

List of Course Hand-outs (Odd and Even Semester)

Department of Electrical Engineering SEEC Manipal University Jaipur (RJ)

School of Electrical, Electronics, and Communication Engineering Department of Electrical Engineering

Vision, Mission and PEOs of the Department

Vision

• Create globally competent automotive engineers having research aptitude with human values for societal development.

Mission

- Impart quality education with state-of-art academic environment to meet global industrial challenges.
- Provide conducive environment for interdisciplinary research through collaborations with industry and research organizations.
- Develop technical and managerial skills with ethical values contributing to societal development.

Program Educational Objectives

- Enable graduates to exhibit professional skills on global platform in Electrical Engineering and allied domains.
- Prepare graduates to pursue higher education and research in interdisciplinary area.
- Graduates shall exhibit teamwork and leadership quality with ethical behaviour.

PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Program Outcomes

[PO.1]. Engineering knowledge: <u>Apply the knowledge of mathematics</u>, <u>science</u>, <u>engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems.

[PO.2]. Problem analysis: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

[PO.3]. Design/development of solutions: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

[PO.4]. Conduct investigations of complex problems: Use research- based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the

information to provide valid conclusions

[PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern</u> <u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations

[PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess</u> <u>societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice

[PO.7]. Environment and sustainability: Understand the <u>impact of the professional engineering</u> <u>solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development

[PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices

[PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader in</u> <u>diverse teams</u>, and in multidisciplinary settings

[PO.10]. Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

[PO.11]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

[PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

Program Specific Outcomes

[PSO.1]. To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.

[PSO.2]. To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.

[PSO.3]. Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

School of Electrical, Electronics, and Communication Engineering

Department of Electrical Engineering

MANIPAL UNIVERSITY JAIPUR

Course Handout-(2020-21)

S.No	Course Code	Course Name	Page Number
1	BB0025	Value, Ethics & Governance	7
2	MA2103	Engineering Mathematics-III	12
3	EE2101	ANALOG & DIGITAL SYSTEM	21
		DESIGN	
4	EE2102	ELECTROMAGNETIC FIELD	27
		THEORY	
5	EE2103	ELECTRICAL CIRCUIT ANALYSIS	34
6	EE2104	Electrical Machines-I	41
7	EO2001	Economics	49
8	MA2206	Engineering Mathematics-IV	56
9	EE2201	Electrical Machines-II	65
10	EE2202	Generation, Transmission &	73
		Distribution	
11	EE2203	Microcontrollers	81
12	EE2080	SOLAR PHOTOVOLTAICS	89
13	EE2082	Fundamentals of Renewable	93
		Energy Sources (FRES)	
14	EE2230	Electrical Machinery Lab – II	98
15	EE2231	Microcontroller Laboratory	107
16	EE2232	MATLAB & SYSTEM	115
		SIMULATION LAB	
17	EE2233	PROJECT BASED LEARNING LAB	119
18	EE1501(N)	Control Theory	122
19	EE1502	Generation, Transmission &	128
		Distribution	
20	EE1503(N)	Signals and Systems	137
21	EE1504(N)	Power Electronics	142
23	BB1540	Organization and Management	151
24	EE1601(N)	Microprocessor &	160

		Microcontroller	
25	EE1602(N)	Power System Analysis	170
26	EE1603(N)	COMMUNICATION SYSTEMS	180
27	EE1653	Renewable Energy Resources	186
28	EE1654(N)	DATA STRUCTURES AND	193
		ALGORITHMS	
29	EE1663	Distributed Energy Resources	198
30	EE1661	Utilization of Electric Power	203
31	EE1691	Electrical Energy Systems	210
32	EE1632(N)	Power Electronics & Drives Lab	216
33	EE1701(N)	Power System Protection &	230
		Switchgear	
34	EE1703(N)	Power System Operation &	238
		Control	
35	EE1752	EHV AC/DC TRANSMISSION	248
36	EE1753	POWER QUALITY ISSUES	254
37	EE1763	Smart Grid Systems	260
38	EE1764	Object Oriented Programming	265
39	EE1792	Solar Photovoltaics Energy	271
		Conversion	

m HOD

Department of Electrical Engineering School of Electrical, Electronics & Communication (SEEC) Manipal University Jaipur

phiori

Director, SEEC

PROGRAM ARTICULATION MATRIX

SEMESTER	COURSE	PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES															
	CODE	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
	BB0025	2	0	0	1	2	1	3	0	0	0	1	1	2	2	1	0
	MA2103	3	3	2	3	3	0	0	0	3	0	3	1	0	0	0	0
III	EE2101	3	0	0	2	0	0	0	0	0	0	0	0	0	3	3	0
	EE2102	3	3	2	3	3	0	1	1	1	0	2	2	3	3	3	0
	EE2103	3	3	2	2	2	1	0	0	0	0	0	0	3	2	3	0
	EE2104	2	3	3	3	3	2	2	1	2	1	1	0	2	3	2	0
	EO2001	0	2	2	3	2	1	2	0	2	0	2	3	0	0	0	0
	MA2206	3	3	3	3	3	0	0	0	3	0	3	1	0	0	0	0
	EE2201	2	3	3	3	3	2	2	1	2	1	1	0	2	3	2	0
	EE2202	3	3	3	3	1	2	3	0	0	0	0	1	3	2	3	0
	EE2203	2	3	3	3	2	2	1	0	0	0	0	2	2	3	3	0
IV	EE2080	3	1	1	0	0	0	0	0	0	0	0	0	1	1	1	0
	EE2082	3	2	3	2	2	1	2	1	1	1	1	2	2	2	2	0
	EE2230	3	3	3	3	3	0	0	0	2	0	0	2	3	3	3	0
	EE2231	2	2	2	3	1	0	0	0	0	0	0	2	3	3	2	0
	EE2232	3	3	3	3	3	0	0	0	0	0	0	3	3	3	3	0
	EE2233	3	2	2	2	3	1	2	2	3	3	3	2	3	3	3	0
	EE1501(N)	2	1	1	3	1	1	0	0	1	0	2	2	3	2	3	0
	EE1502	3	3	3	3	1	2	3	0	0	0	0	1	3	2	3	0
N	EE1503(N)	3	3	2	3	3	0	1	1	1	0	2	2	3	3	3	0
v	EE1504(N)	3	3	3	2	1	2	3	3	1	1	1	3	3	3	3	0
	EE1592	2	2	2	1	0	0	0	0	0	0	0	3	0	0	2	0
	BB1540	2	2	2	1	2	1	1	2	0	0	0	3	2	1	2	0
	EE1601(N)	2	3	3	3	2	2	1	0	0	0	0	2	3	3	3	0
	EE1602(N)	3	2	0	2	0	0	0	0	0	0	0	1	2	2	1	0
	EE1603(N)	3	1	1	2	2	1	1	1	1	1	1	1	1	1	1	0
	EE1653	3	2	0	2	0	0	0	0	0	0	0	1	2	2	1	0
VI	EE1654(N)	3	3	3	2	2	0	0	0	0	0	0	0	3	3	3	0
	EE1663	3	3	3	3	3	2	0	0	0	0	0	3	3	3	3	0
	EE1661	3	3	3	2	2	2	0	0	0	2	0	2	3	2	2	0
	EE1691	3	3	3	1	1	2	2	1	1	1	1	2	2	2	2	0
	EE1632(N)	2	3	2	2	0	0	1	0	2	0	0	1	2	0	1	0
	EE1701(N)	3	3	3	2	3	0	0	0	0	0	0	3	3	3	3	0
	EE1703(N)	3	2	0	2	0	0	0	0	0	0	0	1	2	2	2	0
	EE1752	3	2	0	2	0	0	0	0	0	0	0	1	2	2	1	0
VII	EE1753	3	3	3	3	2	2	3	0	0	0	0	3	3	2	3	0
	EE1763	3	3	1	1	2	2	1	1	0	0	0	2	2	2	2	0
	EE1764	3	2	2	3	1	1	0	2	1	0	1	2	2	2	3	0
	EE1792	2	2	2	1	0	0	0	0	0	0	0	3	0	0	2	0

School of Business & Commerce

Department of Business Administration

Course Hand-out

Value, Ethics & Governance BB0025 [2 Credits] [2 0 0 2]

Session: July-Nov, 2020 | Faculty: Dr. Sonal Sidana | Class: B.Tech III Semester

Introduction: The course is offered to understand Moral Values and Ethics in personal as well as professional life. It is basic requirement of every human to be a good human being and a good citizen. It further imparts him basics of corporate governance so as to empower him to work technically and professionally in any organization with confidence and conviction and at the same time with honesty & integrity.

A. Course Objectives: At the end of the course, students will be able to

BB1101.1	Define the meaning and relevance of Value and Ethics and apply in personal & professional life.
BB1101.2	Describe the importance of three Gunas for self-development, lifelong learning & growth.
BB1101.3	Find issues and identify solutions related to Public & Private Governance systems.
BB1101.4	Explain the relevance of Company's Act 2013 with reference to corporate world.
BB1101.5	Explain the role and key objectives of organizational governance in relation to ethics and law.
BB1101.6	Demonstrate the social & environmental responsibilities of corporate for sustainability, harmony
	and growth.

B. Program Outcomes and Program Specific Outcomes

PROGRAM OUTCOMES

- [PO.1]. Engineering knowledge: Demonstrate and apply knowledge of Mathematics, Science and Engineering to classical and recent problems of electronic design & communication system.
- [PO.2]. Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. Design/development of solutions: Design a component system, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- [PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions

- [PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding_of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- [PO.10]. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environment.
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

PROGRAM SPECIFIC OUTCOMES

- [PSO.1]. An ability to understand the concepts of basic Electronics & Communication Engineering and to apply them to various areas like signal processing, VLSI, Embedded systems, Communication Systems, Digital & Analog Devices, etc.
- [**PSO.2**]. An ability to solve complex Electronics Communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.
- [PSO.3]. Wisdom of social and environmental awareness along with ethical responsibility to have a successful career and to sustain passion and zeal for real applications using optimal resources as an Entrepreneur.

C. Assessment Plan:

Criteria	Description	Maximum Marks			
	Mid Sem Exam I (Close Book)	15			
Internal Assessment	Mid Sem Exam II (Close Book)	15			
(Summative)	In class Quizzes/ Assignments	20(Min 5 each)			
	Students' Presentations	10			
End Term Exam	End Term Exam (Close Book)	40			
(Summative)					

	Total	100
Attendance	A minimum of 75% Attendance is requi	ired to be maintained by a student to be
(Formative)	qualified for taking up the End Semest	er examination. The allowance of 25%
	includes all types of leaves including me	edical leaves.
Make up Assignments	Students who misses a class will hav	e to report to the teacher about the
(Formative)	absence. A makeup assignment on the	topic taught on the day of absence will
	be given which has to be submitted with	hin a week from the date of absence. No
	extensions will be given on this. The	attendance for that particular day of
	absence will be marked blank, so that the	he student is not accounted for absence.
	These assignments are limited to a r	naximum of 5 throughout the entire
	semester.	
Homework/ Home Assignment/	There are situations where a student	may have to work in home, especially
Activity Assignment	before a flipped classroom. Although the	hese works are not graded with marks.
(Formative)	However, a student is expected to part	ticipate and perform these assignments
	with full zeal since the activity/ flippe	ed classroom participation by a student
	will be assessed and marks will be award	led.

D: Syllabus:

Values: Relevance of Value Education in day-to-day life. Mantra for success - Value, Moral and Ethics. Determinants of human nature (Three Gunas) and its impact on human life.

Relevance of traits like Personality, Attitude, Behaviour, Ego, Character, introspection, Motivation, Leadership and 4 Qs with relevant Case Studies^{*}.

Governance: Understanding of Public and Private sector Governance systems; Courts & CAG.

Public Sector Governance: Need, relevance, stakeholders.

Private Sector Governance: Proprietary, Partnership, Company (Pvt Ltd & Ltd), Company' Act 2013, Board of Directors; its Roles and Responsivities. Regulatory bodies; its role in ethical governance. Projects on PPP mode-relevance & prospects.

CSR: Relationship with Society, Philanthropy and Business strategy, CSR Policy, Triple Bottom Line

Text / Reference Books:

- 1. Professional Module of ICSI.
- 2. Ghosh B.N., Business Ethics & Corporate Governance, McGraw Hill.
- 3. Mandal S.K., Ethics in Business & Corporate Governance, McGraw Hill .
- 4. Ray C.K., Corporate Governance, Value & Ethics, Vaya Education of India
- 5. Chatterjee Abha, Professional Ethics, Oxford Publications.

