s	ubmitted.						

D. Assessment Plan:

E. SYLLABUS

Introduction – Accident and loss statistics, inherent safety, safety culture, ethics; Toxicology-How toxicants enter and are eliminated from biological organisms, Toxicological studies, Dose vs response, Relative toxicity, threshold limit values; Industrial Hygiene: Government regulations, Identification, Evaluation of exposures to volatile toxicants, dusts, noise, toxic vapors, Control; Source Models: Flow of liquid through hole, hole in a tank, pipes; Flow of vapor through holes, gases through pipes; Flashing liquids, Liquid pool evaporation or boiling, Toxic Release and dispersion models; Fires and explosion: Fire triangle, fire vs explosion, Flammability characteristics of liquid and vapors, TNT equivalency, energy of chemical and mechanical explosions, vapor cloud explosions, BLEVE, Inerting, Static electricity, Explosion proof equipment and instruments, Sprinkler systems; Relief systems: Relief concepts, Location of reliefs, Relief scenarios, Relief systems for flares, scrubbers, condensers, knock out drum; Relief sizing: Spring operated for liquid/vapor/gas service, Rupture disk relief for liquid/vapor/gas, reliefs for thermal expansion of process fluids; Hazard Identification: Surveys, HAZOP, safety reviews Risk assessment: Probability theory, event trees, fault trees, QRA, LOPA, Accident investigations

F. TEXT BOOKS

I. Crowl, D.A., Louvar, J.F., Chemical Process Safety, Pearson, 3rd edition, 2015.

G. REFERENCE BOOKS

- I. Center for Chemical Process Safety (CCPS), Introduction to process safety for undergraduates and engineers, Wiley, Ist Edition, 2016.
- 2. Sanders, R. E., Chemical Process Safety, Elsevier, 3rd edition, 2006.
- **3.** Klein, J.A., Vaughen, B.K., Process Safety: Key concepts and practical approaches, CRC press, Ist edition, 2017.

Class Number	Topics	Session Outcome	Mode of Delivery	Correspon ding Course Outcome	Mode of Assessi ng the Outco me
I	Introduction to Safety	To introduce chemical process safety to the students	Lecture, Interaction	CE1604.1	NA
2-4	Toxicology	Introducing concepts related to toxicity and exposure to the students	Interaction, Discussion	CE1604.2	Assign ment
5-7	Industrial Hygiene	Introduces industrial hygiene and best practices to the students	Interaction, Discussion	CE1604.2, CE1604.5	Assign ment
8-10	Source Models	This key concept for understanding release of hazardous materials is introduced	Interaction, Discussion	CE1604.2, CE1604.3	Assign ment
11	Flashing liquids, Liquid pool evaporation or boiling	Students learn about these fire and explosion hazards	Interaction, Discussion	CE1604.4	Assign ment
12	Pre-Sessional Review	Review of Syllabus Covered	Discussion	CE1604.1, CE1604.2, CE1604.3, CE1604.4	NA
		FIRST SESSIONAL EXAM			
13-16	Toxic Release and dispersion models	This key concept for understanding release and spreading of hazardous materials is introduced	Interaction, Discussion	CE1604.2, CE1604.3	Assign ment
17-20	Fires	Students learn about these fire and explosion hazards	Interaction, Discussion	CE1604.4	Assign ment

H. Lecture Plan:

21-23	Explosions	Students learn about these fire and	Interaction, Discussion	CE1604 4	Assign ment
24-27	Inerting, Static electricity, Explosion proof equipment and instruments, Sprinkler systems	Students learn about preventing and minimizing damage from fire and explosion hazards	Interaction, Discussion	CE1604.4	Assign ment
28	Relief concepts, Location of reliefs, Relief scenarios	Students learn about preventing and minimizing damage from fire and explosion, toxicity, and other hazards	Interaction, Discussion	CE1604.1, CE1604.2, CE1604.3, CE1604.4, CE1604.5	Assign ment
29	Relief systems for flares, scrubbers, condensers, knock out drum	Students learn about preventing and minimizing damage from fire and explosion, toxicity, and other hazards	Interaction, Discussion	CE1604.1, CE1604.2, CE1604.3, CE1604.4, CE1604.5	Assign ment
30-34	Relief sizing	Students learn about preventing and minimizing damage from fire and explosion, toxicity, and other hazards	Interaction, Discussion	CE1604.1, CE1604.2, CE1604.3, CE1604.4, CE1604.5	Assign ment
35	Pre-Sessional Review	Review of Syllabus Covered	Discussion	CE1604.1, CE1604.2, CE1604.3, CE1604.4, CE1604.5	NA
		SECOND SESSIONAL EXAM			
36-39	Hazard Identification and Risk Assessment	Students learn about the formal approaches to Hazard Identification and Risk Assessment standardized by Industry	Interaction, Discussion	CE1604.6	NA
40-42	Accident investigations	Students learn about some major industrial disasters, what went wrong, and the lessons learnt from them END TERM EXAM	Discussion, Class Participation	CE1604.1, CE1604.2, CE1604.3, CE1604.4, CE1604.5, CE1604.6	Minipr oject Repor t

I. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT	CORRELATION WITH PROGRAM OUTCOMES										CORRELATION WITH PROGRAM SPECIFIC OUTCOMES				
			PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12	PSO1	PSO2	PSO3
CE 1604.1	Develop safety culture				3									2		I
CE 1604.2	Evaluate effect of toxicants and other hazards	I			2			I						2		
CE 1604.3	Quantitatively analyse release and dispersion rates of liquid and vapors	I			2			2						2	I	
CE 1604.4	Analyse fire and explosion hazards	I			2			2						2		I
CE 1604.5	Integrate safety concepts and ethics into chemical process design			Ι	2									2		I
CE 1604.6	Perform hazard identification, risk assessment, enhancing employability.			2										2		Ι

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR School of Civil and Chemical Engineering Department of Chemical Engineering Course Handout Mass Transfer II | CE1605 | 3 Credits | 3 0 0 3 Session: Jan'20 – May'20 | Faculty: Dr. Manisha Sharma | Class: B. Tech. (Chemical) VI Semester

A. INTRODUCTION

This course on Mass Transfer II is a core course designed for the undergraduate students of Chemical Engineering. This course continues further on the concepts learned in Mass Transfer-I which describes interphase mass transfer involved in design of separation systems. It covers the concepts of vapour-liquid, liquid-liquid, solid-liquid equilibrium involved in mass transfer operations with emphasis on design and performance calculations of rate based and equilibrium-based separations. Separation processes covered in detail in this course are distillation, extraction, leaching and drying.

B. COURSE OUTCOMES

At the end of the course, students will be able to:

- [CE1605.1] Interpret the equilibrium data required in design of separation processes
- [CE1605.2] Illustrate the mass transfer fundamentals involved in design calculations
- [CE1605.3] Use the design methods for solving problems related to mass transfer operations in industries
- [CE1605.4] Perform process design calculations of various mass transfer equipment such as distillation columns, extraction columns and dryers enhancing employability

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

The Graduates of Chemical Engineering from MUJ will have:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

PSO.1. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

PSO.2. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.

PSO.3. Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

D. ASSESSMENT PLAN

Criteria	Description	Maximum
		Marks
Internal	Sessional Exam I (Open Book)	20
Assessment	Sessional Exam II (Open Book)	20
(Summative)	Quizzes and Home Assignments / Class Assignments	30
	(Accumulated and Averaged)	
End Term	End Term Exam (Open Book)	30
Exam		
(Summative)		
	Total	100
Attendance	A minimum of 75% Attendance is required to be maintain	ned by a student to
(Formative)	be qualified for taking up the End Semester examination	. The allowance of
	25% includes all types of leaves including medical leaves.	
Assignments	Assignments are an integral part of the course. Home a	ssignments / Class
(Formative)	assignments will be provided from time to time. No late s	ubmissions will be
	entertained. It is expected that the students will work of	on the assignments
	independently. If any assignment is found copied from any	source, marks will
	be deducted for the same.	
Make up	Students who miss a class will not be provided with an	ny sort of makeup
Assignments	assignment or make up quiz. If you miss a lecture, you you	urself have to study
	the topics that were covered during that particular lecture(s). You may contact
	the course coordinator for clarification of doubts, if any.	

E. SYLLABUS

Distillation, concept of vapour liquid equilibrium, Raoult's law, deviations from ideal law, azeotropic distillation and steam distillation. Enthalpy concentration diagrams, binary and multi component systems, dew and bubble point calculations, flash vaporization, simple distillation, binary component distillation, Ponchan Savarit method: minimum reflux ratio, optimum reflux

ratio- total reflux ratio, partial condenser, total condenser, McCabe Thiele method: concept of q line, optimum reflux ratio- total reflux ratio, partial condenser, total condenser. Multi component distillation: azeotropic, extractive, molecular distillation. Liquid-Liquid Extraction: liquid-liquid-equilibria, ternary systems triangular and rectangular coordinates-choice of solvent-single stage and multi stage cross current, equipment's such as mixer settler, packed and tray towers. Leaching, Drying and design criteria, Design of rotary dryers.

F. TEXT BOOKS

T1. Treybal R. E, Mass Transfer Operations, 3rd ed., McGraw Hill, 2012

G. REFERENCE BOOKS

- R1. Seader, J.D., Henley, E.J., Roper D.K., "Separation Process Principles," 3rd ed., (International Edition), John Wiley & Sons.
- R2. McCabe and Smith, Unit Operations in Chemical Engineering, 5th ed., McGraw-Hill.
- R3. Coulson, J.M., Richardson, J.F., Chemical Engineering Volume-2, 5th ed., Butterworth-Heinemann.
- R4. Geankoplis, C. J., Transport Processes and Unit Operations, 3rd ed., PHI, New Delhi.
- R5. Robert H. Perry and Don W. Green, Perry's Chemical Engineers hand book, 8th ed., McGraw Hill.
- R6. King, C. J., Separation Processes, 2nd ed., Tata McGraw Hill, New Delhi.

H. LECTURE PLAN

Lecture	Topics	Session Outcome	Mode of	Corresponding	Mode Of
No.			Delivery	CO	Assessing CO
1.	Introduction	Understand the basics of Mass Transfer Operations	Lecture	-	Assignment / quiz / Mid Term I
2.	Introduction	Understand the basics of Mass Transfer Operations	Lecture	-	Assignment / quiz / Mid Term I
3.	Distillation	Vapor liquid equilibrium, concept of relative volatility	Lecture	CE1605.1	Assignment / quiz / Mid Term I
4.	Distillation	Effect of P and T on equilibrium data, P-x- y and T-x-y diagrams, y vs x diagrams	Lecture	CE1605.1	Assignment / quiz / Mid Term I
5.	Distillation	Ideal Solutions, Raoult's law, Deviations from ideality, Maximum and minimum boiling azeotrope	Lecture	CE1605.1	Assignment / quiz / Mid Term I
6.	Distillation	Bubble and dew point calculations	Lecture	CE1605.1	Assignment / quiz / Mid Term I
7.	Distillation	Bubble and dew point calculations	Lecture	CE1605.1	Assignment / quiz / Mid Term I
8.	Distillation	Enthalpy concentration diagrams	Lecture	CE1605.1	Assignment / quiz / Mid Term I
9.	Distillation	Single stage flash distillation	Lecture	CE1605.1; CE1605.2	Assignment / quiz / Mid Term I
10.	Distillation	Steam distillation	Lecture	CE1605.1; CE1605.2	Assignment / quiz / Mid Term I
11.	Distillation	Simple distillation binary and multicomponent mixtures	Lecture	CE1605.1; CE1605.2	Assignment / quiz / Mid Term I
12.	Distillation	Continuous rectification of binary systems	Lecture	CE1605.1; CE1605.2	Assignment / quiz / Mid Term I
13.	Distillation	Determination of number of stages by Ponchon Savarit method, case study	Lecture	CE1605.3; CE1605.4	Assignment / quiz / Mid Term I
14.	Distillation	Determination of number of stages by Ponchon Savarit method, case study	Lecture	CE1605.3; CE1605.4	Assignment / quiz / Mid Term I

15.	Distillation	Determination of number of stages by	Lecture	CE1605.3;	Assignment / quiz
		Ponchon Savarit method, case study		CE1605.4	/ Mid Term I
16.	Distillation	Determination of number of stages by Mc-	Lecture	CE1605.3;	Assignment / quiz
		Cabe Thiele method, Case study		CE1605.4	/ Mid Term II
17.	Distillation	Determination of number of stages by Mc-	Lecture	CE1605.3;	Assignment / quiz
		Cabe Thiele method, Case study		CE1605.4	/ Mid Term II
18.	Distillation	Partial and total condenser, Concept of	Lecture	CE1605.2;	Assignment / quiz
		minimum, total and optimum reflux ratio		CE1605.3;	/ Mid Term II
				CE1605.4	
19.	Distillation	Partial and total condenser, Concept of	Lecture	CE1605.2;	Assignment / quiz
		minimum, total and optimum reflux ratio		CE1605.3;	/ Mid Term II
				CE1605.4	
20.	Distillation	Partial and total condenser, Concept of	Lecture	CE1605.2;	Assignment / quiz
		minimum, total and optimum reflux ratio		CE1605.3:	/ Mid Term II
		, , , , , , , , , , , , , , , , , , ,		CE1605.4	
21.	Distillation	Use of open steam	Lecture	CE1605.1:	Assignment / quiz
				CE1605.2	/ Mid Term II
22	Distillation	Azeotropic distillation extractive	Lecture	CE1605.1	Assignment / quiz
22.	Distillation	distillation	Lecture	CE1605.2	/ Mid Term II
23	Distillation	Concept of multi-component distillation	Lecture	CE1605.1	Assignment / quiz
23.	Distillation	concept of manifestiment distination	Lecture	CE1605.1, CE1605.2	/ Mid Term II
24	Extraction	Liquid Liquid equilibrium Choice of	Lactura	CE1605.1	Assignment / quiz
24.	Extraction	solvent	Lecture	CE1005.1, CE1605.2	/ Mid Torm II
25	Entre etien	Tormore dia manage	I a starus	CE1005.2	
25.	Extraction	Ternary diagrams	Lecture	CE1605.1;	Assignment / quiz
26			× .	CE1605.2	/ Mid Term II
26.	Extraction	Design calculations for miscible solvents	Lecture	CE1605.3;	Assignment / quiz
		(co-current and counter current)	_	CE1605.4	/ Mid Term II
27.	Extraction	Design calculations for miscible solvents	Lecture	CE1605.3;	Assignment / quiz
		(co-current and counter current)		CE1605.4	/ Mid Term II
28.	Extraction	Design calculations for miscible solvents	Lecture	CE1605.3;	Assignment / quiz
		(co-current and counter current)		CE1605.4	/ Mid Term II
29.	Extraction	Design calculations for immiscible solvents	Lecture	CE1605.3;	Assignment / quiz
		(co-current and counter current)		CE1605.4	/ Mid Term II
30.	Extraction	Design calculations for immiscible solvents	Lecture	CE1605.3;	Assignment / quiz
		(co-current and counter current)		CE1605.4	/ Mid Term II
31.	Extraction	Types of extractors	Lecture	CE1605.1;	Assignment / quiz
				CE1605.2	/ Mid Term II
32.	Leaching	Solid liquid equilibrium	Lecture	CE1605.1;	Assignment / quiz
				CE1605.2	/ End Term
33.	Leaching	Leaching equipment	Lecture	CE1605.1;	Assignment / quiz
	Ũ			CE1605.2	/ End Term
34.	Leaching	Single and multistage operation	Lecture	CE1605.3;	Assignment / quiz
	C			CE1605.4	/ End Term
35.	Leaching	Single and multistage operation	Lecture	CE1605.3;	Assignment / quiz
	0			CE1605.4	/ End Term
36.	Leaching	Single and multistage operation	Lecture	CE1605.3:	Assignment / auiz
201	Leasening	Single and manage operation	2000000	CE1605.4	/ End Term
37	Drving	Equilibrium relationship and hysteresis	Lecture	CE1605.1	Assignment / auiz
57.	Diying	types of moisture	Lecture	CE1605.2	/ End Term
38	Drving	Mechanism of drying rate of drying	Lecture	CE1605.1	Assignment / quiz
50.	Diying	incommissi of drying, face of drying	Lecture	CE1605.2	/ Fnd Term
30	Drying	Drying equipment	Lecture	CE1605.1	Assignment / quiz
57.	Drying	Drying equipment	Lecture	CE1605.1, CE1605.2	/ End Term
40	Drazing	Druing aquinment	Lactura	CE1605.1	Assignment / quiz
40.	Drying	Drying equipment	Lecture	CE1005.1, CE1605.2	/ End Term
A 1	Draving	Design of Potch continuous design	Lastar	CE1605.2	Assignment /
41.	Drying	Design of Datch, continuous dryers	Lecture	CE1003.3; CE1605.4	Assignment / quiz
42	Durality	Design of Details and in the	T and the	CE1003.4	
42.	Drying	Design of Batch, continuous dryers	Lecture	CE1005.3;	Assignment / quiz
42	D		Test	CE1005.4	/ End 1 erm
43.	Drying	Cross-circulation drying, Freeze drying	Lecture	CE1605.3;	Assignment / quiz
	D		Test	CE1005.4	/ End 1 erm
44.	Drying	Cross-circulation drying, Freeze drying	Lecture	CE1605.3;	Assignment / quiz
				CE1605.4	/ End Term

I. COURSE ARTICULATION MATRIX: (Mapping of COs with POs)

СО	STATEMENT	CORRELATION WITH PROGRAM OUTCOMES												CORRELATION WITH PROGRAM SPECIFIC OUTCOMES		
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
[CE1605.1]	Interpret the equilibrium data required in design of separation processes	3	3					2				1		3		2
[CE1605.2]	Illustrate the mass transfer fundamentals involved in design calculations	3	1					2			1		1	3		2
[CE1605.3]	Use the design methods for solving problems related to mass transfer operations in industries	3	3			2		2		2		1		3		2
[CE1605.4]	Perform process design calculations of various mass transfer equipment such as distillation columns, extraction columns and dryers enhancing employability	3	3	1		2		2		2	2	1		3		2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Chemical Reaction Engineering II| CE 1606 | 3 Credits | 3 0 0 3

Session: Jan' 20 - May' 20 | Faculty: Dr Abhishek Sharma| Class: B. Tech. (Chemical) VI Semester

Introduction: This course is offered by Dept. of Chemical Engineering as a core course. This course focuses on the design of chemical reacting systems. In this unit, the students will learn the basics of non-ideal reactors, heterogeneously reacting systems and application of real reactors available in process plants and industries. By the end of this course, the students will have a clear understanding required for troubleshooting the design related problems of chemical reactors in real world.

A. Course Outcomes: At the end of the course, students will be able to

[1606.1] Understand the fundamentals of Residence Time Distribution in chemical reactors

[1606.2] Utilize different Flow Models to understand non-ideal reactor behaviour

[1606.3] Analyze the heterogeneous and solid catalysed reactions for industrial applications

[1606.4] Evaluate the performance of different industrial reactors such as packed bed, fluidized bed, and three phase reactors

[1606.5] Apply the detailed kinetics for design of fluid-fluid and fluid-particle systems

B. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- **PO.1** Engineering Knowledge: A thorough knowledge of the basic science, engineering and mathematics and apply that to the underline practice of Chemical Engineering.
- **PO.2 Problem Analysis:** Ability to apply these basic principles to solve real world problems in a broad range of career paths.
- **PO.3 Project management and finance:** The skills of making smart decisions on process feasibility based in technical and economic evaluation.
- **PO.4 Ethics**: The ability to appreciate the social, ethical, cultural, environmental and safety issues related to chemical engineering profession.
- **PO.5** Conduct investigations of complex problems: The ability to develop experimental procedure/protocol to test hypothesis and analysis meaningful interpretation of the generated data.
- **PO.6** Environment and sustainability: The skill to generate sustainable engineering solutions to societal and industrial problems.
- PO.7 Modern tool usage: Proficiency to use computational tools for problem solving.
- **PO.8 Communication**: ability to communicate effectively (technical and non-technical context) in written and oral form.
- **PO.9 Design/development of solutions**: Skills to work effectively and professionally in multi-disciplinary groups to solve complex chemical engineering problems.
- **PO.10** Individual and team work: The ability to work effectively and professionally on projects both independently and as a part of a group/team.
- PO.11 Life-long learning: The ability to be self-learners and lifelong learners.
- **PO.12** The engineer and society: The motivation to develop and lead entrepreneurial projects for societal benefit.

Degree Specific Outcomes for chemical engineering are as follows:

PSO.1 Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant.

- **PSO.2 Process Intensification:** Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.
- **PSO.3** Specialization: students will be specialized in the areas of petroleum, energy and environment related fields.

C. Assessment Plan:

Criteria	Description	Maximum Marks						
	Sessional Exam I (Open Book)	20						
Internal Assessment	Sessional Exam II (Open Book)	20						
(Summative)	In class Quizzes, Assignments, Mini-	30						
	Project (Accumulated and Averaged)							
End Term Exam	End Term Exam (Open Book)	30						
(Summative)								
	Total	100						
Attendance	A minimum of 75% Attendance is required to be maintained by a student to be							
(Formative)	qualified for taking up the End Semeste	qualified for taking up the End Semester examination. The allowance of 25%						
	includes all types of leaves including medic	cal leaves.						
Make up Assignments	No makeup assignments will be given.							
(Formative)								
Projects	Each group of 2-3 students will submit a project on a topic relevant to the design							
	of chemical reactors applicable in process	plants. The details of this component will						
	be discussed during the lectures.							

D. SYLLABUS

Isothermal non-ideal flow reactors, RTD in chemical reactors, distribution functions. Conversion in non-ideal flow reactors, Single and multi-parameter models for non-ideal flow, Concepts of mixing, Micro and macro mixing. Heterogeneous reactions, Rate equation for heterogeneous systems, Contacting patterns for two phase systems, Fluid particle non-catalytic reactions, Different models, Derivation of rate equations, Application to design Fluid-fluid non- catalytic reactions. Introduction to Slurry, Trickle bed reactors, and Fluidized bed reactors.

E. BOOKS

Fogler, H. S., Elements of Chemical Reaction Engineering, 4th ed., Prentice-Hall of India, Delhi, 2003.

Levenspiel, O., Chemical Reaction Engineering, 3rd ed., Wiley India Pvt Ltd., 2010.

Smith, J. M., Chemical Engineering Kinetics, 3rd ed., McGraw-Hill, 1981.

Carberry, J. J., Catalytic Reaction Engineering, McGraw-Hill, 1976.

Levenspiel, O., The Chemical Reactor Omnibook, OSU Bookstores, Corvallis Oregon, 1993.

Froment, G. F., and Bischoff, K. B., Chemical Reactor Analysis and Design, 3rd ed., John Wiley and Sons, 2010.

F. Lecture Plan:

Lec No	Topics	Session Outcomes	Model of Delivery	Corresponding CO	Mode of assessing the
1,2,3	Revision of Chemical Reaction Engineering-I	Revise the fundamentals with applications taught in Chemical Reaction Engineering I Course	Lecture	NA	NA
4	RTD Concept	Introducing the concept of Residence Time Distribution	Lecture	1606.1	Mid-Term I End Term Assignment/Quiz/Mini Project
5	Age Distribution of Fluid	Introducing the experimental methods for calculating age distribution of fluids	Lecture	1606.1	Mid-Term I End Term Assignment/Quiz/Mini Project
6	Step and Pulse Experiments, Convolution Integral	Explaining the applied methods for mean residence time and exit age distribution (E) calculation	Lecture	1606.1	Mid-Term I End Term Assignment/Quiz/Mini Project
7	Non Ideal Reactor Conversion	Calculating the conversion in non- ideal flow reactors	Lecture	1606.1	Mid-Term I End Term Assignment/Quiz/Mini Project
8,9,10	Non Ideal Flow Models- Compartment Model	Explaining the fundamentals of compartment model for E calculations	Lecture	1606.2	Mid-Term I End Term Assignment/Quiz/Mini Project
, 2, 3	Non Ideal Flow Models- Dispersion Model	Explaining the fundamentals of dispersion model for E calculations	Lecture	1606.2	Mid-Term I End Term Assignment/Quiz/Mini Project
14,15,16	Non Ideal Flow Models- Tank In Series Model	Explaining the fundamentals of tank in series model for E calculations	Lecture	1606.2	Mid-Term I End Term Assignment/Quiz/Mini Project
17,18,19	Non Ideal Flow Models- Pure Convective Model	Explaining the fundamentals of pure convective model for E calculations	Lecture	1606.2	Mid-Term I End Term Assignment/Quiz/Mini Project
20	Mixing Concepts	Introducing the concepts of degree of segregation and earliness of mixing in RTD calculation	Lecture	1606.2	Mid-Term I End Term Assignment/Quiz/Mini Project

21,22	Heterogeneous Reactions- Introduction	Introducing the heterogeneous chemical engineering systems	Lecture	1606.3	Mid-Term II End Term Assignment/Quiz/Mini Project
22,24,25,26	Solid Catalysed Reactions	Explaining the mechanism of heterogeneous reactions in presence of solid catalysts and evaluating the performance of different flow reactors	Lecture	1606.3	Mid-Term II End Term Assignment/Quiz/Mini Project
27,28	Packed Bed Catalytic Reactors	Describing the basics of packed bed reactors with performance evaluation for different design considerations	Lecture	1606.4	Mid-Term II End Term Assignment/Quiz/Mini Project
29,30,31	Fluidized Bed Catalytic Reactors	Explaining the behaviour and performance of fluidized bed reactors using different hydrodynamic models	Lecture	1606.4	Mid-Term II End Term Assignment/Quiz/Mini Project
32,33	Catalyst Deactivation	Explaining the catalyst decay mechanism and its effect on reactor performance	Lecture	1606.4	Mid-Term II End Term Assignment/Quiz/Mini Project
34,35,36	Three Phase Reactors	Describing the fundamentals of three phase reactors with their performance evaluation	Lecture	1606.4	Mid-Term II End Term Assignment/Quiz/Mini Project
37,38,39	Fluid-Fluid Reactions: Kinetics and Design	Explaining the factors involved in kinetic estimation and designing of fluid-fluid reactions	Lecture	1606.5	End Term Assignment/Quiz/Mini Project
40,41,42	Fluid-Particle Reactions: Kinetics and Design	Explaining the factors involved in kinetic estimation and designing of fluid-particle reactions	Lecture	1606.5	End Term Assignment/Quiz/Mini Project

G. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES									CORRELATION WITH PROGRAM SPECIFIC OUTCOMES				
		РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	РО 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CE 1606.1	Understand the fundamentals of Residence Time Distribution in chemical reactors	3	3					1	2	3	2				1	
CE 1606.2	Utilize different Flow Models to understand non-ideal reactor behaviour	3	3					1	2	3	2				1	
CE 1606.3	Analyze the heterogeneous and solid catalysed reactions for industrial applications	3	3					1	2	3	2				1	
CE 1606.4	Evaluate the performance of different industrial reactors such as packed bed, fluidized bed, and three phase reactors	3	3					1	2	3	2				1	
CE 1606.5	Apply the detailed kinetics for design of fluid-fluid and fluid-particle systems	3	3					1	2	3	2				1	

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation
MANIPAL UNIVERSITY JAIPUR

NSPIRED BY UNI

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Petroleum Refining Technology | CE 1653 | 3 Credits | 3 0 0 3

Session: Jan 20 - May 20 | Faculty: Ir. Nandana Chakinala | Class: Elective course

A. Introduction: Petroleum refining technology is a program elective course offered by chemical engineering department targeting students who wish to acquire enough background to pursue his/her specific area of interest in detail. This course presents the basic concepts of petroleum refining technology in a systematic manner and make the students appreciate the major refining processes. It trains the student to perform complete material and energy balances around the major refinery units.

B. Course Outcomes: At the end of the course, students will be able to

- **[1653.1].** To estimate the properties and specifications of crude/petroleum products and evaluate the crude oils
- [1653.2]. Describe major refinery operations and its significance
- **[1653.3].** Interpret and illustrate the effect of operating parameters on performance of major refinery operations
- **[1653.4].** Enhance the problem-solving skills by carrying out material balances around the major refinery units

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Program Outcomes for B.Tech. in chemical engineering are as follows.

POI. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

POIO. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

POIL. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

PSO.I. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

PSO.2. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.

PSO.3. Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

Criteria	Description	Maximum Marks					
	Sessional Exam I (Closed Book)	20					
Internal Assessment	Sessional Exam II (Closed Book)	20					
(Summative)	In class Quizzes and Assignments ,	30					
	Activity feedbacks (Accumulated and						
	Averaged)						
End Term Exam	End Term Exam (Closed Book)	30					
(Summative)							
	Total	100					
Attendance	A minimum of 75% Attendance is required to be maintained by a student to						
(Formative)	be qualified for taking up the End Ser	nester examination. The allowance of					
	25% includes all types of leaves includi	ng medical leaves.					
Make up Assignments	No make-up for missed quizzes/assi	gnments shall be allowed except in					
(Formative)	emergency situations with prior perm	ission of the instructor.					
Homework/ Home Assignment/	There are situations where a student	may have to work in home, especially					
Quiz	before a flipped classroom. Although tl	hese works are not graded with marks.					
(Formative)	However, a student is expected	to participate and perform these					
	assignments with full zeal since the ac	ctivity/ flipped classroom participation					
	by a student will be assessed and m	arks will be awarded. Un-announced					
	quizzes will be part of the lecture/tuto	orial.					

D. Assessment Plan:

E. SYLLABUS

Petroleum resources, petroleum industry in India. Composition and classification of petroleum crude, ASTM, TBP and FEV distillation. Refinery flowsheet-overview, Properties and specifications of petroleum products – LPG, Gasoline, naphtha, kerosene, diesel oil, lubricating oil, wax etc. Crude distillation-Atmospheric and Vacuum, Design and operation of topping and vacuum distillation units. Tube still furnaces. Solvent extraction processes for lubricating oil base stocks and for aromatics from naphtha and kerosene, solvent dewaxing. Thermal and catalytic cracking, vis-breaking and coking processes, reforming, hydro processing, alkylation, polymerization and isomerization, Utilities-Hydrogen production, Product blending, Sulphur recovery. Economics, Safety and pollution considerations in refineries.