*Suggestive Case Studies:

- 1) Uphar Theatre Tragedy- Engineering Ethics
- 2) Bhopal Gas Tragedy- Operational Engineering Ethics
- 3) Satyam Case- Financial Reporting Ethics
- 4) Enron Case- Business Ethics
- 5) Neerav Modi Case- Financial Fraudulence cases

D. Lecture Plan:

Lec No	Topics	Session Outcome	Mode of	Correspon	Mode of Assessing
			Delivery	ding CO	the Outcome
1	Introduction: Values: Meaning	To acquaint and clear teacher's	Lecture	BB	In class Quiz
	& Relevance of value education	expectations and understand		1101.1	Mid Term I
		student expectations. Basics of			End Term Exam

		Value Education			
2	Success: Meaning in perspective of morals & ethics	To understand the concept of success achieved with or without morals / ethics/ values	Lecture, case study	BB 1101.1	In class Quiz Mid Term I End Term Exam
3,4	Professional Ethics & ethical dilemmas	To understand the role of professional ethics in the life & deal with dilemmas	Lecture	вв 1101.1	In class Quiz, assignment Mid Term I End Term Exam
5	Three Gunas and their relevance, Nature and kinds of value with examples	Understand basic traits in one's personality, its causes and relevance with value based living.	Lecture	BB 1101.2	In Class Quiz, Mid Term I End Term
6,7	Relevance of traits of individual like Personality, Attitude, Behaviour	To acquaint & develop positive traits of personality in oneself	Short stories, Lecture	BB 1101.2	Class Quiz assignment Mid Term I End Term
8.9	Ego, Character, introspection, Motivation	<i>To acquaint & develop positive traits of personality in oneself and understand negative traits</i>	Lecture Short stories	BB 1101.2	In Class Quiz Mid Term I End Term
10,11	Leadership traits & 4Qs (PQ, IQ, EQ, SQ)	To realize importance of leadership and to imbibe in life	Lecture Short stories	BB 1101.2	In Class Quiz assignment Mid Term I End Term
12,13	Governance & its relevance	To acquaint with the concept of Governance	Lecture	BB 1101.3	In Class Quiz Mid Term II End Term
14	Public Sector Governance: Need, relevance, stakeholders	Understand various aspects of public sector governance	Lecture	BB 1101.3	Class Quiz, Mid Term II End Term
15	Public Finance, Audit & Control	Understand basics of Public Finance, Check & balance	Lecture Case study	BB 1101.3	Class Quiz, assignment Mid Term II End Term
16,17	Private Sector Governance, proprietary & partnership firms and corporate, PPP mode projects	Understand meaning of proprietary & partnership in a firm / company and perspective in PPP mode	Lecture Short stories	BB 1101.3 & 1101.4	Class Quiz Mid Term II End term
18, 19	Company' Act 2013 : Roles & Responsibilities of Directors & regulatory authorities	Explain various Regulations and practicesCorporateGovernanceinternationallywinderstandkey role of directors	Lecture	BB 1101.4	Class Quiz Mid Term II End Term
20,21	Role of Ethics in Governance	Recognize the necessity of ethics & transparency in Governance	Movie : Gandhi	BB 1101.5	Class Quiz, assignment Mid Term II End Term
22,23	CSR: Relationship with Society, Philanthropy and Business strategy	To understand the relevance of giving back to society by a corporate & its importance in society	Lecture, case study	BB 1101.6	Class Quiz, End Term
24	CSR Policy, Triple Bottom Line	Understand the concept of TBL in organizational frameworks	Lecture case study	BB 1101.6	Class Quiz assignment End Term

25,26	Students' Presentation	Recall contents and their importance through case studies.	Flipped Class	ALL	Class Quiz End Term	
-------	------------------------	--	------------------	-----	------------------------	--

Course Articulation Matrix: (Mapping of COs with POs)

CO	STATEMENT	(CORRELATION WITH PROGRAM OUTCOMES								CORRELATI ON WITH PROGRAM SPECIFIC OUTCOMES					
		Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
		0	0	0	0	0	0	0	0	0	0	0	0	S	S	S
		1	2	3	4	5	6	7	8	9	10	11	12	0 1	0 2	O 3
BB11	Define the meaning and relevance						1		2							
01.1	of Value and Ethics and apply in															
	personal & professional life.															
BB11	Describe the importance of three						1		2	1	1		2			1
01.2	Gunas for self-development,															
	lifelong learning & growth.															
BB11	Find issues and identify solutions						1	1		1	2					
01.3	related to Public & Private															
	Governance systems.															
BB11	Explain the relevance of Company's						1		1	1						
01.4	Act 2013 with reference to															
	corporate world.															
BB11	Explain the role and key objectives						1		2	1			1			1
01.5	of organizational governance in															
	relation to ethics and law.															
BB11	Demonstrate the social &						1	3				1	1			3
01.6	environmental responsibilities of															
	corporate for sustainability,															
	harmony and growth.															

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Engineering

Department of Mathematics & Statistics Course Hand-out

Engineering Mathematics-III | MA 2103 | 3 Credits | 2 | 0 3

Session: August 20 - Dec 20 | Faculty: Dr. Giriraj Methi | Class: II Year (III Sem. EE)

- **A.** Introduction: An engineering student needs to have some mathematical tools and techniques which emphasize the development of rigorous logical thinking and analytical skills. Based on this, the course aims at giving adequate exposure to the theory and applications. The course is aimed at developing the basic Mathematical skills of engineering students that are imperative for effective understanding of engineering
- B. Course Outcomes: At the end of the course, students will be able to

[MA2103.1] Student will apply concepts of analytic functions and residue in solving the circuit equations

[MA2103.2] Student will be able to understand the computation in circuit analysis which involves complex numbers.

[MA2103.3] Students will be able to decompose any periodic signal wave into sinusoids with the help of Fourier series

[MA2103.4] Student will understand and use the vector calculus in engineering problems related to heat & flow.

[MA2103.5] Fourier transform will develop the proper understanding of signal processing in electrical engineering.

Program Outcomes and Program Specific Outcomes

- [PO.I]. Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- [PO.2]. Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **[PO.3].** Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
- **[PO.4].** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
- **[PO.5].** Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modelling to complex engineering activities with an under- standing of the limitations.
- [PO.6]. The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.

- [PO.7]. Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.
- **[PO.8].** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- [PO.9]. Individual and Teamwork: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
- [PO.10]. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
- [PO.II]. Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to owners own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- [PO.12]. Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

[PSO.1]. An ability to understand the concepts of basic Electronics & Communication Engineering and to apply them to various areas like Signal processing, VLSI, Embedded systems, Communication Systems, Digital & Analog Devices, etc.

[PSO.2]. An ability to solve complex Electronics and Communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.

[PSO.3]. Wisdom of social and environmental awareness along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur

Criteria	Description	Maximum Marks				
	Sessional Exam I (Closed Book)	20				
Internal Assessment	Sessional Exam II (Closed Book)	20				
(Summative)	Quizzes (Open Book/Close Book) and Assignments	20				
End Term Exam (Summative)	End Term Exam (Closed Book)	40				
	Total	100				
Attendance (Formative)	A minimum of 75% Attendance is required to be maintained by a student to be qualified for taking up the End Semester examination. The allowance of 25% includes all types of leaves including medical leaves					
Homework/ Home Assignment/ (Formative)	There are situations where a student may have to work in home, especially befo a flipped classroom. A student is expected to participate and perform the assignments with full zeal since the activity/ flipped classroom participation a student will be assessed and marks will be awarded.					

C. Assessment Rubrics:

D. Syllabus

Functions of complex variable. Analytic function, C-R equations, differentiation, Integration of complex function, Cauchy's integral formula. Taylor's and Laurent Series, Singular points, Residues, Cauchy's residue theorem. Periodic function, Fourier series expansion. Even and odd functions, functions with arbitrary periods, half range expansions, Fourier transform, Parseval's identity, PDE-Solution by method of separation of variables and by indicated transformations. One dimensional wave equation, one dimensional heat equation and their solutions. Vector differential operator, gradient divergence and curl. Line, surface and volume integrals. Green's theorem, Divergence and Stoke's theorem

F. Textbook:

T1. Grewal B. S., Higher Engineering Mathematics, (42e), Khanna Publishers, 2013

T2. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley India Eastern, 2006.

G. Reference Book:

R1 Iyengar S.R.K. and Jain, Rajendra K., Advance Engineering Mathematics (3e), Narosa book distributors Pvt Ltd-New Delhi, 2007

R2 Ramana B. V., Higher Engineering Mathematics (6th reprint), Tata Mcgraw-Hill, New Delhi, 2008

H. Lecture Plan:

Lecture N o.	Description of the Topics	Session Outcome	Mode of Delivery	Correspondin g CO	Mode of Assessing the Outcome
1	Introduction: Complex Variables	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.1	Quizzes, assignments, Two Sessional, End Term Examination
2	Analytic Function	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.1	Quizzes, assignments, Two Sessional, End Term Examination
3	Cauchy Riemann(C-R) Equations	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.1	Quizzes, assignments, Two Sessional, End Term Examination

4	differentiation,	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.1	Quizzes, assignments, Two Sessional, End Term Examination
5	Tutorial	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Problem solving	2103.1	Quizzes, assignments, Two Sessional, End Term Examination
6	Integration of complex function,	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.1	Quizzes, assignments, Two Sessional, End Term Examination
7	Cauchy's integral formula.	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.1	Quizzes, assignments, Two Sessional, End Term Examination
8	Taylor's series	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.2	Quizzes, assignments, Two Sessional, End Term Examination
9	Tutorial	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.2	Quizzes, assignments, Two Sessional, End Term Examination
10	Laurent Series	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Problem solving	2103.2	Quizzes, assignments, Two Sessional, End Term Examination
11	Singular points	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	21032	Quizzes, assignments, Two Sessional, End Term Examination
12	Residues	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.2	Quizzes, assignments, Two Sessional, End Term Examination
13	Cauchy's residue theorem	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.2	Quizzes, assignments, Two Sessional, End Term Examination

14	Tutorial	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	2103.2	Quizzes, assignments, Two Sessional, End Term Examination
15	Periodic function, Fourier series expansion	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.3	Quizzes, assignments, Two Sessional, End Term Examination
16	Even and odd functions	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.3	Quizzes, assignments, Two Sessional, End Term Examination
17	functions with arbitrary periods	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.3	Quizzes, assignments, Two Sessional, End Term Examination
18	Half range expansions	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.3	Quizzes, assignments, Two Sessional, End Term Examination
19	Tutorial	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Problem solving	2103.3	Quizzes, assignments, Two Sessional, End Term Examination
20	Introduction: Scalar and vector field, differentiation & integration of vector function	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
21	Gradient & Directional derivatives	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
22	Divergence & Curl	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
23	Line Integrals Identify	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Problem solving	2103.4	Quizzes, assignments, Two Sessional, End Term Examination

24	Tutorial	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
25	Surface Integrals	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
26	Volume Integrals	Identify, formulate, apply appropriate techniques <u>, professional</u> ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
27	Tutorial	Identify, formulate, apply appropriate techniques <u>, professional</u> ethics, Communicate effectively & life- long learning	Problem solving	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
28	Green's Theorem and its application	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
29	Gauss's Theorem and its Applications	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
30	Stoke's Theorem and its Applications	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
31	Fourier transform continued	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.5	Quizzes, assignments, Two Sessional, End Term Examination
32	Parseval's identity	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.5	Quizzes, assignments, Two Sessional, End Term Examination
33	Tutorial	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Problem solving	2103.5	Quizzes, assignments, Two Sessional, End Term Examination

34	PDE-Solution by method of separation of variables and by indicated transformations	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Problem solving	2103.5	Quizzes, assignments, Two Sessional, End Term Examination
35	PDE-Solution by method of separation of variables and by indicated transformations	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.5	Quizzes, assignments, Two Sessional, End Term Examination
36	One dimensional wave equation	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.5	Quizzes, assignments, Two Sessional, End Term Examination
37	Tutorial	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Problem solving	2103.5	Quizzes, assignments, Two Sessional, End Term Examination
38	One dimensional heat equation	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.5	Quizzes, assignments, Two Sessional, End Term Examination

I. Course Articulation Matrix: (Mapping of COs with POs)

					CORF	RELATIC	N WITH	H PROG	iram o	UTCON	/IES			CORRELATION WITH		
СО	STATEMENT													SPECIFIC		
			-		1	1	1	1	1	1	1	1	1	OUTCOMES		
		PO	PO 1	PO 2 :	PO	PO 1 [[]	PO F	PO	PO 7 8	PO	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
MA2103.1	Student will apply concepts of analytic functions and residue in solving the circuit equations	3	3	1	3	1				2		2	1			
MA2103.2	Student will be able to understand the computation in circuit analysis which involves complex numbers.	3	2	2	2	2				2		1	1			
MA2103.3	Students will be able to decompose any periodic signal wave into sinusoids with the help of Fourier series	3	2	2	2	2				3		3	1			
MA2103.4	Student will understand and use the vector calculus in engineering problems related to heat & flow.	3	3	2	3	2				1		2	1			
MA2103.5	Fourier transform will develop the proper understanding of signal processing in electrical engineering.	2	2	1	2	3				2		2	1			

School of Electrical Electronics & Communication Engineering

Department of Electrical Engineering Course Hand-out

ANALOG & DIGITAL SYSTEM DESIGN| EE 2101 | 4 Credits | 3 1 0 4

Session: Aug. 2020 - Dec.2020 | Faculty | Class: II Year | Course Coordinator: Mr. Satya Narayan Agarwal

- A. Introduction: This course is designed as the introductory course on Analog & Digital System Design for undergraduate students. It covers the basic characteristics of MOSFET and its small signal analysis. This course covers fundamentals of OPAMPs, linear and non-linear OPAMPS based circuits. This course is to enable student to understand simple combinational & Sequential logic circuits. To understand this course students are expected to have background knowledge of Network Analysis and Basic.
- B. Course Outcomes: At the end of the course, students will be able to

[EE2101.1] Explain the basic characteristics of MOSFET and be able to employ DC and AC analysis of circuits involving semiconductor devices.