F. TEXT BOOKS

 J.H. Gary, G.E. Handwerk and M.J. Kaiser, Petroleum Refining – Technology and Economics, 5th ed., CRC Press, New York, 2007

G. **REFERENCE BOOKS**

- I) Nelson, W. L., Petroleum Refinery Engineering, 4th ed., McGraw Hill, 1987
- 2) Rao, B.K.B., Modern Petroleum Refining Processes, Oxford, IBH, 2008
- 3) Watkins, R.N. Petroleum Refinery Distillation, 2nd ed., Gulf Publishing, Houston, TX, 1979
- 4) API Petroleum Refining Handbook, 1989
- 5) R.J Hengstebeck, Petroleum Processing, Mc Graw Hill, New York
- 6) J.G Speight, The Chemistry and Technology of Petroleum, 3rd ed., Marcel-Dekker, 1999
- 7) J.G Speight and Baki Ozum, Petroleum refining processes (Chemical Industries), CRC Press

Lecture Plan:

LEC	TOPICS	Session Outcome	Mode of	Corresponding	Mode of
NO			Delivery	СО	assessing CO
I	Introduction to conventional crude oil resources, oil wells, world-wide oil distribution, oil usage	To understand the significance of crude oil in todays economy	Lecture		Quiz, Mid term I, End Term
2	Refinery process flowsheet – Major operations	To understand the major unit operations of petroleum refinery	Lecture	1653.2	Quiz/Assignment, Mid term I, End Term
3	Refinery products - Physical and Chemical properties	To identify and estimate the specifications of crude and petroleum products	Lecture	1653.1	Quiz/Assignment, Mid term I & End term
4	Refinery feedstocks - Crude oil properties and crude oil classification	To estimate the properties of crude /petroleum products and evaluate the crude oils	Lecture	1653.1	Quiz/Assignment, Mid term I & End term
5-6	Crude distillation – TBP and gravity mid percent curves	To understand different types of graphs associated with refinery calculations	Lecture	1653.1	Assignment, Mid term I & End term
7-8	Crude distillation – Atmospheric and Vacuum distillation, Typical boiling range cut fractions	To understand the fractionation of crude oil and analyse the petroleum cuts	Lecture	1653.2 & 1653.3	Quiz, Mid term II & End term
9	Coking – Types, Properties and uses of petroleum coke	To acquire knowledge of various types of cokes and their application	Lecture	1653.2	Quiz, Mid term II & End term
10,11	Coking – Delayed coking, Flexi coking and Fluid coking	To acquaint major process operations in refinery and understand its significance	Lecture	1653.2 & 1653.3	Quiz/Assignment, Mid term II & End term
12	Coking – Material balance delayed coker	To understand and perform material balance of coking unit	Lecture	1653.4	Assignment, Quiz, Mid term II & End term
13,14	Fluid Catalytic Cracking – Process, New designs of FCC-Regenerator system	To acquire knowledge of significant conversion processes of crude to petroleum products	Lecture	1653.2 & 1653.3	Quiz/Assignment, Mid term II & End term

15-17	Fluid Catalytic Cracking – Cracking reactions, Process variables, Yield estimation, Case-study	To understand the effect of various process variables on performance of FCC	Lecture	1653.3 & 1653.4	Quiz/Assignment, Mid term II & End term
18, 19	Catalytic Reforming and Isomerization – Process, Reactions, Reactor design	To understand the effect of various process variables on performance of reforming unit	Lecture	1653.2 & 1653.3	Assignment, Mid term II & End term
20	Catalytic Reforming and Isomerization – Isomerization Yields, Capital and Operating costs, case study	To perform material balance of catalytic reformer and isomerization unit	Lecture	1653.4	Mid term II & End term
21	Hydrotreating – Process Variables, Reactions	To understand the effect of various process variables on performance of hydrotreating	Lecture	1653.3	Quiz, Mid term I, End Term
22	Hydrotreating - material balance Case study	To understand and perform material balance of coking unit	Case study	1653.4	
23	Catalytic Hydrocracking – Process, Process Variables	To understand the effect of various process variables on performance of hydrocracking unit	Lecture	1653.3	Quiz/Assignment, Mid term I, End Term
24	Catalytic Hydrocracking – Hydrocracking yields, Material balance case study	To understand and perform material balance of coking unit	Case study	1653.4	Quiz/Assignment, Mid term I & End term
25, 26	Alkylation and Polymerization – Feedstocks, Types of Process, Comparison of processes	To understand the significance of alkylation process	Lecture	1653.2	Quiz/Assignment, Mid term I & End term
27, 28	Alkylation and Polymerization –Process variables, Reactions, Yields	To understand and perform material balance of coking unit	Lecture	1653.4	Assignment, Mid term I & End term
29	Supporting processes – Hydrogen production, Gas processing	To acquire the knowledge of gas processing operations in refinery	Lecture	1653.2	Quiz/Assignment, Mid term II & End term
30	Supporting processes – Acid gas removal, Sulfur recovery processes	To acquire the knowledge of various supporting processes in refinery	Lecture	1653.2	Quiz, Mid term II & End term
31, 32	Product Blending – Blending for Octane number, Blending for Reid Vapour Pressure, Blending for other properties	To acquire the knowledge of blending operations in refinery	Lecture	1653.4	Quiz, Mid term II & End term
33,34	Product Blending – Case studies	To perform blending calculations and enhancing problem solving skills	Case study	1653.4	Quiz/Assignment, Mid term II & End term

35	Lubricating oil blending stocks – Propane deasphalting	To understand the Lube oil processing operations	Lecture	1653.2	Assignment, Quiz & End term
36	Lubricating oil blending stocks – Viscosity index improvement and solvent extraction	To understand the Lube oil processing operations	Lecture	1653.2	Quiz/Assignment, End term
37	Lubricating oil blending stocks – Dewaxing	To understand the Lube oil processing operations	Lecture	1653.2	End term
38,39	Economic Evaluation in refineries	To understand the refining costs and margins and its effect on oil markets	Lecture	1653.4	

H. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES			CORF PRO	CORRELATION WITH PROGRAM SPECIFIC OUTCOMES									
		PO I	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO I	PSO 2	PSO 3
CE 1653.1	To estimate the properties and specifications of crude/petroleum products and evaluate the crude oils	2	2											2		3
CE 1653.2	Describe major refinery operations and its significance	2	2		I				2	3		2		I		3
CE 1653.3	Interpret and illustrate the effect of operating parameters on performance of refinery operations	2	2		Ι			2	I	I				2		3
CE 1653.4	Enhance the problem-solving skills by carrying out material balances around the major refinery units	2	2				2							2		3

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Environmental Systems Engineering | CE 1654/1652 | 4 Credits | 3 | 0 4

Session: January 20 - May 20 | Faculty: Dr. Anees Y. Khan | Class: VI Semester

- A. Introduction: This course is designed to bring together and integrate in a single text the more general subject matter of the three principal areas of environmental engineering-air, water and solid-waste management. In this course, students will be introduced with a unique approach to the overall concept of environmental engineering, an approach that emphasizes the relationship between the principles observed in natural purification processes and those employed in engineered processes.
- B. Course Outcomes: At the end of the course, students will be able to
 - **[1654.1].** Define, analyse and quantify the environmental quality in describing physical, chemical, mathematical and biological principles.
 - **[1654.2].** Understand the processes by which the environment assimilates waste material/pollution from human activities and industries.
 - **[1654.3].** Have a clear understanding of engineering principles and practices involved in the design and operation of conventional environmental engineering works.
 - **[1654.4].** Acquire the fundamental knowledge of different treatment technologies to curb environmental pollution-air, water and solid-wastes.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Program Outcomes for B.Tech. in chemical engineering are as follows.

The Graduates of Chemical Engineering from MUJ will have:

POI. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

POI0. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

POIL. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

POI2. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

[PSO.1]. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

[PSO.2]. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.

[PSO.3]. Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

D. Assessment Plan:

Criteria	Description	Maximum Marks						
	Sessional Exam I (Open Book)	20						
Internal Assessment	Sessional Exam II (Closed Book)	20						
(Summative)	In class Quizzes and Assignments ,	30						
	Activity feedbacks (Accumulated and							
	Averaged)							
End Term Exam	End Term Exam	30						
(Summative)	(Closed Book + Open Book)							
	Total	100						
Attendance	A minimum of 75% Attendance is required to be maintained by a student to be							
(Formative)	qualified for taking up the End Semest	er examination. The allowance of 25%						
	includes all types of leaves including medi	cal leaves.						
Homework/ Home & Class Assignment	Home works will be assigned in between	the lectures along with the due date for						
(Formative)	handing it over. No late assignments han	ded after the due date shall be accepted						
	under any circumstance. Assignments v	vill also be given during lecture hours.						
	Students will be given open-ended proble	ems/case-studies as a part of assignments.						
	It is expected that the students shall wo	rk on the assignments independently and						
	not 'copy' the solutions from each other. Students are encouraged to discuss							
	problems with their instructor in lecture	hours. Students are advised to meet the						
	instructor in case of any difficulty rela	ted to assignments and course related						
	matters. Total 10 assignments will be give	en.						

E. SYLLABUS

Air Pollution- fundamentals and standards, effects, origins, fate of pollutants, greenhouse effect, acid rain, ozone, dispersion of pollutants, control of stationary and mobile sources.

Solid Wastes- sources, management, processing, and disposal, Waste to Energy

Hazardous Wastes- definition & classification, sources, management, RCRA, HSWA, CERCLA and SARA- What are these? Treatment technologies and disposal

Water Pollution- water chemistry and water quality, water quality standards, treatment systems: coagulation and flocculation; sedimentation and filtration; disinfection, adsorption; membrane processes, Wastewater Characteristics- water quality, constituents, biochemical oxygen demand, dissolved oxygen sag curve, Analysis and Selection of Wastewater Flowrates and Constituents Loadings, standards, onsite, preliminary, primary, secondary and tertiary treatments, Treatment techniques – Physical unit operations; biological processes; chemical unit processes; sludge and biosolids treatment reuse and disposal. Water Reuse

F. TEXT BOOKS

Davis and Cornwell, Introduction to Environmental Engineering, 5th edition, McGraw-Hill, 2014. Metcalf and Eddy, Wastewater Engineering: Treatment and Reuse, 4th edition, McGraw-Hill, 2002.

G. REFERENCE BOOKS

Masters, Gilbert. M., Ela, Wendell. P., *Introduction to Environmental Engineering and Science,* Pearson Education, Inc., 2015.

Peavy, H. S., Rowe, D. R., Tchobanoglous, G., *Environmental Engineering*, McGraw Hill, 2013.
Bhatia, S.C., *Environmental Pollution and Control in Chemical Process Industries*, Khanna Publishers, Delhi, 2001.
Perkins, Henry. C., *Air Pollution*, McGraw Hill, 1974.

H. Lecture Plan:

Class Number	Topics	Session Outcome	Mode of Delivery	Correspondin g Course Outcome	Mode of Assessing the Outcome
1-2	Introduction to Environmental System Engineering, Environmental acts and rules	Basic understanding of Environmental acts and rules	Lecture and interaction	СОІ	In Class Quiz
3-4	Air Pollution – fundamentals and standards	Define, analyse and quantify the environmental quality	Lecture and interaction	CO I and CO 2	
5-6	Air Pollution –effects, origins, fate of pollutants	n describing physical, chemical, mathematical and biological principles.	Lecture and interaction		
7-8	Air Pollution – greenhouse effect, acid rain, ozone	Acquire the fundamental	Lecture and interaction		
9-10	Air Pollution – dispersion of pollutants	different treatment technologies to curb environmental pollution-air, water and solid-wastes	Lecture and interaction		l st Sessional
					Home Assignment
11-13	Air Pollution – control of stationary and mobile sources		Lecture and interaction		I st Sessional
14-15	Solid Wastes – sources, management	Understand the processes by which	Lecture and interaction	CO I CO 2	ET Exam Home
16-18	Solid Wastes – processing, and disposal	the environment assimilates waste material/pollution from human activities and industries	Lecture and interaction		Assignment
		First sessiona	l exam		
19	Waste to Energy		Lecture and interaction		
20	Hazardous Wastes– definition & classification, sources, management		Lecture and interaction		
21	RCRA, HSWA, CERCLA and SARA- What are these?		Lecture and interaction		
22-24	Hazardous Wastes– treatment technologies and disposal		Lecture and interaction		11 Sessional
25	Water Pollution – water chemistry and water quality	Acquire the fundamental knowledge of	Lecture and interaction	CO I CO 2 CO 3	Assignment

26	Water Pollution – water quality standards, treatment systems	different treatment technologies to curb environmental pollution-air, water and solid-wastes	Lecture interaction	and		
27	Water Pollution – treatment system: coagulation and flocculation		Lecture interaction	and		
28-29	Water Pollution – treatment system: sedimentation and filtration		Lecture interaction	and		
30-32	Water Pollution – treatment system: disinfection, adsorption		Lecture interaction	and		II Sessional ET Exam Home Assignment
33	Water Pollution – treatment system: membrane processes		Lecture interaction	and		
34	Wastewater Characteristics- water quality, constituents		Lecture interaction	and		
35	Wastewater – biochemical oxygen demand		Lecture interaction	and		II Sessional
	Wastewater – dissolved oxygen sag curve		Lecture interaction	and		ET Exam Home Assignment
		Second sessior	nal exam			
36-37	Analysis and Selection of Wastewater Flowrates and Constituents Loadings	Have a clear understanding of engineering principles and practices	Lecture interaction	and	CO 3	
38	Wastewater – standards, onsite, preliminary, primary, secondary and tertiary treatments	involved in the design and operation of conventional environmental engineering works.				Home Assignment
39-45	Wastewater treatment techniques – biological processes (selected)		Lecture interaction	and	CO 3	
46-48	Wastewater treatment techniques – chemical unit processes (selected)		Lecture interaction	and	CO 3	

49-50	Wastewater – sludge and biosolids treatment reuse and disposal		Lecture interaction	and	CO 3	ET Exam	
						Home Assignment	
	End Term exams						

I. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES			CORRELATION WITH PROGRAM SPECIFIC OUTCOMES										
		PO 1	PO 2	PO	PO	PO	PO	PO 7	PO	PO	PO	PO	PO	PSO 1	PSO 2	PSO 3
CE 1654.1	Define, analyse and quantify the environmental quality in describing physical, chemical, mathematical and biological principles	3	3	0	2	1	3	3	3	0	0	2	0	1	1	3
CE 1654.2	Understand the processes by which the environment assimilates waste material/pollution from human activities and industries	2	2	0	0	0	2	2	2	0	0	1	0	2	1	0
CE 1654.3	Have a clear understanding of engineering principles and practices involved in the design and operation of conventional environmental engineering works	3	3	2	3	2	2	3	3	2	0	3	0	3	2	3
CE 1654.4	Acquire the fundamental knowledge of different treatment technologies to curb environmental pollution-air, water and solid-wastes	2	2	2	3	2	2	3	3	2	0	2	1	2	1	3

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Industrial Psychology | PS 1601 | 3 Credits | 3 0 0 3

Session: Jan 20 - May 20 | Faculty: Dr. Suyesha Singh | Semester: VI

A. **Introduction:** This course is offered by Department of Psychology as an elective course. Industrial Psychology is concerned with the study of human behaviour in those aspects of life that are related to the production, distribution and use of the goods and services in our civilization. "Workplace psychology "refers to the practice of applying psychological principles and practices to a work environment in order to solve problems and make improvements.

B. **Course Objectives:** At the end of the course, students will be able to:

[PS1601.1] Explain the nature, scope and methods of Industrial Psychology.

[PS1601.2] Comprehend principles and techniques of employee Selection and recruitment.

[PS1601.3] Acquire Skills required for conducting effective training and development in industrial setup

[PS1601.4] Understand the process of Job Performance Evaluation and Appraisal

[PS1601.5] Evaluate the implications of Physical working conditions, Work Schedules, Accidents and safety in work place

[PS1601.6] Critically evaluate and apply the theories of motivation, job satisfaction, job involvement

[PS1601.7] Acquire skills and learn techniques to maintain work-life balance and manage work stress

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Program Outcomes for B. Tech. in Chemical Engineering are as follows.

The Graduates of Chemical Engineering from MUJ will have:

- **PO.1** A thorough knowledge of the basic science, engineering and mathematics and apply that to the underline practice of Chemical Engineering
- **PO.2** Ability to apply these basic principles to solve real world problems in a broad range of career paths
- **PO.3** The skills of making smart decisions on process feasibility based in technical and economic evaluation
- **PO.4** The ability to appreciate the social, ethical, cultural, environmental and safety issues related to chemical engineering profession
- **PO.5** The ability to develop experimental procedure/protocol to test hypothesis and analysis meaningful interpretation of the generated data
- **PO.6** The skill to generate sustainable engineering solutions to societal and industrial problems
- **PO.7** Proficiency to use computational tools for problem solving

- **PO.8** The ability to communicate effectively (technical and non-technical context) in written and oral form
- PO.9 Skills to work effectively and professionally in multi-disciplinary groups
- **PO.10** The ability to work effectively and professionally on projects both independently and as a part of a group/team
- **PO.11** The ability to be self-learners and lifelong learners
- PO.12 The motivation to develop and lead entrepreneurial projects for societal benefit

Degree Specific Outcomes for Chemical Engineering are as follows:

- **PSO.1** The graduates will possess a working knowledge of fundamental principles such as basic chemistry, material and energy balances, physical and chemical equilibria, transport and rate processes, separation processes, chemical process control, reaction engineering
- **POS.2** The graduates will be able to design sustainable chemical processes including technoeconomic feasibility of the process
- **PSO.3** The graduates will minor in either Petroleum Engineering or Energy and Environment depending on their choice of interest
- **PSO.4** The graduates will have an aptitude for learning new innovative technologies in chemical and allied fields of chemical engineering or peruse advanced studies

D. Assessment Plan:

Criteria	Descri ption	Maximum Marks					
	Sessional Exam I (Closed	20					
Internal Assessment	Book)						
(Summative)	Sessional Exam II (Closed	20					
	Book)						
	In class Quizzes and	30					
	Assignments, Activity						
	feedbacks (Accumulated and						
	Averaged)						
End Term Exam	End Term Exam (Closed Book)	30					
(Summative)							
	Total	100					
Attendance	A minimum of 75% Attendance is required to be maintained by a						
(Formative)	student to be qualified for t	taking up the End Semester					
X	examination. The allowance of 2	5% includes all types of leaves					
	including medical leaves.						
Make up Assignments	Students who misses a class wi	ll have to report to the teacher					
(Formative)	about the absence. A makeup as	signment on the topic taught on					
	the day of absence will be given w	which has to be submitted within					
UPT	a week from the date of absence.	No extensions will be given on					
	this. The attendance for that pa	rticular day of absence will be					
	marked blank, so that the student is not accounted for absence.						
	These assignments are limited to a maximum of 5 throughout the						
	entire semester.						
Homework/ Home	There are situations where a stud	lent may have to work in home,					
Assignment/ Activity	especially before a flipped classroom. Although these works are						
Assignment	not graded with marks. Howe	ver, a student is expected to					

(Formative)	participate and perform these assignments with full zeal since the
	activity/ flipped classroom participation by a student will be
	assessed and marks will be awarded.

E. SYLLABUS

Introduction to Industrial & Organizational Psychology (I/O): Nature, scope and methods of study; Challenges for I/O psychology, problems for I/O psychologists; Human engineering. Employee Selection and recruitment: Principles and techniques. Training & development: Principles and techniques. Job Performance Evaluation and Appraisal: Meaning and nature, techniques. Working conditions: Physical working conditions, Work Schedules; Accidents and safety in work place. Motivation and Work: Theories of motivation, job satisfaction, job involvement. Work stress and management: Nature and meaning, sources, individual differences, consequences of job stress; Stress management techniques.

TEXT BOOKS

T1: Schultz, S.E & Schultz, D.P., Psychology and Work Today: An introduction to Industrial and Organisational Psychology. Pearson, 2014.

T2: Landy, F.L. & Conte, J.M.2nd Edition, Work in the 21st Century: An Introduction to Industrial and Organizational Psychology. Wiley India Private Limited,2009.

REFERENCE BOOKS

VSPIRI

R1: Blum, M.L. & Naylor, J.C., Industrial psychology: Its theoretical and social foundations. New Delhi: CBS Publishers & Distributors, 2002.

R2: Riggio, R.R., Introduction to Industrial and Organizational Psychology. Routledge

R3: APA Handbook of industrial and organizational psychology-volumes: I, II& III, New York: American Psychological Association, 2011.

F. Lecture Plan:

Lec No.	Topics	Session Objective	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
1	Introduction and Course Hand-out briefing	To acquaint and clear teachers expectations and understand student expectations	Lecture		NA
2	Introduction to Industrial & Organizational Psychology (I/O)	Define industrial psychology and its goals	Lecture	PS1601.1	Written test, First Sessional and end Sem Exam
4-5	Nature, scope and methods of study	understand various research method used in industrial psychology and scope of the field	Lecture	PS1601.1	
6	Challenges for I/O psychology, problems for I/O psychologists; Human engineering.	Discuss challenges and problems of an Industrial Psychologist	Lecture	PS1601.1	Class test, First Sessional and end Sem Exam
7-8	Employee Selection and recruitment: Principles and techniques.	Understand the principles and process of employee selection	Lecture	PS1601.2	Class test, First Sessional and end Sem Exam
9-10	psychological testing and assessment for employee selection & Job analysis	Explain role of psychological test in employee selection	Lecture	PS1601.2	Class test, First Sessional and end Sem Exam
	Test of Unit I and Unit II	Nature,scope,goals,methods ofindustrialpsychology.Principlesandpracticesinemployee selectionand recruitment.			Class test, First Sessional and end Sem Exam
12	Meaning and need of training in an organization	Discuss the importance training and development in an organization	Lecture B	PS1601.3	Class test, First Sessional and end Sem Exam
13-15	Steps of Training design	Design and execute a training and development programme	Experiential learning based on group activity	PS1601.3	First Sessional and end Sem Exam

16	Techniques for Training	Apply various techniques of training as part of group task/activity	Group activity	PS1601.3	Class test, First Sessional and end Sem Exam
17	Evaluation of Training Program	Critically evaluate the importance and implications of training programme	Lecture	PS1601.3	Class test, First Sessional and end Sem Exam
18	Case Study				1
19-21	Meaning and importance of Job performance evaluation	Discuss the importance and implications of Job performance evaluation	Lecture	PS1601.4	Class test, Second Sessional and end Sem Exam
22-23	Sources of Job performance evaluation	Identify sources of Job Performance evaluation	Lecture	PS1601.4	Class test, Second Sessional and end Sem Exam
24-25	Appraisal rating systems and non- rating evaluation methods	Differentiate between rating and non-rating evaluation methods	Lecture	PS1601.4	Class test, Second Sessional and end Sem Exam
26	Case study				
27	Meaning of working condition	Discuss the major physical conditions that affects the employee health	Lecture	PS1601.5	Class test, Second Sessional and end Sem Exam
28	Concept and types of Work Schedules	Explain how work schedules can affect employee health and well- being.	Lecture	PS1601.5	Class test, Second Sessional and end Sem Exam
29-30	Occupational Health and Safety	Describe the causes of accident and steps that can be taken to prevent them.	Lecture	PS1601.5	Class test, Second Sessional and end Sem Exam
31	Meaningofmotivationandfactoreffectingmotivationofemployee	Discuss the term motivation and its factor effecting motivation of employee	Flipped classroom	PS1601.6	Home Assignments, Second Sessional and end Sem Exam
32-33	Theories of motivation	Discuss various theory of motivation	Lecture	PS1601.6	Class test, Second Sessional and end Sem Exam

34-35	Job satisfaction and job involvement	Understand the concept of job satisfaction and its relationship with employee growth	Lecture	PS1601.6	Class test Second Sessional and end Sem Exam
36-37	Nature and meaning of stress.	Discuss and describe work related stress and its consequences.	Lecture	PS1601.7	Class test Second Sessional and end Sem Exam
38-40	COnsequences of job stress; Stress management techniques	Learn skills and strategies to manage work related stress and maintain work-life balance.	Lecture	PS1601.7	Class test Second Sessional and end Sem Exam
41	Case study				No.

G. Course Articulation Matrix: (Mapping of COs with POs and PSOs)

СО	Statement		CORRELATION WITH PROGRAM OUTCOMES CORRELATION WITH PROGRAM SPECIFIC OUTCOMES												ITH FIC		
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
[PS1601.1]	Explainthenature, scopeandmethodsofIndustrialPsychology	-	_	2							10				_	0	
[PS1601.2]	Comprehend principles and techniques of employee Selection and recruitment	1		2			Y					5	11	2			
[PS1601.3]	Acquire Skills required for conducting effective training and development in industrial setup													adde		1	
[PS1601.4]	Understand the process of Job Performance Evaluation and Appraisal			2	~			~			_	1	y		TUUL		
[PS1601.5]	Evaluate the implications of Physical working conditions, Work Schedules, Accidents and safety in work place						3							6			1
[PS1601.6]	Critically evaluate and apply the theories of motivation, job satisfaction, job involvement										(3	Y			
[PS1601.7]	Acquire skills and learn techniques to maintain work-life balance and manage work stress		2	H. L	ow C	Corre	elatio	on; 2-	Mod	lerat	e Co	rrela	tion;	; 3- Su	bstan	tial Co	orrelatio
	VS	D			ŀ	E	D		F	3	Y		Ĺ	1	4		

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Process Plant Design | CE 1705/1701 | 3/4 Credits | 3 0 0 3/3 1 0 4

Session: July – Dec 2019 | Faculty: Nandana Chakinala | Class: VII Semester

- A. Introduction: This course on Process Plant Design is a core course designed for the undergraduate students of chemical engineering. This course provides the student an insight into various aspects of process design by coupling chemical engineering principles to the principles of economics. It covers in detail the preliminary process synthesis, developing base case design and use of heuristics for choosing the best from various process alternatives.
- B. Course Outcomes: At the end of the course, students will be able to
 - [1705.1]. Understand concepts of process design and economics.
 - [1705.2]. Analyse, synthesize and design processes for manufacturing products commercially.
 - **[1705.3].** Develop skills in designing equipment optimally based on economics and process considerations.
 - **[1705.4].** Use commercial flow sheeting software to simulate processes and design process equipment for enhancing employability in industries/consultancy firms.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Program Outcomes for B.Tech. in chemical engineering are as follows.

The Graduates of Chemical Engineering from MUJ will have:

POI. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

POIO. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

POIL. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

PSO.I Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

POS.2 Process Intensification: graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.

PSO.3 Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

D. ASSESSMENT PLAN

Criteria	Description	Maximum Marks					
	Sessional Exam I (Open Book)	20					
Internal Assessment	Sessional Exam II (Open Book)	20					
(Summative)	In class Quizzes, Assignments & Project	30					
End Term Exam (Summative)	End Term Exam (Open Book)	30					
	Total	100					
Attendance (Formative)	A minimum of 75% Attendance is required qualified for taking up the End Semester e includes all types of leaves including medica	to be maintained by a student to be examination. The allowance of 25% al leaves.					
Make up Assignments (Formative)	Make up Assignments No make-up for missed quizzes/assign emergency situations with prior permission						

Home and Class Assignments and Project (Formative) Home and Class assignments are integral part of this course. Mainly design oriented problems will be assigned along with the due date for handing it over. Projects shall be assigned at the beginning of the semester. Students are expected to work in groups. A detail project report and viva voce are part of the grading process for Mini project

E. SYLLABUS

Process Design and Development- The hierarchy of chemical process design, General design considerations, the nature of process synthesis & analysis, engineering economics, economic decision making **Developing a conceptual design and finding the best flowsheet-** input information: batch vs continuous input-output structure flowsheet, recycle structure of flowsheet, separation system, heat exchanger networks, cost diagram and quick screening of process alternatives

Plant Design- Process design development and general design considerations

Process Economics- Economic feasibility of project using order-of-magnitude cost estimates, plant and equipment cost estimation, product cost estimation

Design Tools and Application- preliminary process optimization, Application of Aspen Plus in different processes.

F. TEXT BOOKS

TI James M. Douglas, "Conceptual Design of Chemical Processes", McGraw Hill, New York, International Edition (1988).

T2 Robin Smith, "Chemical Process Design", International Editions, McGraw Hill, Singapore (2000).

T3 Warren D. Seider, J. D. Seader, and Daniel R. Lewin, "Product & Process Design Principles: Synthesis, Analysis, and Evaluation", Wiley-India Edition, India, 2nd Edition (2004).

G. REFERENCE BOOKS

RI Richard Turton, Richard C. Bailie, Wallace B. Whiting, Joseph A. Shaeiwitz, and Debangsu Bhattacharyya, "Analysis, Synthesis, and Design of Chemical Processes", International Edition, Pearson Education International, New Jersey (2012).

R2 Dale F. Rudd, and Charles C. Watson, "Strategy of Process Engineering", John Wiley & Sons, New York (1968).

R3 Max S. Peters, Klaus D. Timmerhaus and Ronald E. West, "Plant Design and Economics for Chemical Engineers", McGraw Hill India, 5th Edition, (2011).

H. TUTORIALS

Short quizzes will be conducted during lecture hour. No late-comers will be allowed to take the quiz, MAKE SURE YOU ARE ON TIME! No make-up for missed short quizzes will be allowed. Problem discussion and solution shall also be a part of the tutorials.

I. HOME/CLASS ASSIGNMENTS AND PROJECT

Home assignment is an integral part of this course. No late assignments/projects handed after the due date shall be accepted under any circumstance. It is expected that the students shall work on the assignments independently and not 'copy' the solutions from each other. All assignments are to be done in pen, only and are to be handed in on A4 size white paper

Conceptual design oriented problem/case study will be given as mini project. Students need to make use of Aspen Plus/ HYSYS to simulate the process flowsheet and design the major equipments in the process flow sheet. Students need to submit a project report detailing the study carried out, by the last instruction day.

J. NOTICES

All notices concerning this course will be mailed to students. Students are responsible for regularly checking their group email ID.

K. LECTURE PLAN

Lecture No.	Topics to be covered	Session Outcome	Mode of Delivery	Corresponding CO	Mode of Assessing CO
1-2	Introduction to Process Design Decisions: Process Synthesis and Analysis.	To acquaint basic knowledge of synthesis and analysis	Lecture	1705.1	Quiz
3-5	Nature of Process Synthesis and Analysis: Creative aspects, Hierarchical approach to conceptual design, HDA Process. Preliminary Process Synthesis with examples.	To acquaint the basic steps of designing a process with few case studies	Lecture	1705.1	Quiz, Mid Term I, End Term
6-8	Conceptual Design of Chemical Processes: Flowsheet synthesis, Design aspects of Batch vs. Continuous, input/output structure of flowsheet, recycle structure of flowsheet	To perform material balances required in synthesizing a process flow sheet	Lecture	1705.2	Mid Term I, Quiz, End Term
9-11	Flowsheet Synthesis	Hands on calculation for synthesizing a process flow sheet	Tutorial	1705.2	Mid Term I, Assignment, End Term, Mini project
12-14	Basic principles of reactor design, Reactor non ideality, residence time distributions, types of reactors and selection criteria	To assess the reactor performance using design equations	Flipped Class	1705.3	Mid term I, Assignment and End term
15-16	Reactor design and cost estimation	Hands on calculations for reactor design	Tutorial	1705.3	Mid term I, Assignment and End term, Mini Project

17-19	Introduction, types of separations, criteria for selection of separation processes	To acquaint the basic knowledge of industrial separation processes	Lecture & Flipped Class	1705.1	Quiz
20-24	Design of Separation processes: Guidelines, design of distillation columns, energy integration of distillation columns, Tutorials on design of absorption column and distillation columns	To perform design calculations of the conventional separation units	Lecture & Tutorial	1705.3	Mid Term II, Quiz and Assignment, End Term, Mini Project
25-29	Process Heat integration: Concepts and basic principles of heat integration, Identification of area and cost targets, Pinch technology for heat exchanger network design	To synthesize the maximum energy recovery design of a given process	Lecture & Case study	1705.3	Mid Term II, Assignment & End term
30-32	Economic Decision making: Case study of gas absorber	To apply the concepts of process design in a case study & design absorber-stripper flowsheet	Lecture & case study	1705.2	Mid Term II & End Term
33-37	Cost Diagram & quick screening of process alternatives: General concepts and principles, Lumped cost diagram and cost allocation diagram, Case study of HDA	To acquaint the basic knowledge of process economics concepts	Lecture	1705.1	Quiz & End Term
38-42	Chemical Project economics: Selection of project site, project cost estimation, cost model and depreciation, time value of money, measures of profitability, project evaluation, tutorial	To investigate the profitability of a chemical project	Lecture & Tutorial	1705.1	Assignment, Project & End term
43	Simulations: Concept of process simulation, Introduction to aspen plus simulation	To design entire process flow sheet using a commercial flow sheeting software	Flipped Classroom & Activity	1705.4	Mini Project

L. Course Articulation Matrix: (Mapping of COs with POs)

	CORRELATION WITH PROGRAM OUTCOMES													CORR	LATION	WITH	
со	STATEMENT													PROGRAM SPECIFIC			
															OUTCOMES		
		PO	PSO I	PSO 2	PSO 3												
		I	2	3	4	5	6	7	8	9	10	11	12				
CE 1705.1	Understand concepts of process design and	3	3	3	2	2	3	2					2	3	3	I	
	economics																
CE 1705.2	Analyse, synthesise and design processes for	3	3	3	2	I	2	3		2	2	2	2	3	3	2	
	manufacturing products commercially																
CE 1705.3	Develop skills in designing equipment optimally	2	2	2	2	2	2	3		2	2	2	2	3	3	2	
	based on economics and process considerations																
CE 1705.4	Use commercial flow sheeting software to simulate	I	2	I	I	I	2	3			2	2		3	3	3	
	processes and design process equipment for																
	enhancing employability in industries/consultancy																
	firms																

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering Department of Chemical Engineering Course Hand-out Chemical Process Industries | CE 1706 | 3 Credits | 3 0 0 3 Session: July 30 – Nov 27, 2019 | Faculty: Dr. Harsh Pandey | Class: Core Course

- A. **Introduction:** This course is offered by Dept. of Chemical Engineering as a core course. This course will cover the manufacturing of various chemicals and industrial gases related to chemical industry, which is an integral part of chemical sciences and engineering. Every chemical engineer should have knowledge on this content. It mainly covers the synthesis, industrial manufacture, process flow diagrams, properties and uses of various chemicals and industrial gases.
- B. Course Outcomes: At the end of the course, students will be able to

[CE1706.1]. Identify different types of chemical process industries classified as inorganic, organic and natural product industries and their applications.