[EE2101.2]. Explain frequency response MOSFET and application of current mirror circuit.

[EE2101.3] Design and analyse the OPAMPS based linear and non-linear circuit.

[EE2101.4] Develop and analyse the various combinational circuits for given set of specifications.

[EE2101.5] Apply the concept for design of various sequential circuits for given set of specifications.

- C. Program Outcomes and Program Specific Outcomes
- **[PO.I].Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- **[PO.2].Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3].Design/development of solutions**: Design solutions for complex engineering problems and <u>design system</u> <u>components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4].Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- **[PO.5].Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT</u> <u>tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal</u>, <u>health</u>, <u>safety</u>, <u>legal</u>, <u>and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7].Environment and sustainability**: Understand the <u>impact of the professional engineering solutions in societal and</u> <u>environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8].Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- **[PO.9].Individual and team work**: Function effectively as an individual, and as a <u>member or leader in diverse teams</u>, and in multidisciplinary settings

- **[PO.10].** Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

PROGRAM SPECIFIC OUTCOMES

- **[PSO.I].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyze the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- **[PSO.3].** Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D. Assessment Rubrics:

Criteria	Description	Maximum Marks				
	Sessional Exam I (Close Book)	20				
Internal Assessment	Sessional Exam II (Close Book)	20				
(Summative)	Quizzes (03) and Assignment (02)	20				
End Term Exam	End Term Exam (Close Book)	40				
(Summative)						
	Total	100				
Attendance	A minimum of 75% Attendance is requ	ired to be maintained by a student to be				
(Formative)	qualified for taking up the End Semest	ter examination. The allowance of 25%				
	includes all types of leaves including medical leaves.					
Quizzes	3 Quizzes (Close Book)					

E. Syllabus

Semiconductor Devices MOSFET Characteristics, structure, biasing, current mirrors, basic amplifier configurations, CS, CD, CG configurations, small signal model, frequency response, OPAMP configuration, OPAMP in linear Mode, OPAMP with positive and negative feedback, Linear applications of OPAMP, Nonlinear applications of OPAMP, Overview of Algebraic simplification of Boolean expressions, realization using logic gates, minimization using Karnaugh map, Combinational circuit design, Arithmetic circuits, Sequential logic circuits: Overview of flip-flops, Counters, shift registers.

F. Text Book:

TI. Boylestad and Nashelsky, Electronic Devices and Circuit Theory (10e), Pearson Education 2009

G. Reference Book:

RI. D. S. William, Operational Amplifiers with Linear Integrated Circuits, Pearson Education, 2004

R2. R. A. Gayakwad, Op-Amps and Linear Integrated Circuits (4e), Pearson Education 2015.

H. Lecture Plan:

Lec No	Topics	Session Objective	Mode of Delivery (Online/Classroom)	Corresponding	Mode of Assessing the Outcome
1	Introduction, aims and objectives of the course and elementary fundamentals of Analog & Digital systems	Know the basics of the course and understand its applications	Lecture Online	EE2101.1	Cuttome
2	MOSFET introduction, Threshold voltage, Characteristics, Operating Region	Understand basic structure of MOSFET and its operation	Lecture Online	EE2101.1	
3	MOSFET as amplifier, switch, resistor, capacitor	Different modes of operation of MOSFET i.e amplifier, voltage controlled resistor and capacitor.	Lecture Online	EE2101.1	Assignments Class Quiz Mid-Term I End-Term
4	MOSFET as amplifier, switch, resistor, capacitor contd.	Different modes of operation of MOSFET i.e amplifier, voltage controlled resistor and capacitor.	Lecture/Activity	EE2101.1	
5	MOSFET biasing	Numerical practice	Lecture Online	EE2101.1	
6	MOSFET small signal model	Small signal model of	Lecture Online	EE2101.1	
7	MOSFET small signal model contd.	MOSFET, working as amplifier	Lecture Online	EE2101.1	
8	Small signal analysis of MOSFET amplifier, Single Stage		Lecture Online	EE2101.1	
9	Small signal analysis of MOSFET amplifier, CS, CD, CG amplifier configurations		Lecture Online	EE2101.1	Assignments
10	Input & Output resistance of CS, CD, CG configuration, Input Signal Swing Limits	Input and output resistance of different configuration and limitation of input	Lecture Online	EE2101.1	Class Quiz Mid-Term I End-Term
11	Input & Output resistance of CS, CD, CG configuration, Input Signal Swing Limits contd.	voltage swing, saturation and cut-off region Know the basics of the I.C. Engine and understand its applications	Lecture Online	EE2101.1	
12	Current mirrors Circuit	Analysis of current mirror circuit and their application	Lecture Online	EE2101.2	

13	Frequency response of MOSFET	Parameter variation at various frequency level in MOSFET	Lecture Online	EE2101.2	
14	Introduction to Operation amplifier and its characteristics	Learn the basic property of operational amplifier, ideal amplifier and practical	Lecture Online	EE2101.3	
15	Parameter of Op-Amp and various type of feedback topologies	amplifier difference and their its numerical values	Lecture Online	EE2101.3	
16	Summer, scaling amplifier and various mathematical operations	Able make basic circuit to perform addition, subtraction using Op-amp	Lecture Online	EE2101.3	
17 -23	Analysis of Op-Amp based linear circuit	Analysis of inverting and non inverting amplifier, filters, voltage follower, integrator, differentiator etc.	Lecture/Activity	EE2101.3	
24-29	Analysis of Op-Amp based non-linear circuit	Analysis of Schmitt trigger, zero crossing detector, voltage level detector etc.	Lecture Online	EE2101.3	
30-31	Op-based positive feedback circuits	Analysis of oscillator circuit	Lecture Online	EE2101.3	
32	Introduction to logic gates	Introduction to logic gates, symbolic Representation, classification, truth tables and explanations	Lecture	EE2101.4	Assignments Class Quiz Mid-Term II End-Term
33	Boolean Algebra	Boolean algebra, basic formulas and their verification and Utilization	Lecture	EE2101.4	
34	-	Implementation of Boolean expression with logic gates	Lecture	EE2101.4	
35	Representation of Boolean expression	Representation of Boolean expression in SumOfProduct (SOP), ProductOfSum (POS) forms	Lecture	EE2101.4	A
36	Implementations of Boolean expressions using universal gate	Implementations of Boolean expressions using universal gate (NAND-NAND Logic)	Lecture	EE2101.4	Assignments Class Quiz Mid-Term II End-Term
37	Implementations of Boolean expressions using universal	Implementations of Boolean expressions using universal	Lecture		

	gate	gate.(NOR-NOR Logic)				
38	Minimization Techniques	Minimization Techniques: Introduction of Karnaugh Map, formation of Karnaugh Table	Lecture/Activity	EE2101.4		
39	Minimization Techniques	K-Map (2-3 variable) for minimization of Boolean Expressions	Lecture	EE2101.4		
40	Combinational Circuits	Introduction of Combinational Circuits, Design of arithmetic circuits – Half adder	Lecture	EE2101.4		
41	Arithmetic circuits	Design and explanation of Full adder, Substractor	Lecture	EE2101.4		
42	Arithmetic circuits	Design of 4 bit adder and 4 bit Substractor	Lecture	EE2101.4		
43	Multiplexer and Demultiplexer	ultiplexer and Demultiplexer and Explanation		EE2101.4	Assignments Class Quiz End-Term	
44	Latches and flip-flops	Latches and flip-flops: RS Flip-flop and explanation	Lecture	EE2101.5		
45	Latches and flip-flops	Latches and flip-flops: JK Flip-flop and explanation, Master- Slave JK	Lecture	EE2101.5		
46	Latches and flip-flops	Latches and flip-flops: D & T Flip-flop and explanation	Lecture	EE2101.5		
47	Flip-flip conversion	Flip-flip conversion	Lecture	EE2101.5		
48	Synchronous Sequential Circuit Design	Synchronous Sequential Circuit Design: Introduction to Synchronous Sequential circuits	Lecture	EE2101.5	Assignments Class Quiz End-Term	
49	Counters	Design and explanation of Synchronous Counters	Lecture	EE2101.5		
50	Counter	Design and explanation of Asynchronous Counters	Lecture	EE2101.5		

I. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES							CORRELATION WITH PROGRAM SPECIFIC OUTCOMES						
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE2101.1	Explain the basic characteristics of MOSFET and be able to employ DC and AC analysis of circuits involving semiconductor devices	3													3	3
EE2101.2	Explain frequency response MOSFET and application of current mirror circuit	3			2										2	
EE2101.3	Design and analyse the OPAMPS based linear and non-linear circuit.	3			2										2	2
EE2101.4	Develop and analyse the various combinational circuits for given set of specifications.	3			2										1	
EE2101.5	Apply the concept for design of various sequential circuits for given set of specifications.	3													1	2

School of Electrical, Electronics and Communication Engineering

Department of Electrical Engineering Course Hand-out

ELECTROMAGNETIC FIELD THEORY | EE 2102 | 3 Credits | 2 | 0 3

Session: August2020 – December2020 | Faculty | Class: II Year | Course Coordinator: Himanshu Priyadarshi [MU - Jaipur]

A. Introduction: Electromagnetic field theory is a foundational course in Electrical Engineering, for it is necessary to develop sound understanding of other courses like Electrical Machinery, Power Systems, Communication Systems, to name a few. Apart from an academic perspective, all of us are surrounded by electromagnetic radiation and gadgets, and hence it becomes important for us as electrical engineers to engage responsibly in the developing engineering awareness for electromagnetic applications.

B. Course Outcomes: At the end of the course, students will be able to

- [EE2102.1] DEVELOP sound fundamentals of electrostatics as well as magnetostatics along with their mathematical basis by utilizing the tools of vector calculus and algebra. APPRECIATE the utility of electrostatics as well as magnetostatics for problem solving leading to entrepreneurship and employment. (Bloom's Level: knowledge, Analysis, Application)
- [EE2102.2] DERIVE electric and magnetic fields for simple configurations under time invariant(static)conditions.(Bloom's Level: Comprehensive, Application)
- [EE2102.3] ANALYZE time-varying electric and magnetic fields, and APPRECIATE Maxwell's equation in different forms and different media (Bloom's Level: Comprehensive, Analysis)
- [EE2102.4] APPRECIATE propagation of plane waves in different media (Bloom's Level: Application, Analysis)
- [EE2102.5] CORRELATE the concepts of electromagnetism in different applications(Bloom's Level: Application Analysis)

C. Program Outcomes and Program Specific Outcomes

- **[PO.1].** Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **[PO.2]. Problem Analysis:** Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **[PO.3]. Design/ Development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
- **[PO.4].** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
- [PO.5]. Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modelling to complex engineering activities with an under- standing of the limitations.
- **[PO.6].** The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- **[PO.7].** Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.
- **[PO.8].** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- **[PO.9].** Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.

- [PO.10]. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
- **[PO.11]. Project Management and Finance:** Demonstrate knowledge and understanding of engineering and management principles and apply these to owners own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **[PO.12].** Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES:

- [PSO.1]. To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- [PSO.2]. To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.

[PSO.3]. Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D.	Assessment	Rubrics:

Criteria	Description	Maximum Marks				
	Sessional Exam I (Close Book)	20				
Internal Assessment	Sessional Exam II (Close Book)	20				
(Summative)	Quizzes (03) and Assignment (03)	20				
End Term Exam	End Term Exam (Close Book)	40				
(Summative)						
	Total	100				
Attendance	A minimum of 75% Attendance is requi	ired to be maintained by a student to be				
(Formative)	qualified for taking up the End Semest	ter examination. The allowance of 25%				
	includes all types of leaves including medical leaves.					
Quizzes	3 Quizzes (Close Book)					

E. Syllabus

Vector analysis and calculus: Vector algebra, Rectangular, Cylindrical and Spherical Coordinates, Gradient, Divergence, Curl

Electrostatics: Field intensity, Flux density, Electric scalar potential, Potential gradient, Energy density in an electric field, Boundary conditions, Capacitance, Laplace's and Poisson's equations.

Magnetostatics: Field intensity, Flux density, Boundary conditions, Magnetic forces, Inductance,

Time varying fields: Maxwell's equations, Uniform Plane wave: Wave equation and its solution, Wave propagation in different media, Poynting's theorem.

F. Text Book:

1. M. Sadiku, *Elements of Electromagnetics*, Oxford University Press, 2014.

G. Reference Book:

- I. W. Hayt, Engineering Electromagnetics, TMH, 2012.
- 2. N. Rao, *Elements of Engineering Electromagnetics*, Pearson Education, 2006.