[CE 1706.2]. Recall various unit operation techniques and their use to synthesize a particular chemical.

[CE 1706.3]. Understand the process flow diagram and various process parameters for the manufacture of various inorganic, organic and natural chemicals.

[CE 1706.4]. Recognize and solve engineering problems during production, while also developing entrepreneurship skills along relevant lines.

[CE 1706.5]. Interpret and illustrate the material balance involved in process synthesis.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Program Outcomes for B.Tech. in chemical engineering are as follows.

The Graduates of Chemical Engineering from MUJ will have:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. **PO5.** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT

tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

[PSO.1]. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

[PSO.2]. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.

[PSO.3]. Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

Criteria	Description	Maximum Marks
	Sessional Exam I (Close Book)	20
Internal Assessment	Sessional Exam II (Close Book)	20
(Summative)	In class Quizzes, Assignments,	30
	Presentation and Mini project	
End Term Exam	End Term Exam (Close Book)	30
(Summative)		
	Total	100
Attendance	A minimum of 75% Attendance is requi	ired to be maintained by a student to be
(Formative)	qualified for taking up the End Semest	er examination. The allowance of 25%
	includes all types of leaves including med	lical leaves.
Make up Assignments	Student who misses a class will have to r	report to the teacher about the absence. A
(Formative)	makeup assignment on the topic taught o	n the day of absence will be given which
	has to be submitted within a week from the	he date of absence. No extensions will be
	given on this. The attendance for that partic	cular day of absence will be marked blank,
	so that the student is not accounted for ab	sence. These assignments are limited to a
	maximum of 5 throughout the entire seme	ester.
Homework/ Home Assignment/	There are situations where a student may	have to work in home, especially before a
Activity Assignment	flipped classroom. Although these works	s are not graded with marks. However, a
(Formative)	student is expected to participate and perf	orm these assignments with full zeal since
	the activity/ flipped classroom participation	on by a student will be assessed and marks
	will be awarded.	

D. Assessment Plan:

E. SYLLABUS

Overview of typical chemical processes, unit operations and unit processes, Indian chemical process industries scenario. Study aspects of chemical process industries - raw materials, consumption pattern, chemical reactions, process and block flow diagram, applications and major engineering issues. Uses of industrie 1s for Water conditioning and environmental protection.

F. TEXT BOOKS

- 1. "Dryden's Outlines of Chemical Technology for the 21st Century (3rd Edition)", M Gopala Rao and Marshall Sitting, East-West Press, New Delhi (India), 1997.
- 2. "Shreve's Chemical Process Industries (5th Edition)", George T Austin, Tata McGraw-Hill Companies Inc, New York, 2012.

G. REFERENCE BOOKS

1. "Unit processes in organic synthesis (5th ed)", Groggins P H, Mcgraw-Hill, 2004.

H. Lecture Plan:

Lecture	Topics	Session Outcome	Mode of Delivery	Corresponding CO	Mode Of Assessing CO
1	Introduction to chemical industries – Facts and figures	Introduction to chemical industries.	Lecture	1706.1	Mid Term I, Assignment & End Term
2	Unit operations and unit process concepts	Introduce concepts of UOPs.	Lecture	1706.2	Mid Term I, Assignment & End Term
3, 4, 5, 6	Sulfur and Sulfuric acid	Mining of sulfur, Manufacture of sulfuric acid by contact and DCDA process, its applications, Engineering problems	Lecture	1706.1, 1706.2, 1706.3, 1706.4, 1706.5	Mid Term I, Assignment & End Term
7, 8, 9, 10, 11	Fuels and Industrial gases	Gases like producer gas, water gas, coke oven gas, natural gas, synthesis gas, hydrogen and acetylene. Different types of gasifiers	Lecture	1706.1, 1706.2, 1706.3, 1706.4, 1706.5	Mid Term I, Assignment & End Term
12, 13, 14, 15, 16, 17	Fertilizer Industry	Overview of fertilizer, major components of fertilizers. Nitrogen fertilizers – ammonia, nitric acid, urea, ammonium nitrate. Phosphate fertilizers – phosphoric acid, single and triple superphosphate, ammonium phosphate	Lecture	1706.1, 1706.2, 1706.3, 1706.4, 1706.5	Mid Term II, Assignment & End Term
18,19	Cement Industry	History and overview, scenario in India Portland cement and quick lime	Lecture	1706.1, 1706.2, 1706.3, 1706.4, 1706.5	Mid Term II, Assignment & End Term
20, 21	Chlor-alkali industry	Manufacturing of soda ash, caustic soda and chlorine by methods of production	Lecture	1706.1, 1706.2, 1706.3, 1706.4, 1706.5	Mid Term II, Assignment & End Term
22, 23	Pulp and Paper Industry	Kraft process and paper making process	Lecture	1706.1, 1706.2, 1706.3, 1706.4, 1706.5	Mid Term II, Assignment & End Term
24, 25, 26, 27, 28, 29, 30, 31, 32, 33	SYNTHETIC ORGANIC CHEMICAL INDUSTRIES	Few selected chemicals from C1, C2, C3 and C4 compounds (<i>power point presentations by students</i>)	Student In- Class Presentations	1706.1, 1706.2, 1706.3, 1706.4, 1706.5	Mid Term II, Assignment & End Term

34	Pyrolysis and Cracking	Pyrolysis and Cracking	Lecture	1706.1, 1706.2, 1706.3, 1706.4, 1706.5	Mid Term II, Assignment & End Term
35, 36	Carbohydrates and fermentation industries	Manufacturing of sugar or sucrose, ethanol production by fermentation	Lecture	1706.1, 1706.2, 1706.3, 1706.4, 1706.5	End Term
37, 38	Edible and essential oils	Extraction of vegetable oils, hydrogenation of oils	Lecture	1706.1, 1706.2, 1706.3, 1706.4, 1706.5	End Term
39, 40, 41, 42	Soaps, Detergents and Glycerine	Manufacturing of soaps, detergents and glycerine	Lecture	1706.1, 1706.2, 1706.3, 1706.4, 1706.5	End Term
43, 44	Water conditioning and environmental protection	Water conditioning and environmental protection	Lecture	1706.1, 1706.2, 1706.3, 1706.4, 1706.5	End Term

I. COURSE ARTICULATION MATRIX (Matching COs with POs):

СО	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES											CORRELATION WITH PROGRAM			
															SPECIFIC		
														OUTCOMES			
		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CE1706.	Identify different types of chemical process	2	3			2			2	1	1	1		1	1	1	
1	industries classified as inorganic, organic and															ł	
	natural product industries and their applications															ł	
CE1706.	Recall various unit operation techniques and	3	2	1		1		2	2	2		3		1	2	1	
2	their use to synthesize a particular chemical															l	
CE1706.	Understand the process flow diagram and	3	3			3		2	3	2	1	2		3	3	2	
3	various process parameters for the manufacture															l	
	of various inorganic, organic and natural															l	
	chemicals															ł	
CE1706.	Recognize and solve engineering problems	3	2			2		2	1	1		2		2	3	2	
4	during production, while also developing															l	
	entrepreneurship skills along relevant lines.															ł	
CE1706.	Interpret and illustrate the material balance	3	3	1					2			2		3	2	1	
5	involved in process synthesis															l	

1- Low Correlation, 2- Moderate Correlation, 3- Substantial Correlation

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Process Dynamic and Control | CE1707 | 4 Credits | 3 0 2 4

Session: July 19 - November 19 | Faculty: Anees A. Y. Khan | Class: VII Semester

Introduction: This course introduces the behavior and control of dynamic chemical process systems. Subject covers modeling the static and dynamic behavior of processes; control strategies; design of feedback, feedforward, and other control structures; and applications to process equipments.

A. Course outcome: At the end of the course, the students will be able to:

- [1707.1] Develop skills to solve simple linear differential equations using Laplace transforms
- [1707.2] Develop skills to identify, formulate, and solve linear chemical process dynamics problems
- **[1707.3]** Design a control system to meet desired needs for a given process and analyze stability of transfer functions.
- [1707.4] Develop and analyze a feedback control schemes
- [1707.5] Familiarize with advanced control strategies like cascade, smith predictor, feed forward control to implement in operating decisions.

C. Program outcomes and program specific outcomes

- **[PO.I].Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- **[PO.2].Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3].Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

- **[PO.4].Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions.
- **[PO.5].Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- **[PO.6].The engineer and society**: Apply reasoning informed by the <u>contextual knowledge to</u> <u>assess societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7].Environment and sustainability**: Understand the <u>impact of the professional engineering</u> <u>solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8].Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- **[PO.9].Individual and team work**: Function effectively as an individual, and as a <u>member or leader</u> <u>in diverse teams</u>, and in multidisciplinary settings
- **[PO.10]. Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II].** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

Degree Specific Outcomes for chemical engineering are as follows:

- **PSO.1** Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant.
- **PSO.2** Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.

PSO.3 Specialization: students will be specialized in the areas of petroleum, energy and environment related fields.

D. Assessment Plan

Criteria	Description	Maximum Marks		
	Sessional Exam I (Closed Book)	20		
Internal Assessment	Sessional Exam II (Closed Book)	20		
(Summative)	In class Quizzes and Assignments ,	15		
	Activity feedbacks (Accumulated			
	and Averaged)			
	Tutorials	15		
End Term Exam	End Term Exam (Closed Book)	30		
(Summative)				
	Total	100		
Attendance	A minimum of 75% Attendance is required to be maintained by a student			
(Formative)	to be qualified for taking up the End Semester examination. The			
	allowance of 25% includes all types of leaves including medical leaves.			
Homework/ Home	There are situations where a student may have to work in home,			
Assignment/ Activity	especially before a flipped classroom. Although these works are not			
Assignment	graded with marks. However, a student is expected to participate and			
(Formative)	perform these assignments with full zeal since the activity/ flipped			
	classroom participation by a student will be assessed and marks will be			
	awarded.			

E. Syllabus

Introduction to process control, Laplace transforms. Linear Open-Loop Systems, First-Order Systems: Transfer function, transient response (step response, impulse response, and sinusoidal response), and response of first-order systems in series: non-interacting systems and interacting systems. Second-Order Systems: Transfer function, step response, impulse response, sinusoidal response, transportation lag. Linear Closed-Loop Systems. Control system: Components of a control system, block diagram, negative feedback and positive feedback, servo problem and regulator problem. Controller and final control

element: Mechanism of control valve and controller, transfer functions (P, PI, PD, PID), Example of a chemical-reactor control system.

F. Textbooks:

1. Process System Analysis and Control, 3rd ed., Donald R. Coughnowr, McGraw-Hill Inc., 2013.

G. Reference Books:

- George Stephanopoulos, Chemical Process Control: An Introduction to Theory & Practice, Prentice -Hall of India Pvt. Ltd., New Delhi, 1993.
- Duncan A. Mellichamp, Dale Seborg, Thomas F. Edgar, Process Dynamics and Control, John Wiley & Sons Inc, 3rd ed., 2010.

H. Lecture plan

Class Number	Topics	Session Outcome	Mode of Delivery	Correspo nding Course Outcome	Mode of Assessing the Outcome
I	Introductory concepts of control system	Understanding the basic concept of control system	Lecture and discussion	-	NA
2,3	Modeling tools for process dynamics	Develop skills to model simple system related to chemical processes	Lecture and interaction	COI	In Class Quiz
4,5	Inversion by partial fractions	Develop skills to solve simple linear differential equations using Laplace transforms	Lecture and interaction	COI	
6-10	Linear open loop systems. Firs order systems response to various forcing functions such as step, impulse, ramp and sinusoids.	Develop skills to identify, formulate, and solve linear chemical process dynamics problems	Lecture, interaction and Tutorials	CO 2	In Class Quiz

11	Physical examples of first order	Develop skills to identify,	Lecture, CO 2		
	system and linearization	formulate, and solve linear	interaction		
		chemical process dynamics	and Tutorials		
		problems			
				l st	
				r Saasianal	
				Sessional	
				ET Exam	
				Home	
				Assignment	
12-14	Response of first order	Develop skills to identify,	Lecture, CO 2	l st	
	systems in series. Interacting	formulate, and solve linear	interaction	Sessional	
	and non-interacting systems	chemical process dynamics	and Tutorials		
		problems		ET Exam	
15-17	Higher order systems: Second	Develop skills to identify,	Lecture, CO 2		
	order system and	formulate, and solve linear	interaction	Home	
	transportation lag	chemical process dynamics	and Tutorials	Assignment	
		problems		Assignment	
	Mid term I (and revision)				
18-23	Linear closed loop control	Design a control system to meet	Lecture, CO 3		
	systems: components of a	desired needs for a given	interaction		
	control systems, development	process.	and Tutorials	In Class	
	of block diagrams. Controllers			Quiz	
	and final control elements:				
	mechanism, ideal transfer				
	function				
24-28	Block diagram of a chemical	Design a control system to meet	Lecture, CO 2,		
	reactor control system:	desired needs for a given	interaction CO 3		
	Reactor transfer function,	process.	and Tutorials		
	control valve, measuring				
	alamant controllar controllar				
-------	------------------------------------	-----------------------------------	---------------	-------	--------------
	transducor transportation las				
	transducer, transportation lag				II Sessional
	and block diagram. Closed				
20.22	loop transfer functions:			60.1	ET Exam
29-32	Overall transfer functions for	Design a control system to meet	Lecture,	CO 2,	
	single and multiloop. I ransient	desired needs for a given process	interaction	CO 3	Home
	response of simple control	and analyze stability of transfer	and lutorials		Assignment
	systems: Proportional control	functions.			
	for set-point change, load				
	change. Proportional integral				
	for set point change and load				
	change, proportional control				
	of system with measurement				
	lag. Stability: Concept and				
	definition of stability, stability				
	criterion, Routh test for				
	stability. Concept of root				
	locus				
	Mid-term break				
33-36	Introduction to frequency	Skill to develop and analyze a	Lecture,	CO3	
	response: Substitution rule,	feedback control schemes	interaction	CO4	In Class
	Bode diagram. Control design		and Tutorials		Quiz
	by frequency response: Tank				
	temperature control system,				
	The Bode stability criterion,				
	Gain and phase margins,				
	Zeigler-Nicholas Controller				
	settings.				II Sessional
37-42	Advanced control strategies:	Familiarize with advanced	Lecture,	CO5	
	Cascade control, Feedforward	control strategies like cascade,	interaction		ET Exam
	control, Ratio control, Dead-	smith predictor, feed forward	and Tutorials		
	time compensation, internal	control to implement in			Home
	model control.	operating decisions.			Assignment
1			1	1	

	Control tuning and process				
	identification.				
	Control valve: Control valve				
	construction, valve sizing,				
	characteristics and positioner				
	Mid term 2 (and revision)				
43-46	Theoretical analysis of	Skill to develop and analyze a	Lecture,	CO3	ET Exam
	complex processes: Control	feedback control schemes	interaction	CO4	
	of a steam jacketed kettle,		and Tutorials		Home
	dynamic response of a gas				Assignment
	absorber, distributed				
	parameter model.				
47-52	State-space representation of	Skill to develop and analyze a	Lecture,	CO3	-
	physical systems.	feedback control schemes	interaction	CO4	
	Transfer function matrix and		and Tutorials		
	multivariable control				
					Home
					Assignment

I. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES											CORRELATION WITH PROGRAM SPECIFIC OUTCOMES		
		PO I	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 	PO 12	PSO I	PSO 2	PS O 3
[1707.1]	Solve simple linear differential equations using Laplace transforms	3	2			3								3		
[1707.2]	Identify, formulate, and solve linear chemical process dynamics problems		3	2		3					Ι		1	3		
[1707.3]	Design a control system to meet desired needs for a given process and analyze stability of transfer functions.		2	3		3	1			2				3		
[1707.4]	Develop and analyze a feedback control schemes			2		3		I						2		
[1707.5]	Familiarize with advanced control strategies like cascade, smith predictor, feed forward control to implement in operating decisions.			3		3									2	

I-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering Department of Chemical Engineering Course Hand-out Engineering Economics and Project Management | CE 1708/02 | 3 Credits | 3 0 0 3 Session: Jul 19-Dec 19 | Faculty: Dr. Gaurav Kataria| Class: B. Tech.

A. Introduction: The business of business is making money – regardless of area and scale!

Economic evaluation of investment alternatives that maximize profits is a major goal of any corporate manager – or, even an individual. This requires familiarity with economic evaluation and investment decision methods to provide a sound quantitative basis to scrutinize choose the best among alternative engineering projects and general investment opportunities.

Economic feasibility is a pre-requisite for investing in any engineering or non-engineering investment opportunity.

Project Management

Managing projects for on – time completion is very necessary to avoid cost – overruns. Network techniques, such as CPM / PERT / others, are used to aid in planning, scheduling, monitoring and control of activities that are related to each other, and required, for completion of any project (engineering and non-engineering).

Hence, the methods discussed in this course are equally valid for use by

- Engineers
- Business Managers
- Bankers
- Accountants
- Individuals
- Others
- **B.** Course Outcomes: At the end of the course, students will be able to:

CE1708.1 Present and discuss the 'Economic Evaluation' fundamentals and Project Management techniques (Gantt Chart / Networks (CPM / PERT / Others).

CE1708.2 'Arm' the student with the methodology to evaluate project investment alternatives.

CE1708.3 Develop the employability skills to manage projects and identify bottlenecks for better scheduling and control.

CE1708.4 Develop employment / entrepreneurship skills for economic evaluation and investment decision methods / project management techniques.

C. Program Outcomes

Graduate attributes in the B.Tech. Course in Chemical Engineering include:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

D. Program Specific Outcomes

PSO.1. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

PSO.2. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments. **PSO.3. Specialization:** Students will be specialized in the areas of petroleum, energy and environment related

PSO.3. Specialization: Students will be specialized in the areas of petroleum, energy and envir fields.

Criteria	Description	Maximum Marks
	Sessional Exam I (Closed Book)	20
Internal	Sessional Exam II (Closed Book)	20
Assessment (Summative)	Quizzes and Home/Class Assignments	30
	(Accumulated and Averaged)	
End Term Exam (Summative)	End Term Exam (Closed Book)	30
	Total	100
Attendance (Formative)	A minimum of 75% Attendance is required to be maintained qualified for taking up the End Semester examination. The includes all types of leaves including medical leaves.	l by a student to be allowance of 25%
Make up Assignments (Formative)	Students who miss a class will not be provided with any sort of or make up quiz. If you miss a lecture, you yourself have to were covered during that particular lecture. However, you ma coordinator for clarification of doubts, if any.	f makeup assignment study the topics that y contact the course

E. Assessment Plan:

F. Syllabus

Cash Flow Concepts, Present Future and Annual Values, Net Present Value, Present value Ratio, Rate of Return, Breakeven, Depreciation and taxes, Project Definition, Project network, scheduling resource and cost, Managing project risk, Project progress, performance measurement, and evaluation.

G. Text Books

- T1. "Economic Evaluation and Investment Decision Methods (14tht Edition)", Franklin J Stermole and John M Stermole, Investment Evaluation Corporation, Golden, CO (USA), 2014.
- T2. "Operations Research: An Introduction", Hamdy A Taha, Prentice Hall, 1997.

H. Reference Books

R1. Peters M. S., Timmerhaus K. D., and West R. E., Plant Design and Economics for Chemical Engineers, McGraw Hill Higher Education, 5th Edition, 2003.

I. Lecture Plan:

Lecture No.	Topics	Session Outcome	Mode of Delivery	Corresponding Course Outcome	Mode of Assessing the Outcome
1.	Introduction – Making Decisions / Concept of Interest / Minimum Rate of Return / Investment Analysis (1-13)	Understanding the basics of subject that why are they studying this in engineering.	Lecture	1708.1	Mid Term I End Term
2.	CompoundInterestFormulaeandEquivalenceApplications(15-41)(15-41)	Understanding the interest scenario in industries.	Lecture	1708.1	Mid Term I End Term
3.	Compound Interest Formulae and Equivalent Applications (42-52)	Understanding the interest scenario in industries.	Lecture	1708.1	Mid Term I End Term
4.	Present Worth / Annual Worth / Future Worth / ROR / Break-Even Analysis (64-91)	Relating the time with money	Lecture	1708.2/4	Mid Term I End Term
5.	Present Worth / Annual Worth / Future Worth / ROR / Break-Even Analysis (91-120)	Relating the time with money	Lecture	1708.2/4	Mid Term I End Term
6.	Present Worth / Annual Worth / Future Worth / ROR / Break-Even Analysis (120-157)	Relating the time with money	Lecture	1708.2/4	Mid Term I End Term
7.	Incremental Cost Analysis Methods – Mutually Exclusive Investment Analysis by ROR / Unequal Life Projects / NPV / Future Worth of Cash Flows (183-200)	Understanding how to compare the positive ROR alternative with the negative or infinite ROR alternative.	Lecture	1708.2/4	Mid Term I End Term
8.	Incremental Cost Analysis Methods – Mutually Exclusive Investment Analysis by ROR / Unequal Life Projects / NPV / Future Worth of Cash Flows (201-220)	Understanding how to compare the positive ROR alternative with the negative or infinite ROR alternative.	Lecture	1708.2/4	Mid Term I End Term

9.	Incremental Cost	Understanding how to	Lecture	1708.2/4	Mid Term I
	Analysis Methods –	compare the positive			End Torm
	Mutually Exclusive	ROR alternative with			
	Investment Analysis by	the negative or			
	ROR / Unequal Life	infinite ROR			
	Worth of Cash Flows	alternative			
	(220- 256)				
10.	Incremental Cost	Understanding how to	Lecture	1708.2/4	Mid Term I
	Analysis Methods –	compare the positive			E d E da
	Mutually Exclusive	ROR alternative with			End Term
	Investment Analysis by	the negative or			
	ROR / Unequal Life	infinite ROR			
	Projects / NPV / Future Worth of Cash Flows	alternative			
	(Handout)				
11.	Production Cost	Understanding the	Lecture	1708.2/4	Mid Term I
	Variations / Break-Even	concept of variable			Field Territ
	Analysis / Min Cost/Max	cost and fixed cost.			End Term
	Profit Analysis (64 +				
12	Production Cost	Understanding the	Lecture	1708 2/4	Mid Term I
12.	Variations / Break-Even	concent of variable	Lecture	1700.2/4	Wha rennin
	Analysis / Min Cost/Max	cost and fixed cost			End Term
	Profit Analysis	COST and fixed COST			
	(Handout)				
13.	Sensitivity Analysis /	Understanding the	Lecture	1708.2/4	Mid Term I
	(276-306)	sensitivity of the			End Term
	(270-300)	parameters relating to			
		production and			
		marketing.			
14.	Sensitivity Analysis /	Understanding the	Lecture	1708.2/4	Mid Term I
	Inflation / Risk Analysis	sensitivity of the			End Term
	(313-327)	parameters relating to			
		production and			
		marketing.			
15.	Sensitivity Analysis /	Understanding the	Lecture	1708.2/4	Mid Term I
101	Inflation / Risk Analysis	sensitivity of the	2000010	1,0012,1	
	(327-351)	parameters relating to			End Term
		production and			
		marketing.			
16	Daviau Lastura	Deviewing all the			
10.	Review Lecture	Reviewing all the	Lecture		ivila Term I
		syllabus that has been			End Term
		completed.			
		MID-TERN	ΛII		
17.	Depreciation / Depletion	Understand the	Lecture	1708.2	Mid Term II
	/ Amortization (359-366)	concept of decreasing			End Term
		value of tangible/non			
		tangible things.			
18.	Depreciation / Depletion	Understand the	Lecture	1708.2	Mid Term II
10.	/ Amortization (366-384)	concept of decreasing			
		value of tangible/non			End Term

		tangible things.			
19.	Depreciation / Depletion / Amortization (384-403)	Understand the concept of decreasing value of tangible/non tangible things.	Lecture	1708.2	Mid Term II End Term
20.	Income Tax, Cash Flow, and Discounted Cash Flow Rate of Return (415-435)	Understanding what to include or exclude from the income to save income tax.	Lecture	1708.2/4	Mid Term II End Term
21.	Income Tax, Cash Flow, and Discounted Cash Flow Rate of Return (435-470)	Understanding what to include or exclude from the income to save income tax.	Lecture	1708.2/4	Mid Term II End Term
22.	After-Tax Investment Decision Methods and Applications (487-521)	Understand how to estimate the after tax or actual ROR.	Lecture	1708.2/4	Mid Term II End Term
23.	After-Tax Investment Decision Methods and Applications (521-548)	Understand how to estimate the after tax or actual ROR.	Lecture	1708.2/4	Mid Term II End Term
24.	Replacement Analysis (567-593)	Understand the alternatives of replacing the machinery or other things.	Lecture	1708.2/4	Mid Term II End Term
25.	Replacement Analysis (594-605)	Understand the alternatives of replacing the machinery or other things.	Lecture	1708.2/4	Mid Term II End Term
26.	Leverage Concepts: Evaluations Involving Borrowed Money (616- 639)	Compare the alternatives of taking leverage of paying at one go.	Lecture	1708.2/4	Mid Term II End Term
27.	Leverage Concepts: Evaluations Involving Borrowed Money (639- 647)	Compare the alternatives of taking leverage of paying at one go.	Lecture	1708.2/4	Mid Term II End Term
28.	Review Lecture	Reviewing all the syllabus that has been completed after Mid Term I.	Lecture		Mid Term II End Term
		MID-TERN	1 II		
29.	Introduction to Project Management and Control	Understand the necessity to study project management in chemical	Lecture	1708.1/3	End Term

		engineering.			
30.	Gantt Chart	Understanding how to schedule the project	Lecture	1708.1/3	End Term
31.	Introduction to Networks – Terminology (Handout)	Understanding how to distinguish critical and non critical activities.	Lecture	1708.1/3	End Term
32.	Critical Path Method (CPM) (278-288 + Handout)	Understand how to evaluate the critical path which will not to be violated.	Lecture	1708.1/3	End Term
33.	Project Evaluation and Review Technique (PERT) (288-290 + Handout)	If the project is working on probabilistic timeline than understanding how to evaluate the probability that project will complete in the pre described time.	Lecture	1708.1/3	End Term
34.	PERT (Handout)	If the project is working on probabilistic timeline than understanding how to evaluate the probability that project will complete in the pre described time.	Lecture	1708.1/3	End Term
35.	Other Topics in Networks – Shortest Route Problem	If the project is working on probabilistic timeline than understanding how to evaluate the probability that project will complete in the pre described time.	Lecture	1708.1/3	End Term
36.	Review	Reviewing all the syllabus that has been completed.	Lecture		End Term
	<u>.</u>	END-TERM EXAN	AINATION	1	

T3. Course Articulation Matrix: (Mapping of COs with POs)

СО	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES										CORRELATION WITH PROGRAM SPECIFIC OUTCOMES			
		РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO 1	PSO 2	PSO 3
		1	2	3	4	5	6	7	8	9	10	11	12			
CE1708.1	Present and discuss the 'Economic Evaluation'		1		1				1	1	2	3		1	2	
	fundamentals and Project Management															
	techniques (Gantt Chart / Networks (CPM /															
	PERT / Others).															
CE1708.2	'Arm' the student with the methodology to		2	1	1				2	1	2	3		1	2	
	evaluate project investment alternatives.															
CE1700.2				1	1				2	1		2		1	2	
CE1/08.3	Develop the employability skills to manage		2	1					2	1	2	3		1	2	
	projects and identify bottlenecks for better															
	scheduling and control.															
CE1708.4	Develop employment / entrepreneurship skills for		2	1	1				2	1	2	3		1	2	
	economic evaluation and investment decision															
	methods / project management techniques.															

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Petrochemical Production Technologies | CE 1753 | 3 Credits | 3 0 0 3

Session: Aug 19 - Dec 19 | Faculty: Anand Chakinala | Class: Program Elective

A. Introduction: This course on petrochemical production technologies is a program elective designed for the undergraduate students of Chemical Engineering. This course introduces the basic overview of petrochemical technologies and discuss upon the general topology of the process technologies.

B. Course Outcomes: At the end of the course, students will be able to

- [1753.1]. Discuss the major petrochemicals produced and their economic importance
- [1753.2]. Explain the major components of petrochemical plants and come up with alternative routes of production that will enhance their employability as well as entrepreneurship skills.
- [1753.3]. Discuss the production processes of C2, C3, C4 and aromatic derived petrochemicals

[1753.4]. Understanding the safety precautions in petrochemical processes

C. Program outcomes and program specific outcomes

Program Outcomes for B.Tech. in chemical engineering are as follows.

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

[PSO.1]. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

[PSO.2]. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments. **[PSO.3]. Specialization:** Students will be specialized in the areas of petroleum, energy and environment related fields.

Criteria	Description	Maximum Marks						
	Sessional Exam I (Open Book)	20						
	Sessional Exam II (Open Book)	20						
Internal Assessment	In class Quizzes, Assignments,							
	Projects, Case Studies (Accumulated	30						
	and Averaged)							
End Term Exam	End Term Exam (Open Book)	30						
	100							
	quired to be maintained by a							
Attendance	student to be qualified for taking up the	student to be qualified for taking up the End Semester examination.						
Attenuance	The allowance of 25% includes all types of leaves including medical							
	leaves.							
	No make-up for missed short quizzes/assignments or exam will be							
Make un Assignments	allowed except in extenuating circumstances, with prior permission of							
Make up Assignments	the instructor(s), and the decision of t	he instructor(s) in this regard						
	shall be final.							
	Home works will be assigned in betwee	en the lectures along with the						
	due date for handing it over. No late ass	signments handed after the due						
Homework/ Home	date shall be accepted under any circumstance. It is expected that the							
Assignment/ Project	students shall work on the assignments independently and not 'copy'							
	the solutions from each other. A case study is given which is assessed							
	in form of individual reports submitted.							

E. Syllabus

Introduction – Petrochemical industry-Structures of petrochemical complexes-Feedstock for petrochemical-Profile of petrochemical and their end products; Olefins production: Steam cracking for production of olefins-Gas sweetening unit-C2/C3 Extraction unit-Steam cracking process engineering and technology-Emerging technologies for production of olefins- Alpha Olefins; Olefin Production: Steam cracking for production of olefins-Gas sweetening unit-C2/C3 Extraction unit-Steam cracking process engineering and technology-Emerging technologies for production of olefins-Alpha Olefins; Methane and synthesis gas derivatives: Synthesis gas and ammonia-synthesis gas and ammonia manufacture from steam reforming-Synthesis gas and ammonia manufacture from partial oxidation process-Urea processes, Process technology-Carbon monoxide-Fischer-Tropsch syn gas technology-Methanol-Formaldehyde-Acetic acid - Chloromethanes - Dimethyl formamide -Dimethyl acetamide - Acetylene; Ethylene and ethylene derivatives-I: Ethylene-Ethylene oxide-Process technology-Process hazards-Ethylene oxide storage-Monoethylene glycol-Vinyl chloride-Vinyl acetate-Acetaldehyde-Ethanol-Acetic anhydride-Ethyl acetate-Ethyl chloride; Aromatic production: Petroleum feedstock for aromatic hydrocarbons-Aromatic hydrocarbon production catalytic reforming-Reactions in catalytic reforming-Reforming catalyst-Reforming process-Process variables in catalytic reforming-Pyrolysis gasoline as aromatics feedstock-Aromatic separation from reformate and pyrolysis gasoline- technologies for the production of BTX- Aromatic conversion processes; Oxo Process

F. Text books

- 1) Sami Matar and Lewis F.Hatch, Chemistry of Petrochemical Processes, 2nd Edition, Gulf Publishing Company, Houston, 2000.
- 2) B. K. Bhaskara Rao, Petrochemicals, Oxford & IBH Publishing, 2002.