H. Online Learning Material:

https://nptel.ac.in/courses/108/104/108104087/

I. Lecture Plan:

Lec No	Topics	Session Outcome	Mode of	Corresponding	Mode of Assessing the			
			Delivery	CO	Outcome			
L1	Introduction to the practice of Electromagnetic Field Theory(EMFT)	APPRECIATION for the purposeful practice of AWARENESS about the impact of ELECTROMAGNETISM in our daily lives; the dangers of casual, unscientific approach towards ELECTROMAGNETIC RADIATION and gadgets	Lecture & Discussion	EE 2102.1, 5	Microsoft Forms Formative Quiz, CIA, ETE			
L2-6	Vectors and Scalars, Concept of field and their physical interpretation; coordinate systems(with livescript-aided visualization and their relevance	IDENTIFY and DISCRIMINATE between <i>SCALARS</i> and <u>VECTORS</u> from the viewpoint of an engineer, and not just mathematical viewpoint; RATIONALIZE the CHOICE of ORTHONORMAL COORDINATE SYSTEMS in EMFT using results from vector algebra	Lecture & Discussion	EE 2102.1, 5	Microsoft Forms Formative Quiz, CIA, ETE			
L7-8	Vector Calculus and its significance for EMFT	APPRECIATE length, area, and volume in relevant coordinate systems for EE 2102 with problem-solving	Lecture & embedded Tutorial	EE 2102.1, 5	Microsoft Forms Formative Quiz, CIA, ETE			
L9-11	Utility, scope and relevance of concepts like gradient, divergence, and curl	Understanding through problem solving for the vector calculus operations like gradient, divergence and curl for EMFT	Lecture & embedded Tutorial	EE 2102.1, 5	Microsoft Forms Formative Quiz, CIA, ETE			
L12 -15	Electrostatics: Coulomb's Law – Electric field intensity – problems on point charges, Field due to charge distribution, Straight line charge, Field due to circular disc	ACKNOWLEDGE Electric Field in its various applications and accuracy of Coulomb's law along with its limitations	Lecture & embedded Tutorial	EE 2102.1,2, 5	Microsoft Forms Formative Quiz, CIA quiz, ETE			

	Electric Flux density – Gauss	APPRECIATE the effectiveness of GAUSS law	Lecture &	EE 2102.1,2, 5	Microsoft Forms Formative
	Law & Applications, Uniform	in overcoming the limitations of COULOMB's	embedded		Quiz, CIA, ETE
L16-17	line charge, Plane with	law	Tutorial		
	surface charge density,				
	Spherical Shell				
	Consist while Electric content	APPLY the electrostatics concepts for electric	Lecture &	EE 2102.1,2, 5	Microsoft Forms Formative
L18	Coaxial cable, Electric scalar	potential calculations for co-axial cable	embedded		Quiz, CIA, ETE
	potential, Potential gradient		Tutorial		
	Electric potential due to ring,	UTILIZE the divergence transformer for electric	Lecture &	EE 2102.1,2, 5	Microsoft Forms Formative
I 10 20	sphere, Divergence –	potential	embedded		Quiz, CIA, ETE
L19-20	Divergence theorem		Tutorial		
	(Cartesian coordinates)				
	Boundary conditions for	APPRECIATE & APPLY boundary conditions	Lecture &	EE 2102.1,2, 5	Microsoft Forms Formative
L21	dielectric materials	for electrostatic problems	embedded		Quiz, CIA, ETE
			Tutorial		
	Capacitance of parallel plate	UNDERSTAND capacitance from first	Lecture &	EE 2102.1,2, 5	Microsoft Forms Formative
L22-23	capacitor, Concentric	principles of electrostatics	embedded		Quiz, CIA, ETE
	spherical shell, co-axial cable,		Tutorial		
	Energy density in an electric	METRICIZE energy density for pertinent	Lecture &	EE 2102.1,2, 5	Microsoft Forms Formative
L24	field, Laplace & Poisson's	problems	embedded		Quiz, CIA, ETE
	Equations		Tutorial		
	Magnetostatics, Biot-Savart's	APPRECIATE the importance of static	Lecture &	EE 2102.1,2, 5	Microsoft Forms Formative
L25-26	law and Applications –	magnetic fields using Biot-Savart's law.	embedded		Quiz, CIA, ETE
	Straight line conductor,		Tutorial		
	circular ring				
	Ampere's circuital law &	UTILIZE Ampere's circuital law for magnetic	Lecture &	EE 2102.1,2, 5	Microsoft Forms Formative
	applications: co-axial cable	flux calculations	embedded		Quiz, CIA, ETE
	Solenoid, Curl-Stoke's		Tutorial		
L27-28	Theorem (Cartesian				
	coordinates), Magnetic flux &				
	flux density, scalar & vector				
	magnetic potential				
	Lorenz force equation, force	COMPUTE Lorenz force for current carrying	Lecture &	EE 2102.1,2,	Microsoft Forms Formative
L29	between differential current	en differential current conductors			Quiz, CIA, ETE
	elements, Magnetic Boundary		Tutorial		

	conditions								
L30	Inductance of Toroid, Solenoid, Two wire cable, Coaxial cable	CALCULATE inductance for salient configurations	Lecture & embedded Tutorial	EE 2102.1,2,3, 5	Microsoft Forms Formative Quiz, CIA, ETE				
L31	Faraday's Law – Transformer emf, motional emf derivations and theory, Concept of displacement, Conduction current	APPRECIATE Faraday's Law and UTILIZE it for transformer emf calculations	Lecture & embedded Tutorial	EE 2102.1,2, 3,5	Microsoft Forms Formative Quiz, CIA, ETE				
L32	Maxwell's equations in integral & point form, Wave equation and solution	EXPRESS Maxwell's equations in suitable forms	Lecture & embedded Tutorial	EE 2102.1,2, 3,5	Microsoft Forms Formative Quiz, CIA, ETE				
L33-35	Characteristics of medium – attenuation constant, phase constant, propagation constant Wavelength, phase velocity, intrinsic impedance and power (Poynting's theorem), Wave motion in dielectrics Wave motion in lossy dielectrics, Wave motion in conductors – concept of skin depth	UNDERSTAND & METRICIZE medium characteristics FOR wave propagation in different media	Lecture & embedded Tutorial	EE 2102.1,2, 3,4,5	Microsoft Forms Formative Quiz, CIA, ETE				
L36	Plane wave reflection: normal incidence reflection & transmission coefficients, Power calculation & standing wave ratio	UNDERSTAND plane waves and making relevant power calculation	Lecture & embedded Tutorial	EE 2102.1,2, 3,4,5	Microsoft Forms Formative Quiz, CIA, ETE				
L37-39	Oblique incidence: perpendicular polarization, Parallel polarization, Total reflection: Brewster angle, Critical angle; Cross talk in transmission lines	UNDERSTANDING polarization and cross talk with relevant background	Lecture & embedded Tutorial	EE 2102.1,2, 3,4,5	Microsoft Forms Formative Quiz, CIA, ETE				

L 40	Conclusion and Summery	RECAPITULATE the concepts taught in this	Lecture &	EE 2102.1,2,	
	Conclusion and Summary	course	Discussion	3,4,5	

J. Course Articulation Matrix: (Mapping of COs with POs)

														Co	rrelation	n with
			Correlation with Program Outcomes										Program Specific			
CO	CT A TENDENT											Outcomes				
CO	STATEMENT	РО	PO	РО	РО	PO	РО	PO	РО	PO	PO	РО	РО	PSO	PSO	PSO 3
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	1505
[EE2102.1]	DEVELOP sound fundamentals of electrostatics as well as magnetostatics along with their mathemtical basis by utilizing the tools of vector calculus and algebra. (Bloom's Level: knowledge, Analysis)		1	2				3					1		2	1
[EE2102.2]	DERIVEelectricandmagneticfieldsforsimpleconfigurationsundertimeinvariant(static)conditions.(Bloom'sLevel:Comprehensive, Application)	1	1		3											3
[EE2102.3]	ANALYZE time-varying electric and magnetic fields, and APPRECIATE Maxwell's equation in different forms and different media (Bloom's Level: Comprehensive, Analysis)	3	2			1							1	3		1
[EE2102.4]	APPRECIATE propagation of plane waves in different media (Bloom's Level: Application, Analysis)		3	1			2								2	1
[EE2102.5]	CORRELATE the concepts of electromagnetism in different applications(Bloom's Level: Application Analysis)			3		1		2					1	2	1	1

School of Electrical, Electronics and Communication Engineering

Department of Electrical Engineering Course Hand-out

ELECTRICAL CIRCUIT ANALYSIS | EE 2103 | 4 Credits | 3 1 0 4

Session: Aug. 2020 – Nov.2020 | Faculty | Class: 2nd Year | Course Coordinator: Mr. Ritesh Singh

- A. Introduction: The course is offered by Department of Electrical Engineering as a Electrical Engineering Core Course, targeting Electrical & Electronics Engineering students of III Semester, B. Tech. (EEE). The course offers an in-depth understanding of various fundamentals of Electrical Network Analysis. The topics covered include the Electrical Network analysis theorems for Circuit Analysis with application of nodal and mesh analysis. The Signals and Waveforms, Time Domain and Frequency Domain Analysis of the Electrical Circuit is covered with Laplace Domain Analysis. Network functions with concepts of Poles-Zeros, Two-Port Network and application of Graph theoretical methods to Network Analysis is also included in the course.
- **B. Course Outcomes:** Upon successful completion of the course, the student will be able to:
 - [EE2103.1]. Describe the fundamental concepts of Graph Theory and demonstrate the Skills to apply it to analyse Electrical Networks. (Bloom's Level: Knowledge, Comprehensive)
 - [EE2103.2]. Apply the basic Circuital Law and different Network Theorems to analyse Electrical Circuits. (Bloom's Level: Analysis, Application)
 - [EE2103.3]. Analyse the Electrical Networks using Time Domain analysis, and evaluate transient response and steady state response of electrical circuit using elementary signals. (Bloom's Level: Knowledge, Application)
 - [EE2103.4]. Analyse the Electrical Network using Frequency Domain approach and Laplace Transforms to enhance Employability. (Bloom's Level: Analysis, Application)
 - [EE2103.5] Analyse complex Electrical Network by matrix formulation of network and solve it by Two Port Network concept. (Bloom's Level: Knowledge, Application)

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- **[PO.1]** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **[PO.2] Problem analysis:** Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **[PO.3]** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **[PO.4]** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **[PO.5]** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

- **[PO.6]** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **[PO.7]** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **[PO.8]** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices.
- **[PO.9]** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **[PO.10] Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **[PO.11]** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **[PO.12] Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES:

- **[PSO.1]** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2]** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- **[PSO.3]** Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

Criteria	Description	Maximum Marks					
	Sessional Exam I (Closed Book)	20					
Internal Assessment	Sessional Exam II (Closed Book)	20					
(Summative)	In class Quizzes and Assignments	20					
	(Accumulated and Averaged)	(Assignments – 10 & Quiz's - 10)					
End Term Exam	End Term Exam (Closed Book)	40					
(Summative)							
	Total	100					
Attendance	A minimum of 75% Attendance is requi	red to be maintained by a student to be					
(Formative)	qualified for taking up the End Semester examination. The allowance of 25%						
	includes all types of leaves including medical leaves.						
Make up Assignments	Students who miss a class will have to report to the teacher about the absence.						
(Formative)	makeup assignment on the topic taught on the day of absence will be given which						
	has to be submitted within a week from the date of absence. No extensions						
	given on this. These assignments are limited to a maximum of 5 throughout the						
	entire semester.						

D. Assessment Plan

E. SYLLABUS

EE 2103ELECTRICAL CIRCUIT ANALYSIS[3 1 0 4]

Introduction to Graph Theory, Graph of a network, Matrix representation of a graph, Cut- set and Tie set Matrix. Network Theorems with controlled sources: Superposition, Thevenin's, Norton's, Maximum power transfer, Reciprocity, Substitution, Compensation, Millman's, Tellegen's theorems. Signals and waveforms: Classification of Signals, elementary signals, characteristics, representation of waveforms. Time domain analysis: Initial and final conditions, Transients analysis of RL, RC and RLC circuits. Frequency domain analysis: Laplace domain analysis, Laplace Transforms of signals, Transformed circuits, Analysis of networks using Laplace Transforms, Frequency domain analysis: Network Function, poles and zeros, convolution integral. Two port networks: Z, Y, T and h parameters, Relation between parameters, Series, parallel and cascade connections.

F. TEXT BOOK:

T1. R. R. Singh, Network Analysis and Synthesis, McGraw Hill Education 2013.

G. **REFERENCE BOOKS**

R1. W. H. Hayt, J. E. Kemmerly & S. M. Durbin, *Engineering Circuit Analysis* (7e), TMH, 2010.

R2. V. Valkenberg, Network Analysis (3e), PHI, 2009.

R3. J. W. Nilsson & S. A. Reidel, *Electric Circuits* (9e), PHI, 2011.

H. ONLINE LEARNING MATERIAL

Video Lectures:

- 1. https://nptel.ac.in/courses/108/104/108104139/
- 2. https://nptel.ac.in/courses/117/106/117106108/
- 3. https://www.coursera.org/learn/linear-circuits-dcanalysis#about
- 4. <u>https://www.edx.org/course/principles-of-electric-circuits-2</u>

Further Reading

5. <u>https://www.coursera.org/learn/linear-circuits-ac-analysis</u>
I. Lecture Plan:

Lecture No.	Торіся	Session Objective	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
	Introduction to the Course	To acquaint students with the subject and outcomes of the course. Students will be introduced with outcome based education (OBE) and Course outcome (CO) and program outcome (PO) assessment process	Lecture Online		NA
Lecture – 1	Introduction to the subject	Discuss the subject and its importance in modern engineering education.	Lecture Online	[2103.1]	Class Quiz / Mid Term Exam / End Term Exam
Lecture – 2	Introduction to Graph Theory, Graph of a Network, Matrix representation of a Graph	Introduction to graph theory concepts. Explain Trees and related concepts in the graph theory	Lecture Online	[2103.1]	Class Quiz / Assignment / Mid Term Exam/ End Term Exam
Lecture – 3	Cut-set Matrix	Analyze and solve different problems using cut-set and cut set matrix	Lecture Online	[2103.1]	Class Quiz / Mid Term Exam/ End Term Exam
Lecture – 4	Tie-set Matrix	Analyze and solve different problems using tie-set and tie set matrix	Lecture Online	[2103.1]	Class Quiz / Mid Term Exam / End Term Exam
Lecture – 5	Tutorial – 1	To solve graph theory problems based on Lecture 1-4	Tutorial Online	[2103.1]	Mid Term Exam / End Term Exam
Lecture – 6	Network Theorems Introduction	Learning computation of electrical quantities using Nodal and Mesh Analysis	Lecture Online	[2103.2]	Class Quiz / Assignment / Mid Term Exam / End Term Exam
Lecture – 7	Superposition Theorems	Describe apply different Network Theorems.	Lecture Online	[2103.2]	Class Quiz / Mid Term Exam/ End Term Exam
Lecture – 8	Thevenin's Theorems	Describe apply different Network Theorems.	Lecture Online	[2103.2]	Class Quiz / Mid Term Exam / End Term Exam
Lecture – 9	Norton's Theorems	Describe apply different Network Theorems.	Lecture Online	[2103.2]	Class Quiz / Mid Term Exam / End Term Exam
Lecture – 10	Tutorial – 2	Numerical problem solving exercises based on Lecture 6-9	Tutorial Online	[2103.2]	Mid Term Exam / End Term Exam
Lecture – 11	Maximum Power Transfer Theorems	Describe apply different Network Theorems.	Lecture Online	[2103.2]	Class Quiz / Mid Term Exam / End Term Exam
Lecture – 12	Reciprocity, Substitution, Compensation	Describe apply different Network Theorems.	Lecture Online	[2103.2]	Class Quiz / Mid Term Exam / End Term Exam
Lecture – 13	Tutorial – 3	Numerical problem solving exercises based on Lecture 11-12	Tutorial Online	[2103.2]	Mid Term Exam / End Term Exam

Lecture – 14	Millman's Theorems	Describe apply different Network Theorems.	Lecture Online	[2103.2]	Class Quiz / Mid Term Exam / End Term Exam
Lecture – 15	Tellegen's Theorems	Describe apply different Network Theorems.	Lecture Online	[2103.2]	Class Quiz / Mid Term Exam / End Term Exam
Lecture – 16	Tutorial – 4	Numerical problem solving exercises based on Lecture 14-15	Tutorial Online	[2103.2]	Mid Term Exam / End Term Exam
Lecture – 17	Signals and Waveforms, Classification of Signals	Introduction to Signals	Lecture Online	[2103.3]	Class Quiz / Assignment / Mid Term Exam / End Term Exam
Lecture – 18	Elementary Signals, Characteristics	Signals Characteristics	Lecture Online	[2103.3]	Class Quiz / Mid Term Exam / End Term Exam
Lecture – 19	Representation of Waveforms	Describe different mathematical representation of the periodic waveforms	Lecture Online	[2103.3]	Class Quiz / Mid Term Exam / End Term Exam
Lecture – 20	Tutorial – 5	Numerical problem solving exercises based on Lecture 17-19	Tutorial Online	[2103.3]	Mid Term Exam/ End Term Exam
Lecture – 21	Time Domain Analysis: Initial and Final conditions	Introduction to Time Domain Analysis	Lecture Online	[2103.3]	Class Quiz / Mid Term Exam/ End Term Exam
Lecture – 22-23	Transients analysis of RL circuits	Learn about the transient analysis of R-L circuits	Lecture Online	[2103.3]	Class Quiz / Mid Term Exam/ End Term Exam
Lecture – 24	Tutorial – 6	Numerical problem solving exercises based on Lecture 21-23	Tutorial Online	[2103.3]	Mid Term Exam/ End Term Exam
Lecture – 25-26	Transients analysis of RC circuits	Learn about the transient analysis of R-C circuits	Lecture Online	[2103.3]	Class Quiz / Mid Term Exam/ End Term Exam
Lecture – 27-28	Transients analysis of RLC circuits	Learn about the transient analysis of RLC circuits	Lecture Online	[2103.3]	Class Quiz / Mid Term Exam/ End Term Exam
Lecture – 29	Tutorial – 7	Numerical problem solving exercises based on Lecture 25-28	Tutorial Online	[2103.3]	Mid Term Exam/ End Term Exam
Lecture – 30	Frequency Domain Analysis	Learn analysing the electrical network using Frequency Domain	Lecture Online	[2103.4]	Class Quiz / Assignment / Mid Term Exam/ End Term Exam
Lecture – 31	Laplace Domain Analysis	Review of fundamentals of Laplace Transformation	Lecture Online	[2103.4]	Class Quiz / Mid Term Exam/ End Term Exam
Lecture – 32	Laplace Transforms of Signals and Transformed Circuits	Learn analysing the electrical network using Laplace Transform	Lecture Online	[2103.4]	Class Quiz / Mid Term Exam / End Term Exam
Lecture – 33	Tutorial – 8	Numerical problem solving exercises based on Lecture 30-32	Tutorial Online	[2103.4]	Mid Term Exam/ End Term Exam
Lecture – 34-35	Analysis of Networks using Laplace Transforms	Learn analysing the electrical network using Laplace Transform	Lecture Online	[2103.4]	Class Quiz / Mid Term Exam/ End Term Exam

Lecture – 36	Network Function, Poles and Zeros, Convolution Integral	Computation of Poles and Zeros and interpretation of its placement on graph, Convolution Integral		[2103.4]	Class Quiz / Mid Term Exam / End Term Exam
Lecture – 37	Tutorial – 9	Numerical problem solving exercises based on Lecture 34-36	Tutorial Online	[2103.4]	Mid Term Exam/ End Term Exam
Lecture – 38	Two Port Networks	Learn the fundamental of 2 port network	Lecture Online	[2103.5]	Class Quiz / Assignment / Mid Term Exam/ End Term Exam
Lecture – 39-40	Z and Y Parameters	Computing different parameters of 2 port Network	Lecture Online	[2103.5]	Class Quiz / Mid Term Exam/ End Term Exam
Lecture – 41	Tutorial – 10	Numerical problem solving exercises based on Lecture 38-40	Tutorial Online	[2103.5]	Mid Term Exam/ End Term Exam
Lecture – 42-43	T and h Parameters	Computing different parameters of 2 port Network	Lecture Online	[2103.5]	Class Quiz / Mid Term Exam/ End Term Exam
Lecture – 44	Relation between Parameters	Describe the relationship between different 2 port Network parameters	Lecture Online	[2103.5]	Class Quiz / Mid Term Exam/ End Term Exam
Lecture – 45	Tutorial – 11	Numerical problem solving exercises based on Lecture 42-44	Tutorial Online	[2103.5]	Mid Term Exam/ End Term Exam
Lecture – 46	Series and Parallel connections	Describe the Serial and Parallel connection of 2 port networks	Lecture Online	[2103.5]	Class Quiz / Mid Term Exam/ End Term Exam
Lecture – 47	Cascade connections	Describe the cascade connection of 2 port networks	Lecture Online	[2103.5]	Class Quiz / Mid Term Exam/ End Term Exam
Lecture – 48	Tutorial – 12	Numerical problem solving exercises based on Lecture 46-47	Tutorial Online	[2103.5]	Mid Term Exam/ End Term Exam

J. Course Articulation Matrix: (Mapping of COs with POs)

CO No.	CO STATEMENT		CORRELATION WITH PROGRAM OUTCOMES											CORRELATION WITH PROGRAM SPECIFIC OUTCOMES		
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE2103.1	Describe the fundamental concepts of Graph Theory and demonstrate the skill to apply it to analyse Electrical Networks.	3	3		2	2	1							3	2	3
EE2103.2	Apply the basic Circuital Law and different Network Theorems to analyse Electrical Circuits.	3	2			1								3	2	3
EE2103.3	Analyse the Electrical Networks using Time Domain analysis, and evaluate transient response and steady state response of electrical circuit using elementary signals.	3	2		2	2								3	2	3
EE2103.4	Analyse the Electrical Network using Frequency Domain approach and Laplace Transforms.	3	2		2	2								3	2	3
EE2103.5	Analyse complex Electrical Network by matrix formulation of network and solve it by Two – Port Network concept.	2	2	2										3	2	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronic Communication Engineering

Department of Electrical Engineering Course Hand-out

Electrical Machines-I | EE2104 | 4 Credits | 3 | 0 4

Session: Jul 20 – Dec. 20 | Faculty: Vinay Gupta | Class: III Semester, B. Tech. (EEE)

- **A. Introduction:** The objective of this course provides a basic understanding of AC & DC machinery fundamentals, constructional features, operational analysis through phasor diagrams, equivalent circuits, determination of performance parameters, testing and applications.
- B. Course Outcomes: At the end of the course, students will be able to

[EE2104.1] Know the basic fundamentals of electrical machines.

[EE2104.2] Constructional details, principle of operation of single-phase Transformers.

[EE2104.3] Comprehend the operation and performance of three phase transformer.

[EE2104.4] Constructional details, principle of operation of Induction Machines.

[EE2104.5] Comprehend the working of DC & BLDC machines and testing.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- **[PO.1]. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- **[PO.2]. Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3]. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4]. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- **[PO.5]. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- **[PO.6]. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7]. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to professional ethics_and responsibilities and norms of the engineering practices

- **[PO.9].** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- **[PO.10]. Communication**: Communicate effectively_on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.11].Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- [PSO.1]. To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- [PSO.2]. To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- [PSO.3]. Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D. Assessment Plan:

Criteria	Description	Maximum Marks					
	Sessional Exam I (Close Book)	15					
Internal Assessment	Sessional Exam II (Close Book)	15					
(Summative)	In class Quizzes and Assignments,	30					
	Activity feedbacks (Accumulated and						
	Averaged)						
End Term Exam	End Term Exam (Close Book)	40					
(Summative)							
	Total	100					
Attendance	A minimum of 75% Attendance is required to be maintained by a student to be						
(Formative)	qualified for taking up the End Semester examination. The allowance of 25%						
	includes all types of leaves including med	ical leaves.					
Make up Assignments	Students who misses a class will have to i	report to the teacher about the absence.					
(Formative)	A makeup assignment on the topic taug	ght on the day of absence will be given					
	which has to be submitted within a	week from the date of absence. No					
	extensions will be given on this. The atter	ndance for that particular day of absence					
	will be marked blank, so that the stude	nt is not accounted for absence. These					
	assignments are limited to a maximum of	5 throughout the entire semester.					
Homework/ Home Assignment/ Activity	There are situations where a student	may have to work in home, especially					
Assignment	before a flipped classroom. Although th	nese works are not graded with marks.					
(Formative)	However, a student is expected to part	cicipate and perform these assignments					
	with full zeal since the activity/ flipped of	classroom participation by a student will					
	be assessed and marks will be awarded.						

E. SYLLABUS

Transformers: Types of transformers; Single phase transformers - working principle, construction, phasor diagram, equivalent circuit, voltage regulation, losses and efficiency, All day efficiency, testing, parallel operation, inrush current, harmonics, tap changing, auto transformer. Three phase transformers: Connections: star-star, star-delta, delta-star, delta-delta, zigzag, open delta; three winding transformer. DC Machines: DC generators- working principle, construction, types, armature winding, Magnetization characteristics, armature reaction, commutation, load characteristics, DC Motors – working principle, types,

torque-speed characteristics, starting, braking, speed control, losses, efficiency, and testing. BLDC motors – working principle and control.

F. REFERENCE BOOK

- 1. M. G. Say, Alternating Current Machines (5e), ELBS, 1994.
- 2. E. H. Langsdorf, Theory of Alternating Current Machine (2e), TMH, 1994.
- 3. A. E. Clayton, Performance and Design of DC Machines (3e), O& IBH, 1978

G. TEXT BOOKS

- 1. P. S. Bhimbra, "Electrical Machinery", Seventh Edition, 1995, Khanna Publishers.
- 2. I. J. Nagrath, , D. P.Kothari, "Electric Machines", Third Edition, Tata McGraw-Hill Publishing Company Ltd.
- 3. A. E.Fitzgerald, Charles Kingsley, Jr. Stephen D. Umans, "Electric Machinery", Fifth Edition, Tata McGraw-Hill.

H. ON-LINE LEARNING MATERIAL

Video link: <u>https://nptel.ac.in/courses/108/105/108105155/</u> <u>https://nptel.ac.in/courses/108/105/108105017/</u> <u>https://nptel.ac.in/courses/108/102/108102146/</u>

I. Lecture Plan:

Lec No	Topics	Session Outcome	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
1	Introduction	To acquaint students with the outcome based education (OBE) and Course outcome (CO) and program outcome (PO) assessment process	Lecture		
2-3	Introduction of Basic Rules of Electromagnetic Induction, Principle of Transformer, EMF Equation of Single phase Transformer, Construction and Type of Single phase Transformer.	Recall the basic Rules Electromagnetic Induction	Lecture	2104.1 2104.2	In Class Quiz
4-5	Equivalent circuit of single phase Transformer, Open circuit test and Short circuit test of single phase Transformer	Identify different testing and their implementation	Lecture	2104.1 2104.2	In Class Quiz End Term
T-1	L1-L5	Numerical problems based on L1-L5	Tutorial		
6,7	Various Losses in Single Phase Transformer, Efficiency, Condition of Maximum Efficiency in Single Phase Transformer.	Explain various losses and the effects of various losses and its effects	Lecture	2104.1 2104.2	Home Assignment End Term
8,9	Voltage Regulation of Single phase Transformer, All day Efficiency of single Phase Transformer	Explain voltage regulation and its effects	Lecture	2104.1 2104.2	In Class Quiz End Term
T-2,T-3	L6-L9	Numerical problems based on L6-L9	Tutorial		
10,11	Polarity Test, Sumpner's Test, Cooling ,inrush current phenomenon	Identify the polarity and in rush current phenomenon	Lecture	2104.1 2104.2	Class Quiz Mid Term I End Term
12,13	Parallel operation of Two Transformers- conditions, Unequal and equal voltage ratio.	Identify the conditions of parallel operation.	Lecture	2104.2	Class Quiz Mid Term 1 End term
14,15	Auto Transformer, Tap changers	Describe the concept of auto transformer and tapping	Lecture	2104.1 2104.2	Home Assignment Class Quiz Mid Term 1 End Term
T-4	L10-L15	Numerical problems based on L19-	Tutorial		

		L15			
16,17	Connection of single phase transformer for	Describe the concept of 3-phase	Lecture	2104.1	Class Quiz
	three phase operation, Open delta connection.	transformer and its connections		2104.3	Mid Term 1
					End Term
18,19,20	Scott connection, Harmo nics	Describe the concept of 3-phase to	Lecture	2104.1	Class Quiz
		2-phase transformation and its		2014.3	Mid Term I
		applications			End Term
	•	FIRST SESSIONAL EX	AM		
21,22,23	Three winding transformer, different type of	Describe the concept of harmonics	Lecture	2104.1	Class Quiz
	connections, Vector groups	and Vector groups		2104.3	Mid Term II
					End Term
T-5-T6	L16-L23	Numerical problems based on L19-	Tutorial		
		L15			
24,25	Principle of Three phase induction motor,	Describe the construction of	Lecture	2104.1	Class Quiz
	construction, Type, Equivalent circuit	Induction motor and its working,		2104.4	Mid Term II
		types.			End Term
26,27	Torque equation ,Torque/slip characteristic	Describe the Torque equation	Lecture	2104.1	Class Quiz
		,Torque/slip characteristic		2104.4	Mid Term II
					End Term
T-7	L24-L27	Numerical problems based on L24-	Tutorial		
		L27			
28,29	NO Load and Blocked Rotor Test, Circle	Identify different testing and their	Lecture	2104.4	Class Quiz
	diagram	implementation.			Mid Term II
					End Term
30,31	Starting Methods of three phase Induction	Describe working of Star/Delta,	Lecture	2104.4	Class Quiz
	motor- DOL, Star-Delta Starter, Auto	auto transformer Starter.			Mid Term II
	Transformer Starter				End Term
32,33,34	Speed control Method of three phase	Describe working of various speed	Lecture	2104.4	Class Quiz
	induction motor	control methods.			Mid Term II
					End Term
Т-8-Т9	L28-L34	Numerical problems based on L28-	Tutorial		
35.36	Cogging, Crawling, Deep bar and double cage	Describe the Cogging and crawling	Lecture	2104.1	Class Quiz
	induction motors . Induction generators	phenomena and working of		2104.4	Mid Term II
		induction generator.			End Term
37.38.	DC generator- Construction, type, operation,	Describe the construction and	Lecture	2104.1	Class Quiz
- ,,	Emf equation. Characteristics	working of DC generator and its		2104.5	Mid Term II
		characteristics			End Term
39	Armature reaction and Commutation of DC	Describe the armature reaction and	Lecture	2104.5	Class Quiz
	generator	commutation process.			Mid Term II
					End Term

	SECOND SESSIONAL EXAM									
40-41	DC Motor:- Principle, Types , Torque Equation ,	Describe the construction and	Lecture	2104.1	Class Quiz					
	Back Emf	working of DC motors and its		2104.5	End Term					
		characteristics								
42	Characteristics of DC shunt, series compound	Identify the characteristics of	Lecture	2104.1	Class Quiz					
	Motors	different motors.		2104.5	End Term					
43	Speed Control Methods of DC shunt Series	Describe the speed control	Lecture	2104.5	Class Quiz					
	motors & testing.	methods of DC motors			End term					
T-10-T12	L35-L43	Numerical problems based on L35-	Tutorial							
		L43.								
44-46	Working and control of BLDC	Describe the working & control of	Lecture	2104.1	Class Quiz					
		BLDC		2104.5						
		END TERM EXA	Μ							

J. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT	CORRELATION WITH PROGRAM OUTCOMES								CORRELATION WITH PROGRAM SPECIFIC OUTCOMES						
		PO 1	РО 2	PO 3	РО 4	PO 5	РО 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE2104.1	Know the basic fundamentals of electrical machines.	2		3		3		1	1					2		2
EE 2104.2	Constructional details, principle of operation of single phase Transformers.	2	1	3	3		2				1	1		2	2	
EE2104.3	Comprehend the operation and performance of three phase transformer.	1	3	2	1			2	1	1		1			3	2
EE2104.4	Constructional details, principle of operation of Induction Machines.	1	2			2		1		2	1			2		2
EE2104.5	Understand the working of DC & BLDC machines and constructions.	1			2			2			1			2		2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Humanities and Social Sciences Department of Economics Course Handout

Economics | EO 2001 | 3 Credits | 3003

Session: Jan 21 – May 21 | Faculty: Dr Manas Roy | Class: B. Tech | Semester IV

A. Introduction: This course is offered by Dept. of Economics to the Engineering departments, targeting students to give basic understanding in the concept of economics. It mainly deals with economic issues related to consumer behaviour, firms, industries and business organizations to make aware the students regarding economic environment. This course also discusses the preliminary concepts associated with macroeconomic variable like GDP inflation, balance of payments etc. It explores various possibilities emerging in an economy and the role of economic policy in this context.

B. Course Outcomes: At the end of the course, students will be able to

[2001.1] Describe the basic principles of micro and macroeconomic analysis.

[2001.2] Aware of the tools and techniques of economics and be able to prepare projects.

[2001.3] Recognize the problems and give solutions which in turn will create employability.

[2001.4] Interpret and illustrate decision making process in practical life and hence employability.

[2001.5] Apply the learning of economic concepts in their life.

C. Program outcomes and program specific outcomes

[POI]. **Engineering knowledge**: Apply the knowledge of mathematics, science, and engineering fundamentals to the solution of complex engineering problems.

[PO2]. **Problem analysis**: The sophisticated curriculum would enable a graduate to identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using basic principles of mathematics, computing techniques and communication engineering principles.

[PO3]. **Design/development of solutions**: Upon analysing, the B Tech graduate should be able to devise solutions for complex engineering problems and design system components or processes that meet the specified requirements with appropriate consideration for law, safety, cultural & societal obligations with environmental considerations.

[PO4]. **Conduct investigations of complex problems**: To imbibe the inquisitive practices to have thrust for innovation and excellence that leads to use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

[PO5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

[PO6]. The engineer and society: The engineers are called society builders and transformers. B. Tech graduate should be able to apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

[PO7]. **Environment and sustainability**: The zero effect and zero defect are not just a slogan; it is to be practised in each action. Thus, a B Tech should understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

[PO8]. Ethics: Protection of IPR, staying away from plagiarism are important. Student should be able to apply ethical principles and commit to professional ethics, responsibilities and norms of the engineering practice.

[PO9]. **Individual and team - work**: United we grow, divided we fall is a culture at MUJ. Thus, an outgoing student should be able to function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

[PO10]. **Communication**: Communicate effectively for all engineering processes & activities with the peer engineering team, community and with society at large. Clarity of thoughts, being able to comprehend and formulate effective reports and design documentation, make effective presentations, and give and receive clear instructions.

[POII]. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in varied environments.

[PO12]. Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program specific outcomes (PSOs)

At the end of the B Tech program, the student:

[PSOI]. To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.

[PSO2]. To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.

[PSO3]. Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems

D. Assessment rubrics:

Criteria	Description	Maximum Marks		
	Sessional Exam I	20		
Internal Assessment	Sessional Exam II	20		
(Summative)	Assignments, Activity, etc.	20		
End Term Exam (Summative)	End Term Exam	40		
	Total	100		
Attendance (Formative)	A minimum of 75% Attendance i student to be qualified for examination. The allowance of including medical leaves.	s required to be maintained by a taking up the End Semester 25% includes all types of leaves		

E. Syllabus

Introduction; Microeconomics: Consumer behaviour, cardinal and ordinal approaches of utility, law of diminishing marginal utility, theory of demand and supply, law of demand, exceptions to the law of demand, change in demand and change in quantity demanded, elasticity of demand and supply, consumer surplus and producer; Indifference curve, properties, consumer equilibrium, Price and income effect; **Production:** Law of production, production function, SR and LR production function, law of returns and returns to scale, Isoquant curve, characteristics, Iso-cost, producer's equilibrium; **Cost and revenue analysis:** Cost concepts, Opportunity cost, Incremental and sunk cost, Recurring and non-recurring cost, fixed and variable cost, short run and long- run cost and revenue curves; **Introduction to markets:** Characteristics and types, **Introduction to Macro Economics:** National Income, Monetary Policy, Fiscal Policy, Inflation and Business Cycle; **Economic decision making:** Cash flow and rate of return analysis, Pay - back period, Internal rate of return(IRR), Net present value(NPV), Time value of money.

F. Text- books

- T1. H.L Ahuja, Macroeconomics Theory and Policy, (20e) S. Chand Publication.
- T2. Peterson H C et.al., Managerial Economics, (9e), Pearson, 2012
- T3. P L Mehta, Managerial Economics, Sultan Chand & Sons, New Delhi, 2012.
- T4. G J Tuesen & H G Tuesen, Engineering Economics, PHI, New Delhi, 2008.
- T5. James L Riggs, David D Bedworth, Sabah U Randhawa, Engineering Economics, Tata McGraw Hill, 2018.

G. Lecture plan:

Lec. No	Topics	Session	Mode of Corresponding		Mode of
		Outcome	Delivery	со	Assessing the Outcome
I	Overview of the	To acquaint and	Lecture	NA	NA
	course structure,	clear the overview			
	Economics	of the course			
2	Objective and	Discussion of the	Lecture	NA	NA
	scope of the course	objective of the			
		course for the			
		scope differences			
		between micro			
		and macro			
		economics	-		
3,4,5,6	Introduction to	Describe the	Lecture	2001.1	Class Test
	Behaviour, Cardinal	concept of			
	approaches of	of utility, Law of			
	utility	DMU and equi-			
		marginal utility			
7,8	Law of demand and	Describe the	Lecture	2001.1	Class Test
	supply	demand, supply,			Mid Term I
9,10,11,12	Elasticity of demand	Elasticity of	Lecture	2001.1	Class Test
	and supply	demand and			Mid Term I
		supply with			
		examples,			
		questions			
13,14,15,	Ordinal approaches	Recall of the	Lecture	2001.5	Class Test
	of utility, Consumer	differences			Mid Term I
	and producer's	between the			End Term
	surpius	concept of the			
		and ordinal			
		approach of utility			
		, IC analysis,			
		Consumers			
		equilibrium,			
		IE,SE,PE, Consumer and			
		Producer surplus			
16	Revision of	Recall all the	Lecture,		Home
	previous lectures	concepts discussed	Activity		Assignment
		in previous classes			Mid I erm I End term
17	Discussion of the	Discussion about	Lecture	2001.5	Class Test
	topics related to	the assignment			Mid Term I
	assignment	topics			End Term
18,19	Production, laws of	Discussion of the	Lecture	2001.4	Class Test

	production and return to scale	concept of production, recognize production function, producers equilibrium, RTS			Mid Term II End Term
20,21	Cost and revenue analysis	Discussion of the concept of different types of cost and cost function, recognize SR and LR cost curves, revenues	Lecture	2001.4	Class Test Mid Term II End Term
22,23	Types of Market Competition	Aware of market morphology with examples, Interpret the forms of market situations	Lecture	2001.3	Class Test Mid Term II End Term
24	Revision of previous lectures	Recall all the concepts discussed in previous classes	Lecture	2001.5	Class Test Mid Term II End Term
25	Discussion of the topics related to assignment	Recall the discussion about the assignment topics	Lecture, Activity	2001.5	Home Assignment Mid Term II End term
26,27	Macro Economics: National income and its concepts	Interpret and illustrate the concept of CB and various tools	Lecture	2001.2	Home Assignment Class Test End Term
28,29	Monetary and fiscal policies	Interpret and illustrate the concept of NI,GDP,GNI,PI etc., circular flow	Lecture	2001.2	Home Assignment Class Test End Term
30	Inflation	Concept of monetary and fiscal policies, Aware of its instruments, importance and limitations	Lecture	2001.3	Home Assignment Class Test End Term
31	Business Cycle	Concept of Business Cycles, Role of monetary and fiscal policy to counter business cycles	Lecture	2001.3	Home Assignment Class Test End Term
32, 33,34	Economic Decision Making	Cash flow and rate of return analysis, payback period, IRR, NPV and Time value of money	Lecture	2001.3	Home Assignment Class Test End Term
35	Revision of	Recall the	Lecture	2001.5	End Term

	Previous Lectures	discussion about			
		topics			
36	Conclusion and Course Summarization	Recall all the concepts discussed in previous classes	Lecture	2001.5	End Term
37	Quiz-I	Microeconomics	Quiz	NA	Internal Assessment
38	Quiz-II	Macroeconomics	Quiz	NA	Internal Assessment
39	Quiz-III	Microeconomics Macroeconomics Economic Decision Making	Quiz	NA	Internal Assessment

H. Course Articulation Matrix: (Mapping of COs with POs and PSOs)

		Correlation with program outcomes							Correlation with									
СО	Statement													progr	am spe	ecific		
			_				_	D	D	D	D		D	outcomes				
		P	P	P	P	P	P	P	P	Р О	Р О	P	Р О	P5	P5	PS		
		0	0	0	0		Ó	0	0	0	0	0	0	0	0	0		
		1	2	3	4	5	6	/	8	9	10	11	12	I	2	3	\square	
EO	Describe the		2	2														
2001.	Dasic																	
I	principles of																	
	micro and																	
	macroecono																	
	mic analysis																	
EO	Aware of the				2			2		1		2						
2001.	tools and																	
2	techniques of																	
	economics and																	
	De able to																	
	prepare																	
FO	Becognize the			2	2	2						2					+	
2001	problems and			2	5	2						2						
2001.	give solutions																	
5	which in turn																	
	will <mark>create</mark>																	
	employability																	
EO	Interpret and						I			2		I	2					
2001.	illustrate decisi																	
4	on making																	
	process in																	
	practical life																	
	and																	
	hence enhance																	
FO							1	2					2				+	
	Apply the						1	2					3					
	economic																	
S	concepts in																	
	their life																	

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Engineering

Department of Mathematics & Statistics Course Hand-out

Engineering Mathematics-IV | MA 2206 | 3 Credits | 2 | 0 3

Session: February 21 – May 21 Faculty: Dr. Giriraj Methi | Class: II Year (IV Sem. EE)

- **A. Introduction:** An engineering student needs to have some mathematical tools and techniques which emphasize the development of rigorous logical thinking and analytical skills. Based on this, the course aims at giving adequate exposure to the theory and applications. The course is aimed at developing the basic Mathematical skills of engineering students that are imperative for effective understanding of engineering.
- **B.** Course Outcomes: At the end of the course, students will be able to

[MA2206.1] Student will apply concepts of measures of central tendency and dispersion in real life problems.

[MA2206.2] Student will be able to understand the one dimensional and two-dimensional random variables.

[MA2206.3] Students will examine various probability distributions in mathematical problems.

[MA2206.4] Student will understand and use the Z transform in solving difference equations.

[MA2206.5] Students will apply finite difference scheme to Laplace and Poisson equations

Program Outcomes and Program Specific Outcomes

- [PO.I]. Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- [PO.2]. Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **[PO.3].** Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
- **[PO.4].** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
- **[PO.5].** Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modelling to complex engineering activities with an under- standing of the limitations.
- [PO.6]. The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.

- [PO.7]. Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.
- [PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- [PO.9]. Individual and Teamwork: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
- **[PO.10].** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
- [PO.11]. Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to owners own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- [PO.12]. Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

[PSO.1]. An ability to understand the concepts of basic Electronics & Communication Engineering and to apply them to various areas like Signal processing, VLSI, Embedded systems, Communication Systems, Digital & Analog Devices, etc.

[PSO.2]. An ability to solve complex Electronics and Communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.

[PSO.3]. Wisdom of social and environmental awareness along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur

Criteria	Description	Maximum Marks
	Sessional Exam I (Closed Book)	20
Internal Assessment	Sessional Exam II (Closed Book)	20
(Summative)	Quizzes (Open Book/Close Book) and	20
	Assignments	
End Term Exam	End Term Exam (Closed Book)	40
(Summative)		
	Total	100
Attendance	A minimum of 75% Attendance is require	red to be maintained by a student to be
(Formative)	qualified for taking up the End Seme	ester examination. The allowance of 25%
	includes all types of leaves including	medical leaves.
Homework/ Home Assignment/	There are situations where a student	may have to work in home, especially
(Formative)	before a flipped classroom. A stude	nt is expected to participate and perform
	these assignments with full zeal	since the activity/ flipped classroom
	participation by a student will be ass	essed and marks will be awarded.

C. Assessment Rubrics:

D. Syllabus

Statistics: Mean, Median, Mode measures of dispersion. Finite sample spaces, conditional probability and independence, Bayes' theorem, one dimensional random variable, mean, variance, Chebyshev's inequality. Two and higher dimensional random variables, covariance, correlation coefficient, curve fitting. Binomial, Poisson, uniform, normal, gamma, Chi-square and exponential distributions. Moment generating function, Functions of one and two dimensional random variables, Sampling theory, Central limit theorem. Difference equations with constant coefficients, solutions. Z- Transforms and Inverse Z-transforms. Solutions of Difference equations using Z-transforms. Solution of boundary value problems, Numerical solutions of Laplace and Poisson equations, heat and wave equations by explicit methods

E. Textbook:

T1. Grewal B. S., Higher Engineering Mathematics, (42e), Khanna Publishers, 2013

T2. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley India Eastern, 2006.

F. Reference Book:

R1 Iyengar S.R.K. and Jain, Rajendra K., Advance Engineering Mathematics (3e), Narosa book distributors Pvt Ltd-New Delhi, 2007

R2 Ramana B. V., Higher Engineering Mathematics (6th reprint), Tata Mcgraw-Hill, New Delhi, 2008

Lecture N o.	Description of the Topics	Session Outcome	Mode of Delivery	Correspondin g CO	Mode of Assessing the Outcome
1	Measures of central tendency Mean	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2206.1	Quizzes, assignments, Two Sessional, End Term Examination
2	Mode	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2206.1	Quizzes, assignments, Two Sessional, End Term Examination
3	Median	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2206.1	Quizzes, assignments, Two Sessional, End Term Examination

G. Lecture Plan:

4	Range and Standard deviation	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2206.1	Quizzes, assignments, Two Sessional, End Term Examination
5	Mean deviation	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	2206.1	Quizzes, assignments, Two Sessional, End Term Examination
6	Tutorial	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2206.1	Quizzes, assignments, Two Sessional, End Term Examination
7	Conditional probability and Independent	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2206.1	Quizzes, assignments, Two Sessional, End Term Examination
8	Bayes theorem	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2206.1	Quizzes, assignments, Two Sessional, End Term Examination
9	One dimensional random variable Mean and Variance	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples		Quizzes, assignments, Two Sessional, End Term Examination
10	Two and Higher dimensional random variable	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	2103.2	Quizzes, assignments, Two Sessional, End Term Examination
11	Joint pmf and joint pdf	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	21032	Quizzes, assignments, Two Sessional, End Term Examination
12	Probability distributions Binomial distribution	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.2	Quizzes, assignments, Two Sessional, End Term Examination
13	Poisson distribution	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.2	Quizzes, assignments, Two Sessional, End Term Examination

14	Normal distribution	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	2103.2	Quizzes, assignments, Two Sessional, End Term Examination
15	Uniform distribution	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.3	Quizzes, assignments, Two Sessional, End Term Examination
16	Gamma distribution	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.3	Quizzes, assignments, Two Sessional, End Term Examination
17	Chi square distribution	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.3	Quizzes, assignments, Two Sessional, End Term Examination
18	Exponential distribution	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.3	Quizzes, assignments, Two Sessional, End Term Examination
19	Chebyshev's inequality	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	2103.3	Quizzes, assignments, Two Sessional, End Term Examination
20	Moment generating function	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
21	Correlation coefficient	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
22	Rank correlation coefficient	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
23	Functions of one and two dimensional random variables	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Problem solving	2103.4	Quizzes, assignments, Two Sessional, End Term Examination

24	Sampling theory	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
25	Central limit theorem	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
26	Tutorial	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
27	Difference equations with constant coefficients	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Problem solving	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
28	Z transform	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
29	Inverse Z transform	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
30	Solutions of Difference equations using Z-transforms	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.4	Quizzes, assignments, Two Sessional, End Term Examination
31	Applications of Solution of Z transform	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.5	Quizzes, assignments, Two Sessional, End Term Examination
32	Solution of boundary value problems	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.5	Quizzes, assignments, Two Sessional, End Term Examination
33	Numerical solution of Laplace equation	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Problem solving	2103.5	Quizzes, assignments, Two Sessional, End Term Examination

34	Numerical solution of Poisson equation	Identify, formulate, apply appropriate techniques,_professional ethics, Communicate effectively & life- long learning	Problem solving	2103.5	Quizzes, assignments, Two Sessional, End Term Examination
35	Numerical Solution of Heat equation	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.5	Quizzes, assignments, Two Sessional, End Term Examination
36	Numerical solution of Wave equation	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Lecture, Discussion & Examples	2103.5	Quizzes, assignments, Two Sessional, End Term Examination
37	Tutorial	Identify, formulate, apply appropriate techniques, professional ethics, Communicate effectively & life- long learning	Problem solving	2103.5	Quizzes, assignments, Two Sessional, End Term Examination

H. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES									CORRELATION WITH PROGRAM SPECIFIC OUTCOMES				
		РО	PO 1	PO 2	РО 3	PO 4	PO 5 6	PO	PO 8	PO c	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
MA2206. 1	Student will apply concepts of measures of central tendency and dispersion in real life problems.	3	3	1	3	1				2		2	1			
MA2206. 2	Student will be able to understand the one dimensional and two-dimensional random variables	3	2	2	2	2				2		1	1			
MA2206. 3	Students will examine various probability distributions in mathematical problems	3	2	2	2	2				3		3	1			
MA2206. 4	Student will understand and use the Z transform in solving difference equations	3	3	2	3	2				1		2	1			

MA2206.	Students v	will	apply	finite	2	2	1	2	3		2	2	1		
5	difference sch	neme	to Lapla	ce and											
	Poisson equat	ions													

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronic Communication Engineering

Department of Electrical Engineering Course Hand-out

Electrical Machines-II | EE2201 | 4 Credits | 3 | 0 4

Session: Jan 21 – May. 21 | Faculty: Vinay Gupta | Class: IV Semester, B. Tech. (EEE)

- **A. Introduction:** The objective of this course provides a basic understanding of AC & DC machinery fundamentals, constructional features, operational analysis through phasor diagrams, equivalent circuits, determination of performance parameters, testing and applications.
- B. Course Outcomes: At the end of the course, students will be able to

[EE2201.1] Know the fundamentals of AC machines. (**Bloom's Level: knowledge, Comprehensive)** [EE2201.2] Constructional details, principle of operation of Three-phase and single-phase Induction Motor. **gBloom's Level: knowledge, Comprehensive)**

 C. (Bloom's Level: knowledge, Comprehensive) [EE2201.3] Comprehend the operation and performance of three phase and single-phase Induction Motor. (Bloom's Level: Analysis, Application) [EE2201.4] Constructional details, principle of operation of synchronous generators. (Bloom's Level: knowledge, Comprehensive) [EE2201.5] Comprehend the working of synchronous motor and its different phenomena. (Bloom's Level: Analysis, Application)

OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- **[PO.1]. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- **[PO.2]. Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3]. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4]. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- **[PO.5]. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- **[PO.6]. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7]. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to professional ethics_and responsibilities and norms of the engineering practices

- **[PO.9].** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- **[PO.10]. Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.11].Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES:

- [PSO.1]. To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- [PSO.2]. To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmentally friendly and feasible solutions.
- [PSO.3]. Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

Criteria	Description	Maximum Marks					
	Sessional Exam I (Close Book)	15					
Internal Assessment	Sessional Exam II (Close Book)	15					
(Summative)	In class Quizzes and Assignments,	30					
	Activity feedbacks (Accumulated and						
	Averaged)						
End Term Exam	End Term Exam (Close Book)	40					
(Summative)							
	Total	100					
Attendance	A minimum of 75% Attendance is requir	ed to be maintained by a student to be					
(Formative)	qualified for taking up the End Semester examination. The allowance of 2						
	includes all types of leaves including med	ical leaves.					
Make up Assignments	Students who misses a class will have to	report to the teacher about the absence.					
(Formative)	A makeup assignment on the topic taug	ght on the day of absence will be given					
	which has to be submitted within a	week from the date of absence. No					
	extensions will be given on this. The atter	ndance for that particular day of absence					
	will be marked blank, so that the stude	ent is not accounted for absence. These					
	assignments are limited to a maximum of	5 throughout the entire semester.					
Homework/ Home Assignment/ Activity	There are situations where a student	may have to work in home, especially					
Assignment	before a flipped classroom. Although the	nese works are not graded with marks.					
(Formative)	However, a student is expected to part	cicipate and perform these assignments					
	with full zeal since the activity/ flipped of	classroom participation by a student will					
	be assessed and marks will be awarded.						

C. Assessment Plan:

D. SYLLABUS

Induction Machines: Three phase Induction motor- construction and working principle, equivalent circuit and phasor diagram, losses and efficiency, torque-slip characteristics, no load & blocked rotor tests, starting, braking, speed control, Induction generator, Single phase induction motor - types, double field revolving theory, torque-slip characteristics. Synchronous Machines: Alternators– construction and working principle, EMF equation, Equivalent circuit of non-salient

pole alternator, Phasor diagrams, voltage regulation, Synchronization, Synchronizing power and torque, power angle characteristics, Load sharing, Alternator connected to infinite bus, Equivalent circuit of salient pole alternator - Two reaction theory, Phasor diagrams, slip test. Synchronizing power and torque, power angle characteristics. Synchronous motors: working principle, Starting methods, Synchronizing power and torque, Performance characteristics, Hunting, Synchronous condenser.

E. REFERENCE BOOK

- R1. E. H. Langsdorf, Theory of Alternating Current Machinery (2e), TMH, 2004.
- R2. A. E. Clayton & N. N. Hancock, Performance and Design of Direct Current Machines, CBS, 2004.
- R3. D. P. Kothari & I. J. Nagrath, Electric Machines (4e), TMH, 2013.
- R4. Fitzarald & Kingslay, Electric Machinery, TMH, 2011
- R5. P. S. Bhimbra, Electrical Machinery, Khanna Publication, 2011

1. TEXT BOOKS

- T1. P. S. Bhimbra, "Electrical Machinery", Seventh Edition, 1995, Khanna Publishers.
- T2. I. J. Nagrath, , D. P.Kothari, "Electric Machines", Third Edition, Tata McGraw-Hill Publishing Company Ltd.
- T3. A. E.Fitzgerald, Charles Kingsley, Jr. Stephen D. Umans, "Electric Machinery", Fifth Edition, Tata McGraw-Hill.

I. Lecture Plan:

Lec No	Topics	Session Outcome	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
1	Introduction	To acquaint students with the outcome based education (OBE) and Course outcome (CO) and program outcome (PO) assessment process	Lecture		
2-3	Principle of Three phase induction motor, construction, Type, Equivalent circuit	Describe the construction of Induction motor and its working, types.	Lecture	2201.1 2201.2	In Class Quiz
4-5	Torque equation ,Torque/slip characteristic	Describe the Torque equation ,Torque/slip characteristic	Lecture	2201.1 2201.2	In Class Quiz End Term
T-1	L1-L5	Numerical problems based on L1-L5	Tutorial		
6,7	NO Load and Blocked Rotor Test	Identify different testing and their implementation.	Lecture	2201.1 2201.2	Home Assignment End Term
8,9	Starting Methods of three phase Induction motor- DOL, Star-Delta Starter, Auto Transformer Starter	Describe working of Star/Delta, auto transformer Starter.	Lecture	2201.1 2201.2	In Class Quiz End Term
T-2,T-3	L6-L9	Numerical problems based on L6-L9	Tutorial		
10,11	Speed control Method of three phase induction motor	Describe working of various speed control methods.	Lecture	2201.2 2201.3	Class Quiz Mid Term I End Term
12,13	Plugging, dynamic, regenerative Braking Methods of induction motor	Describe the different braking methods of Induction motor	Lecture	2201.3	Class Quiz Mid Term 1 End term
14,15	Induction generators	Describe the working of induction generator.	Lecture	2201.3	Home Assignment Class Quiz Mid Term 1 End Term
T-4	L10-L15	Numerical problems based on L19- L15	Tutorial		
16,17	single phase Induction motor	Describe the concept of 1-phase induction motor and its construction and working	Lecture	2201.1 2201.3	Class Quiz Mid Term 1 End Term

18,19,20	double field revolving theory, torque-slip	Describe the concept of double	Lecture	2201.1	Class Quiz								
	characteristics	field revolving theory, torque-slip		2201.3	Mid Term I								
		characteristics.			End Term								
FIRST SESSIONAL EXAM													
21,22,23	Introduction of generation of Electricity.	Recall the basic Rules of	Lecture	2201.1	Class Quiz								
	Synchronous Generator- Construction features,	Electromagnetic Induction &		2201.3	Mid Term II								
	Types, Excitation system Emf Equation.	induced emf			End Term								
24-25	Concentrated winding & Distribution Winding,	Identify different winding and their	Lecture	2201.1	In Class Quiz								
	Suppression of Harmonics- Full Pitch coil, short	implementation & harmonics		2201.2	Mid Term I								
	Pitch Coil, Distribution Factor, Pitch Factor,	reduction methods			End Term								
	Winding Factor.												
T-5-T6	L21-L25	Numerical problems based on L19-	Tutorial										
		L15											
26,27	Armature Reaction, effect of power factor on	Explain armature reaction and its	Lecture	2201.1	Class Quiz								
	armature reaction	effects		2201.4	Mid Term II								
					End Term								
28-29	Open circuit, Short Circuit Characteristics of	Explain Open circuit, Short Circuit	Lecture	2201.1	Class Quiz								
	synchronous generator, Synchronous	Characteristics		2201.4	Mid Term II								
	impedance,				End Term								
T-7	L26-L29	Numerical problems based on L26- L29	Tutorial										
30,32	Voltage Regulation, Various Method of	Explain voltage regulation and	Lecture	2201.1	Class Quiz								
	determine the Voltage Regulation EMF, MMF,	various methods.		2201.4	Mid Term II								
	ZPFC Method				End Term								
T-8	L30-L32	Numerical problems based on L30-L32.	Tutorial										
33	Power equation of Non salient pole Alternator	Derive the power equation	Lecture	2201.1	Class Quiz								
				2201.4	Mid Term II								
					End Term								
34,35,36	Salient pole alternator- Two Reaction Theory,	Describe the concept of Two	Lecture	2201.1	Class Quiz								
	Phasor diagram, Power angle Characteristics	reaction Theory		2201.4	Mid Term II								
					End Term								
T-9	L34-L36	Numerical problems based on L32-L36.	Tutorial										
37,38	Parallel operation of Two alternators-	Describe the concept of	Lecture	2201.1	Class Quiz								
	conditions, governor characteristics,	Synchronization.		2201.4	Mid Term II								
	synchronization method, alternator connected				End Term								
	to infinite bus												
T-9	L37-L38	Numerical problems based on L37-	Tutorial	2201.1	Class Quiz								
		L38.		2201.4	Mid Term II								
					End Term								

SECOND SESSIONAL EXAM										
39	Synchronous motor- Construction, principle of	Describe the working of	Lecture	2201.1	Class Quiz					
	Operation, Armature Reaction, power Input &	synchronous motor and its		2201.5	End Term					
	power Output Developed	applications								
40	Performance Characteristics, V-Curve, Inverted	Describe the V & inverted V curve	Lecture	2201.1	Class Quiz					
	V-Curve, synchronous Condenser			2201.5	End Term					
41	Methods Of Starting, synchronizing power,	Describe the starting methods of	Lecture	2201.1	Class Quiz					
	Synchronizing Torque	synchronous motor.		2201.5	End term					
42	Hunting, Method of Reducing Hunting,	Describe the hunting phenomena	Lecture	2201.1						
	Damping Winding, periodicity			2201.5						
T-10	L39-L42	Numerical problems based on L39-	Tutorial							
		L42.								
END TERM EXAM										

J. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT	CORRELATION WITH PROGRAM OUTCOMES							CORRELATION WITH PROGRAM SPECIFIC OUTCOMES							
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE2201.1	Know the fundamentals of AC machines. (Bloom's Level: knowledge, Comprehensive)	2		3		3				5				2		2
EE 2201.2	Constructional details, principle of operation of Three-phase and single-phase Induction Motor. (Bloom's Level: knowledge, Comprehensive)	2		3	3		2							2	2	
EE2201.3	Comprehend the operation and performance of three phase and single-phase Induction Motor. (Bloom's Level: Analysis, Application)		3	2				2							3	2
EE2201.4	Constructional details, principle & Analysis of synchronous generators. (Bloom's Level: knowledge, Comprehensive, Analysis)		2			2				2				2		2
EE2201.5	Comprehend the working of synchronous motor and its different phenomena (Bloom's Level: Analysis, Application)				2			2						2		2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation
MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronics and Communication

Department of Electrical Engineering Course Hand-out

Generation, Transmission & Distribution | EE2202 | 4 Credits | 3 | 0 4

Session: Jan. 21 – May 21 | Faculty: Dr. Sunil Kumar Goyal | Class: IV Sem. Electrical & Electronics Engineering

- **A. Introduction:** A fundamental course of Electrical Engineering which provides systematic understanding related to operation, working, significance of different conventional generating plants, transmission line parameters, concepts of transmission and distribution of electricity. This will help to provide students knowledge of the modern electricity network operation under balanced steady-state and fault conditions. This course is designed to develop the concepts of the students who are looking for career in the electricity supply industry, electrical maintenance or any large industrial network. The basic familiarity of line parameters and concepts of electricity generation is desired from the students for a better learning.
- B. Course Outcomes: At the end of the course, students will be able to

[1502 1]	Describe the basic operation and working of different conventional generation plants and
[1302.1]	their relative technical comparison.
[1502.2]	Interpret and illustrate the fundamental importance and develop the skills for working on
	various transmission and distribution systems.
[1502 2]	Recognize transmission line parameters and understand characteristics / performance of
[1302.3]	short, medium and long transmission lines used for complex electrical power network.
[1502 4]	Analyze and formulate the tasks of reactive power control, power factor improvement and
[1302.4]	voltage control.
[1502 5]	Identify the characteristics of overhead transmission lines, Corona effect, different
[1502.5]	Insulators and underground cables.

A. Program Outcomes and Program Specific Outcomes

- **[PO.I].Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- **[PO.2].Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3].Design/development of solutions**: Design solutions for complex engineering problems and <u>design system</u> <u>components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4].Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- **[PO.5].Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT</u> <u>tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6].The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal, health,</u> <u>safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7].Environment and sustainability**: Understand the <u>impact of the professional engineering solutions in societal and</u> <u>environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development

- **[PO.8].Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- **[PO.9].Individual and team work**: Function effectively as an individual, and as a <u>member or leader in diverse teams</u>, and in multidisciplinary settings
- **[PO.10].** Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

PROGRAM SPECIFIC OUTCOMES

- **[PSO.1].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- **[PSO.3].** Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

Criteria	Description	Maximum Marks					
	Sessional Exam I (Open Book)	15					
Internal Assessment	Sessional Exam II (Open Book)	15					
(Summative)	In class Quizzes and Assignments , Activity feedbacks (Accumulated and Averaged)	30					
End Term Exam (Summative)	End Term Exam (Open Book)	40					
	Total	100					
Attendance (Formative)	A minimum of 75% Attendance is required to be maintained by a student to be qualified for taking up the End Semester examination. The allowance of 25% includes all types of leaves including medical leaves.						
Make up Assignments (Formative)	Students who misses a class will have to report to assignment on the topic taught on the day of submitted within a week from the date of absence attendance for that particular day of absence will not accounted for absence. These assignments an the entire semester.	the teacher about the absence. A makeup absence will be given which has to be e. No extensions will be given on this. The I be marked blank, so that the student is re limited to a maximum of 5 throughout					
Homework/ Home	There are situations where a student may have to	work in home, especially before a flipped					
Assignment/ Activity	classroom. Although these works are not grad	ded with marks. However, a student is					
Assignment	expected to participate and perform these assignment	gnments with full zeal since the activity/					
(Formative)	flipped classroom participation by a student will b	be assessed and marks will be awarded.					

B. Assessment Rubrics:

C. Syllabus

Generation of Electric Power: Hydro Electric Power Plants, Thermal and Nuclear Power Plants, Diesel Power Plant, Typical AC transmission and distribution scheme: Effect of system voltage and regulation, Distribution network elements, distribution schemes, Transmission Line Parameter Calculations, Transmission Line Performance, Ferranti effect, receiving end power circle diagram, regulated system of transmission by reactive power control, Power Factor Improvement, Mechanical characteristics of Overhead lines, Line Insulators, Corona, Underground cables.

D. TEXT BOOKS

- 1. B. R. Gupta, *Power System Analysis and Design (7e),* S. Chand Publications, 2014.
- 2. C. L. Wadhwa, *Electrical Power System (3e)*, New Age Intl., 2013.
- 3. D. P. Kothari & I. J. Nagrath, Power System Engineering (2e), TMH, 2010.

E. REFERENCE BOOKS

1. S. N. Singh, *Electric Power Generation, Transmission and Distribution (6e)*, PHI, 2014.

F. Lecture Plan:

Lec No	Topics	Session Objective	Mode of Delivery	Correspon- ding CO	ModeofAssessingtheOutcome
L1	Course objective and overview of the contents	To acquaint students with the outcome based education (OBE) and Course outcome (CO) and program outcome (PO) assessment process	Lecture		NA
L2 – L4	Introduction to Electric Power System, Overview of Generation, Transmission & Distribution, Types of Load, Plant Economics, Important Terms and Factors.	Basic knowledge of different types of loads, economic aspects of power plants.	Lecture	[1502.1]	Class Quiz
T1 – T2	L1 – L4	Numerical problems based on L1 - L4	Tutorial	[1502.1]	Mid Term Exam
L5 – L6	Schematic diagram explanation, different parts of thermal plants, Operation and working of Thermal Electric Power plants	Understanding of Thermal power plant and its different component. Steam, water, flue gases	Lecture	[1502.1]	Home Assignment Class Quiz Mid Term Exam
L7 – L8	Schematic diagram explanation and Operation & working of Hydro Electric Power plants	Basic understanding of construction and working of Hydro Power Plant	Lecture	[1502.1]	Home Assignment Class Quiz Mid Term Exam
L9 – L10	Requirements, construction and operation of nuclear power plants	Basic understanding of construction and working of Nuclear Power Plant	Lecture	[1502.1]	Home Assignment Class Quiz Mid Term Exam
L11	Diesel Power Plants: Plant equipment, layout of the