G. Reference books

- 1) I.D. Mall, Petrochemical Process Technology, Macmillan India Ltd., New Delhi. 2007.
- 2) P. Belov, Fundamentals of Petroleum Chemical Technology, Mir Publishers, 1970.
- **3**) A. Chauvel and G.Lefebvre, Petrochemical Processes, Volume 1 & 2, Gulf Publishing Company, 1989.
- 4) Robert A. Meyers, Handbook of Petrochemical Production Processes, McGraw-Hill, 2004.

Lecture Plan:

LEC NO	Topics	Session Outcome	Mode of Delivery	Corresponding CO	Mode of assessing CO
1-2	Introduction to petrochemical industry	To acquaint with the chemicals derived from crude	Lecture	1753.1	Mid Term - 1, End Term,
3-7	Olefin production	To understand the production of olefins in a refinery	Lecture	1753.2, 1753.4	Mid Term - 1, End Term,
8 – 12	C1 compounds: Methane and syngas derivatives	To familiarize with production processes/technologies of C1 compounds	Lecture	1753.3, 1753.4	Mid Term - 1, End Term, Assignment
13 – 17	C ₂ compounds: Ethylene and its derivatives	To familiarize with production processes/technologies of C2 compounds	Lecture	1753.3, 1753.4	Mid Term - 1, End Term, Assignment
18 – 23	C ₃ compounds: Propylene and its derivatives	To familiarize with production processes/technologies of C3 compounds	Lecture	1753.3, 1753.4	Mid Term - 1, End Term, Assignment
24 – 29	C4 compounds: Butanes and Butenes	To familiarize with production processes/technologies of C4 compounds	Lecture	1753.3, 1753.4	Mid Term - 1, End Term, Assignment
30 - 33	Aromatic compounds: Benzene	To gain the knowledge of production of aromatics in a refinery	Lecture	1753.3, 1753.4	Mid Term - 1, End Term, Assignment
33 - 36	Oxo process/Hydroformylation	To gain knowledge of higher alcohol production.	Lecture	1753.3, 1753.4	Mid Term - 2, End Term

H. Course Articulation Matrix: (Mapping of COs with POs)

СО	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES								COI WIT	RRELAT H PROG SPECIFI UTCOM	TION RAM C ES			
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CE1753.1	Discuss the major petrochemicals produced and their economic importance	1	1											1		2
CE1753.2	Explain the major components of petrochemical plants	1	1	2	1		1	1					1			2
CE1753.3	Discuss the production processes of C2, C3, C4 and aromatic derived petrochemicals	2	1	2	1		1	1					1	1	1	2
CE1753.4	Understanding the safety precautions in petrochemical processes	1	1				3	2	1				1			2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering

Department of Chemical Engineering Course Hand-out

Energy and Process Integration | CE 1754 | 3 Credits | 3 0 0 3

Session: July'19 - Nov'19 | Faculty: Dr. Abhishek Sharma | Class: B. Tech. (Chemical) VII Semester

A. Introduction:

Integration is the process of keeping 'all together' in an optimized way. Chemical process needs to be integrated in an optimized way so that the whole process requires minimum energy as well as the cost. Therefore, we have to be familiar with the fundamental concepts related to process integration, pinch technology, heat exchanger network and energy targeting. The contents discussed in this course will be useful for a chemical engineer working in process & plant design as well as research & development.

B. Course Outcomes: At the end of the course, students will be able to

[1754.1]. Understand the fundamentals of process integration and pinch technology.

[1754.2]. Carry out pinch analysis for heat exchanger networks using chemical engineering skills.

[1754.3]. Identify the energy target, unit target, area target, cost target and supertargeting for a heat exchanger network (HEN).

[1754.4]. Recognize maximum energy recovery (MER) network using pinch design method (PDM).

[1754.5]. Conduct the process optimization of energy and resource analysis using network evolution and evaluation.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Program Outcomes for B.Tech. in chemical engineering are as follows.

The Graduates of Chemical Engineering from MUJ will have:

[PO.1]. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

[PO.2]. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

[PO.3]. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

[PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

[PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. **[PO.6]. The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health,

safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. **[PO.7]. Environment and sustainability:** Understand the impact of the professional engineering solutions in societal

and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

[PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

[PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

[PO.10]. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

[PO.11]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

[PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

[PSO.1]. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

[PSO.2]. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.

[PSO.3]. Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

D.	Assessment Plan:	

Criteria	Description	Maximum Marks
	Sessional Exam I (Open Book)	20
Internal Assessment	Sessional Exam II (Open Book)	20
(Summative)	Project, Quizzes/Assignments	30
	(Accumulated and Averaged)	
End Term Exam	End Term Exam (Closed Book)	30
(Summative)		
	Total	100
Attendance	A minimum of 75% Attendance is require	red to be maintained by a student to be
(Formative)	qualified for taking up the End Semest	er examination. The allowance of 25%
	includes all types of leaves including medi	cal leaves.
Make up Assignments	Students who misses a class will have to	report to the teacher about the absence.
(Formative)	A makeup assignment on the topic taught	on the day of absence will be given which
	has to be submitted within a week from t	he date of absence. No extensions will be
	given on this. The attendance for that p	particular day of absence will be marked
	blank, so that the student is not accour	nted for absence. These assignments are
	limited to a maximum of 5 throughout th	e entire semester.
Homework/ Home Assignment/	There are situations where a student may	y have to work in home, especially before
Activity Assignment	a flipped classroom. Although these work	as are not graded with marks. However, a
(Formative)	student is expected to participate and per	form these assignments with full zeal since
	the activity/ flipped classroom participation	on by a student will be assessed and marks
	will be awarded.	

E. SYLLABUS

Introduction – Energy Targeting and the Pinch Principle, Problem Table, Cascade Diagram, Composite / Grand Composite Curves, Pinch Point, Utility Pinch; Maximum Energy Recovery Network – Pinch Design Method, Grid\Diagram, Stream Splitting / Matching; Evolution / Evaluation of Networks – Euler's Principle, Identification and Breaking of Loops Using Paths; Capital Cost targeting, Continuous Targeting – Area / Cost Targeting, Vertical Heat Transfer, Threshold Problem, Super targeting; Distillation Column Targeting Principles, Grand Column Composite Curves, Column Composite Curves, Evaluation of Energy Saving Options; Introduction to Heat and Power Systems.

F. BOOKS

- 1. Shenoy, U.V., Heat exchanger network synthesis: Process optimization by energy and resource analysis, Gulf publishing, 1995.
- 2. Douglas, James. M., Conceptual design of chemical processes, McGraw-Hill Inc, 1988.
- 3. Seider, W. D., Seader, J. D., Lewin, D. R., Widagdo, S., Product and process design principles: synthesis, analysis and evaluation (3rd Ed), John Wiley & Sons, Singapore, 2010.
- 4. Kemp, I. C., Pinch analysis and process integration: A user guide on process integration for the efficient use of energy, Butterworth Heinemann, 2006.
- 5. Klemes, J. J., Varbanov, P. S., Alwi S. R. W. W., and Manan, Z. A., Process Integration and Intensification: Saving Energy, Water and Resources, De Gruyter, 2014.

Lecture Plan:

Lecture	TOPICS	Session	Mode of	Corresponding	Mode of Assessing
		Outcome	Delivery	СО	СО
I	Introduction and course hand-out briefing	Acquainted with basics of Energy and Process Integration	Lecture	1754.1	Mid Term I, Quiz/Assignment/Project & End Term
2	Process integration, methods and area of application, history and few examples from nature	Acquainted with basics of Energy and Process Integration	Lecture	1754.1	Mid Term I, Quiz/Assignment/Project & End Term
3	Fundamentals concepts related to heat integration (process design hierarchy, onion diagram), energy losses by various industries, The role of thermodynamics in process design	Acquainted with basics of Energy and Process Integration	Lecture	1754.1	Mid Term I, Quiz/Assignment/Project & End Term
4	Key concepts of process integration and pinch analysis and its significance, Composite curves (basic concepts of heat exchange and temp–enthalpy diagram)	Understanding the fundamentals of Energy Exchange in Process	Lecture	1754.2	Mid Term I, Quiz/Assignment/Project & End Term
5	Hot and cold composite curves and their allowability of shifting vertically/horizontally	Understanding the fundamentals of Energy Exchange in Process	Lecture	1754.2	Mid Term I, Quiz/Assignment/Project & End Term
6	Network grid representation	Understanding the fundamentals of Energy Exchange in Process	Lecture	1754.2	Mid Term I, Quiz/Assignment/Project & End Term
7	Temperature intervals and heat cascade diagram	Understanding the fundamentals of Energy Exchange in Process	Lecture	1754.2	Mid Term I, Quiz/Assignment/Project & End Term
8, 9, 10	Energy targeting procedure (problem table algorithm, pinch point and minimum utility requirements)	Understanding the fundamentals of Energy Exchange in Process	Lecture	1754.2	Mid Term I, Quiz/Assignment/Project & End Term
11	Basic pinch design method (understanding the pinch design feasibility and important design criteria), maximum energy recovery (MER) network	Acquiring the Design knowledge of HEN in Process	Lecture	1754.3	Mid Term I, Quiz/Assignment/Project & End Term
12, 1 <u>3,</u> 14	Case study – MER network drawing (split and without split network), stream split algorithm	Acquiring the Design knowledge of HEN in Process	Lecture	1754.3	Mid Term I, Quiz/Assignment/Project & End Term

15, 16	Concept of balanced composite curves	Acquiring the Design knowledge of HEN in Process	Lecture	1754.3	Mid Term II, Quiz/Assignment/Project & End Term
17	Concept of grand composite curves and use of multiple utilities	Acquiring the Design knowledge of HEN in Process	Lecture	1754.3	Mid Term II, Quiz/Assignment/Project & End Term
18	Concept of vertical heat transfer and Spaghetti network	Acquiring the Design knowledge of HEN in Process	Lecture	1754.3	Mid Term II, Quiz/Assignment/Project & End Term
19	Case Study – number of units targeting	Grasping the basics of advanced HEN	Lecture	1754.4	Mid Term II, Quiz/Assignment/Project & End Term
20	Euler's network and graph theory for number of units and loop finding. Concept of loops and paths.	Grasping the basics of advanced HEN	Lecture	1754.4	Mid Term II, Quiz/Assignment/Project & End Term
21, 22	Identification of loops, elimination of loop	Grasping the basics of advanced HEN	Lecture	1754.4	Mid Term II, Quiz/Assignment/Project & End Term
23	Checking Δ Tmin violation and restoration by path relaxation	Grasping the basics of advanced HEN	Lecture	1754.4	Mid Term II, Quiz/Assignment/Project & End Term
24, 25	Network evolution and evaluation and final MER design after path relaxation	Grasping the basics of advanced HEN	Lecture	1754.4	Mid Term II, Quiz/Assignment/Project & End Term
26	Case Study – shell targeting	Grasping the basics of advanced HEN	Lecture	1754.4	Mid Term II, Quiz/Assignment/Project & End Term
27	Case Study – cost targeting (operating cost, capital cost and total annual cost)	Grasping the basics of advanced HEN	Lecture	1754.4	Mid Term II, Quiz/Assignment/Project & End Term
28	Effect of Δ Tmin and supertargeting	Grasping the basics of advanced HEN	Lecture	1754.4	Mid Term II, Quiz/Assignment/Project & End Term
29	Fundamentals of threshold problems and pseudo pinch problems	Grasping the basics of advanced HEN	Lecture	1754.4	Mid Term II, Quiz/Assignment/Project & End Term
30	Case study – threshold problem	Grasping the basics of advanced HEN	Lecture	1754.4	Mid Term II, Quiz/Assignment/Project & End Term
31	Continuous targeting and determination of significant curve shift	Developing the knowledge of solving HEN problems in Industries	Lecture	1754.5	Quiz/Assignment/Project & End Term

32	Case study – continuous determination of energy and unit targets	Developing the knowledge of solving HEN problems in Industries	Lecture	1754.5	Quiz/Assignment/Project & End Term
33	Topology trap	Developing the knowledge of solving HEN problems in Industries	Lecture	1754.5	Quiz/Assignment/Project & End Term
34	Fast matching algorithm for threshold problem	Developing the knowledge of solving HEN problems in Industries	Lecture	1754.5	Quiz/Assignment/Project & End Term
35	Retrofitting of final network	Developing the knowledge of solving HEN problems in Industries	Lecture	1754.5	Quiz/Assignment/Project & End Term
36	Basic concepts of designing of multi-pinch problems	Developing the knowledge of solving HEN problems in Industries	Lecture	1754.5	Quiz/Assignment/Project & End Term

G. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES								CORRELATION WITH PROGRAM SPECIFIC OUTCOMES					
		РО	PO	PO	PO	PO	РО	РО	РО	РО	РО	PO	PO	PSO	PSO	PSO
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CE 1754.1	Understand the fundamentals of process integration and pinch technology	2	2	1			2	3	1		1			1	2	3
CE 1754.2	Carry out pinch analysis for heat exchanger network network using chemical engineering skills	3	3	3	3		2	3	1	1	2		1	2	3	3
CE 1754.3	Identify the energy target, unit target, area target, cost target and supertargeting for a heat exchanger network	3	3	3	3		1	3	1	1	2	2	1	3	3	3
CE 1754.4	Recognize maximum energy recovery (MER) network using pinch design method	2	3	3	3		2	2			2	2	1	2	2	3
CE 1754.5	Conduct the process optimization of energy and resource analysis using network evolution and evaluation	2	3	3	3		2	3		1	2	2	2	2	3	3

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Civil and Chemical Engineering Department of Chemical Engineering Course Hand-out Process Intensification | CE 1803/1801 | 3/4 Credits | 3/3 0/1 0/0 3/4 Session: Jan 20 – May 20| Faculty: Dr Gaurav Kataria| Class: VIII Semester

A. COURSE SUMMARY:

In the modern times, there has been a great focus on the optimal use of energy and cost to get better way of life. However, the chemical and process industry has a delayed response in incorporation of new technologies, because of the high risk involved. In the 1980's, Colin Ramshaw introduced to the world the idea of high gravity (HiGEE) based distillation and paved the way for what is today *Process Intensification*. This topic covers a wide range of unit operations and unit processes that have been reimagined to become highly optimized and efficient. The current course has been designed to introduce to the students the idea of process intensification and give them a feel of its application to unit operations and unit processes.

B. COURSE OUTCOME:

By the end of the course the students will be able to

- CE1803.1. Describe the basic principles underlying process intensification.
- CE1803.2. Describe with elaboration the design of different physical process intensification equipment.
- CE1803.3. Assess the enhancement factors responsible for heat intensification in process industries and their applications.
- CE1803.4. Develop skills to assess the design of intensified reactors for different types of reactions.
- CE1803.5. Develop skills to assess the enhancement factors responsible for intensification
- of separation processes related to equipment design and application.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Graduate attributes in the B.Tech. Course in Chemical Engineering include:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. **PO2. Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

PSO.1. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

PSO.2. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.

PSO.3. Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

Criteria	Description	Maximum Marks
	Sessional Exam I (Closed Book)	20
	Sessional Exam II (Closed Book)	20
(Summative)	Quizzes and Home/Class Assignments	30
	(Accumulated and Averaged)	
End Term Exam (Summative)	End Term Exam (Closed Book)	30
· · · · ·	Total	100

D. Assessment Plan:

Attendance	A minimum of 75% Attendance is required to be maintained by a student
(Formative)	to be qualified for taking up the End Semester examination. The allowance of 25% includes all types of leaves including medical leaves.
Make up	Students who miss a class will not be provided with any sort of makeup
Assignments	assignment or make up quiz. If you miss a lecture, you yourself have to
(Formative)	study the topics that were covered during that particular lecture. However, you may contact the course coordinator for clarification of doubts, if any.

E. SYLLABUS:

Introduction to process intensification (PI): sustainability related issues in process industry; definitions of process intensification; fundamental principles and approaches of PI; design of a sustainable and inherent safer processing plants.

Mechanisms involved in PI: intensified heat transfer, intensified mass transfer, electrically enhanced processes, micro fluidics; compact and micro heat exchangers;

Reactors: Reactor engineering theory, spinning disc reactors, oscillatory baffled reactors, micro reactors, reactive separations, membrane reactors, supercritical operations, Field enhanced reactors, Rotating fluidized beds

Intensification and separation processes: Distillation (reactive, extractive), centrifuges, membranes, drying, precipitation and crystallization; Intensified mixers, PI case study.

F. TEXT BOOKS:

T1. Reay, D.A.; Ramshaw, C.; Harvey, A.P.; "*Process Intensification: engineering for efficiency, sustainability and flexibility*", 1ed, (IChemE) Butterworth Harriman, London, 2008.

T2. Stankiewicz, A.; Moulijn, J.A.; (Eds) "*Re-Engineering the Chemical Processing Plant: Process Intensification*," 1st ed., CRC Press, 2003.

G. REFERENCE BOOKS:

R1. Segovia-Hernandez, J.G.; Bonilla-Petriciolet, A.; (Eds) "Process Intensification in Chemical Engineering Design Optimization and Control", 1st ed., Springer, 2016.

R2. Keil, F.J.; (Ed) "Modelling of Process Intensification", 1st ed., Wiley International, 2007.

R3. Kiss, A.A; "Process Intensification Technologies for Biodiesel Production", 1st ed., Springer, 2014.

R4. Raghavan, K.V; Reddy, B.M.; (Eds) "Industrial Catalysis and Separations Innovations for Process Intensification", 1st ed, CRC Press/Apple Academic Press, 2015.

R5. Mothes, H.; "*Process Design Synthesis, Intensification and Integration of Chemical Processes*", 1st ed, Manufective, 2015.

CO Assessment Lectures Content **Session Outcome** Mode of Delivery tracking 1-3 Introduction Understand the basics and history of Lecture CE1803.1 Class Ouiz Process Process intensification, unit operation to Intensification and unit processes, philosophy and (PI)opportunity of PI, classification of PI, sustainability of PI Understand the use of Momentum 4-6 Physical Lecture CE1803.2 Class Quiz, methods transfer concepts Mixing and flow CE1803.5 for Case study ΡI through packed bed, channel flow, essay, Mid and fluidization. static mixers. Semester spinning disk, oscillatory baffled exams. mixers in PI. 7-14 ΡI for Understand the use of Heat transfer heat Lecture CE1803.2 Class quiz, transfer operations, combined heat and fluid CE1803.3 Case study flow, intensification of heat flow, CE1803.5 essay, mid plate heat exchangers, spiral heat semester exchangers, plate and shell heat exam and exchangers, plate fin heat exchangers, end flat tube and fin heat exchangers, semester microchannel heat exchangers, Matrix exam heat exchangers, application of heat exchangers, nanofluids in PI. Mid Term I ΡI Understand the use of mass transfer Class quiz, 15-22 for CE1803.5 Lecture separation concepts, nanofluids, divided walls CE1803.1 case study processes columns. HiGee distillation. essay, mid centrifuges. membranes. drying, and end crystallization, Soxhlet extraction, semester ultrasound mass transfer in PI. exams Understand the concept of mass 23-34 ΡI for Lecture CE1803.4 Class quiz, reactions and transfer with chemical reactions. CE1803.5 case study essav. mid reactors. reactive distillation. reactive CE1803.1 adsorption. reactive and end extraction. supercritical fluids, spinning reactors, semester ultrasound reactors, cavitation exams reactors, HEX reactors, Fluidized bed bed reactors. packed reactors. membrane reactors used to intensify the Processes in chemical engineering. Mid Term II 35-40 Application Follow the case studies of how PI can Lecture CE1803.2 Class quiz, of PI be applied for all different process CE case study industries. 1803.3 essay, mid CE1803.4 and end CE1803.5 semester exams End Term

H. LECTURE PLAN:

I. COURSE ARTICULATION MATRIX (Matching COs with POs):

СО	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES							CORRELATION WITH PROGRAM SPECIFIC						
		PO 1	PO	PO 2	PO	PO 5	PO	PO 7	PO	PO	PO 10	PO 11	PO 12	PSO	PSO	PSO
CE1803.1	Describe the basic principles underlying process intensification.	3	2	3	4	2	0	/	0 1	2	10	1	12	1	3	3
CE1803.2	Describe with elaboration, design of different physical process intensification equipment.	1	2			1			1	2			1	1	3	
CE1803.3	Assess the enhancement factors responsible for heat intensification in process industries and their applications.	1	2			1			1	2			1		3	1
CE1803.4	Develop skills to assess the design of intensified reactors for different types of reactions.	1	2			1			1	2			1		3	1
CE1803.5	Develop skills to assess the enhancement factors responsible for intensification of separation processes related to equipment design and application.	1	2			1			1	2			1		3	1

1- Low Correlation, 2- Moderate Correlation, 3- High Correlation

MANIPAL UNIVERSITY JAIPUR School of Civil and Chemical Engineering Department of Chemical Engineering Course Handout Process Optimization | CE1804 | 3 Credits | 3 0 0 3 Session: Jan'20 – May'20 | Faculty: Dr. Manisha Sharma | Class: B. Tech. (Chemical) VIII Semester

A. INTRODUCTION

Due to the increased cost of energy and stringent environmental regulations, the chemical industry has gone through several developments during the past few years. Optimization is one of the tools to address these issues. With an emphasis on problem formulation, this course introduces the students to the basic concepts of Optimization which has been applied in many fields of science, engineering, as well as business. The various techniques and tools used for optimization have also been discussed in this course.

B. COURSE OUTCOMES

At the end of the course, students will be able to:

- [CE1804.1] Develop a mathematical statement for the objective function and the equality and inequality constraints
- [CE1804.2] Implement the theory and applications of optimization techniques in a comprehensive manner for solving linear and non-linear, geometric, dynamic, integer and stochastic programming techniques
- [CE1804.3] Identify, formulate and solve a practical engineering problem of their interest by applying or modifying an optimization technique to enhance employability skills
- [CE1804.4] Use of commercial software to optimize chemical processes thereby enhancing their skills.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

The Graduates of Chemical Engineering from MUJ will have:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes for chemical engineering are as follows:

PSO.1. Concept to Commissioning: The students of the program would be able to envision, synthesize, demonstrate, and design any chemical processes right from conceiving the idea to commissioning of a full scale plant taking into account environmental concerns.

PSO.2. Process Intensification: Graduates would be equipped with the skills of assessing and finding cost effective innovations involving process intensification and integration for sustainable future developments.

PSO.3. Specialization: Students will be specialized in the areas of petroleum, energy and environment related fields.

D. ASSESSMENT PLAN

Criteria	Description	Maximum
		Marks
Internal	Sessional Exam I (Closed Book)	20
Assessment	Sessional Exam II (Closed Book)	20
(Summative)	Quizzes and Home Assignments / Class Assignments	30
	(Accumulated and Averaged)	
End Term	End Term Exam (Closed Book)	30
Exam		
(Summative)		
	Total	100
Attendance	A minimum of 75% Attendance is required to be maintain	ned by a student to
(Formative)	be qualified for taking up the End Semester examination	. The allowance of
	25% includes all types of leaves including medical leaves.	
Assignments	Assignments are an integral part of the course. Home a	ssignments / Class
(Formative)	assignments will be provided from time to time. No late s	submissions will be
	entertained. It is expected that the students will work of	on the assignments
	independently. If any assignment is found copied from any	source, marks will
	be deducted for the same.	
Make up	Students who miss a class will not be provided with an	ny sort of makeup
Assignments	assignment or make up quiz. If you miss a lecture, you you	urself have to study
	the topics that were covered during that particular lecture(s). You may contact
	the course coordinator for clarification of doubts, if any.	

E. SYLLABUS

Formulation of the objective function. Unconstrained single variable optimization: Newton, Quasi-Newton methods, polynomial approximation methods. Unconstrained multivariable optimization: Direct search method, conjugate search method, steepest descent method, conjugate gradient method, Newton's method. Linear Programming: Formulation of LP problem, graphical solution of LP problem, simplex method, duality in Linear Programming, two-phase method. Nonlinear programming with constraints: Necessary and sufficiency conditions for a local extremum, Quadratic programming, successive quadratic programming, Generalized reduced gradient (GRG) method. Use of MS-Excel and MATLAB for solving optimization problems. Introduction to global optimization techniques. Applications of optimization in Chemical Engineering.

F. TEXT BOOKS

T1. Edgar, T.F., Himmelblau, D. M., Ladson, L. S., Optimization of Chemical Process, 2nd ed., McGraw-Hill, 2001.

G. REFERENCE BOOKS

- R1. Rao, S. S., Optimization Techniques, Wiley Eastern, New Delhi, 1985.
- R2. Godfrey, C.O. and Babu, B.V., New Optimization Techniques in Engineering, Springer-Verlag, Germany, 2004.
- R3. Beveridge, G. S. and Schechter, R. S., Optimization Theory and Practice, McGraw-Hill, New York, 1975.
- R4. Reklaitis, G.V., Ravindran, A. and Ragsdell, K. M., Engineering Optimization-Methods and Applications, Wiley India Pvt Ltd., 2006.

Lecture No.	Topics	Session Outcome	Mode of Delivery	Corresponding CO	Mode Of Assessing CO
1.	Introduction	Understand the nature and organization of optimization problems	Lecture	CE1804.1	Assignment / quiz / Mid Term I
2.	Problem formulation	Develop models for optimization	Lecture	CE1804.1	Assignment / quiz / Mid Term I
3.	Problem formulation	Formulate the objective function	Lecture	CE1804.1	Assignment / quiz / Mid Term I
4.	Optimization theory and methods	Learn the Basics concepts of Optimization	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term I
5.	Optimization theory and methods	Learn the Basics concepts of Optimization	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term I
6.	Optimization theory and methods	Learn the Basics concepts of Optimization	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term I
7.	Optimization theory and methods	To optimize unconstrained functions (one dimensional search)	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term I
8.	Optimization theory and methods	To optimize unconstrained functions (one dimensional search)	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term I
9.	Optimization theory and methods	To optimize unconstrained Multivariable functions	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term I
10.	Optimization theory and methods	To optimize unconstrained Multivariable functions	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term I
11.	Optimization theory and methods	To optimize unconstrained Multivariable functions	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term I

H. LECTURE PLAN

12.	Optimization theory and methods	To optimize unconstrained Multivariable functions	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term I
13.	Optimization theory and methods	Understand the basics of Linear programming (LP) and its applications	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term I
14.	Optimization theory and methods	Understand the basics of Linear programming (LP) and its applications	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term I
15.	Optimization theory and methods	Understand the basics of Linear programming (LP) and its applications	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term I
16.	Optimization theory and methods	Understand the basics of Linear programming (LP) and its applications	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term I
17.	Optimization theory and methods	Understand the basics of Nonlinear programming (NLP) with constraints	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term II
18.	Optimization theory and methods	Understand the basics of Nonlinear programming (NLP) with constraints	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term II
19.	Optimization theory and methods	Understand the basics of Nonlinear programming (NLP) with constraints	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term II
20.	Optimization theory and methods	Understand the basics of Nonlinear programming (NLP) with constraints	Lecture	CE1804.1; CE1804.2	Assignment / quiz / Mid Term II
21.	Optimization theory and methods	Solution of global optimization problems with continuous and discrete variables	Lecture	CE1804.2	Assignment / quiz / Mid Term II
22.	Optimization theory and methods	Solution of global optimization problems with continuous and discrete variables	Lecture	CE1804.2	Assignment / quiz / Mid Term II
23.	Optimization theory and methods	Solution of global optimization problems with continuous and discrete variables	Lecture	CE1804.2	Assignment / quiz / Mid Term II
24.	Optimization theory and methods	Solution of global optimization problems with continuous and discrete variables	Lecture	CE1804.2	Assignment / quiz / Mid Term II
25.	Applications of optimization in Chemical Engineering	Optimization of Heat transfer and energy conservation problems	Lecture	CE1804.3	Assignment / quiz / Mid Term II
26.	Applications of optimization in Chemical Engineering	Optimization of Heat transfer and energy conservation problems	Lecture	CE1804.3	Assignment / quiz / Mid Term II
27.	Applications of optimization in Chemical Engineering	Optimization of Heat transfer and energy conservation problems	Lecture	CE1804.3	Assignment / quiz / Mid Term II
28.	Applications of optimization in Chemical Engineering	Optimization of Heat transfer and energy conservation problems	Lecture	CE1804.3	Assignment / quiz / Mid Term II
29.	Applications of optimization in Chemical Engineering	Optimization of Separation processes	Lecture	CE1804.3	Assignment / quiz / Mid Term II
30.	Applications of optimization in Chemical Engineering	Optimization of Separation processes	Lecture	CE1804.3	Assignment / quiz / Mid Term II
31.	Applications of optimization in Chemical Engineering	Optimization of Separation processes	Lecture	CE1804.3	Assignment / quiz / End Term
32.	Applications of optimization in Chemical Engineering	Optimization of Separation processes	Lecture	CE1804.3	Assignment / quiz / End Term

33.	Applications of optimization in Chemical Engineering	Optimization of Fluid flow systems	Lecture	CE1804.3	Assignment / quiz / End Term
34.	Applications of optimization in Chemical Engineering	Optimization of Fluid flow systems	Lecture	CE1804.3	Assignment / quiz / End Term
35.	Applications of optimization in Chemical Engineering	Optimization of Fluid flow systems	Lecture	CE1804.3	Assignment / quiz / End Term
36.	Applications of optimization in Chemical Engineering	Optimization of Fluid flow systems	Lecture	CE1804.3	Assignment / quiz / End Term
37.	Applications of optimization in Chemical Engineering	Optimization of Chemical reactor and its operation	Lecture	CE1804.3	Assignment / quiz / End Term
38.	Applications of optimization in Chemical Engineering	Optimization of Chemical reactor and its operation	Lecture	CE1804.3; CE1804.4	Assignment / quiz / End Term
39.	Applications of optimization in Chemical Engineering	Optimization of Chemical reactor and its operation	Lecture	CE1804.3; CE1804.4	Assignment / quiz / End Term
40.	Applications of optimization in Chemical Engineering	Optimization of Chemical reactor and its operation	Lecture	CE1804.3; CE1804.4	Assignment / quiz / End Term
41.	Applications of optimization in Chemical Engineering	Optimization in large-scale plant design and operations	Lecture	CE1804.3; CE1804.4	Assignment / quiz / End Term
42.	Applications of optimization in Chemical Engineering	Optimization in large-scale plant design and operations	Lecture	CE1804.3; CE1804.4	Assignment / quiz / End Term
43.	Applications of optimization in Chemical Engineering	Optimization in large-scale plant design and operations	Lecture	CE1804.3; CE1804.4	Assignment / quiz / End Term
44.	Applications of optimization in Chemical Engineering	Optimization in large-scale plant design and operations	Lecture	CE1804.3; CE1804.4	Assignment / quiz / End Term

I. COURSE ARTICULATION MATRIX: (Mapping of COs with POs)

СО	STATEMENT	CORRELATION WITH PROGRAM OUTCOMES									CORRELATION WITH PROGRAM SPECIFIC OUTCOMES					
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
[CE1804.1]	Develop a mathematical statement for the objective function and the equality and inequality constraints	3	3						-				1	2		
[CE1804.2]	Implement the theory and applications of optimization techniques in a comprehensive manner for solving linear and non-linear, geometric, dynamic, integer and stochastic programming techniques	3	2				1					1	1			
[CE1804.3]	Identify, formulate and solve a practical engineering problem of their interest by applying or modifying an optimization technique to enhance employability skills	3	2	1				1				1	1	2		2
[CE1804.4]	Use of commercial software to optimize chemical processes thereby enhancing their skills.			1		3				2	1	1	1	2	1	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation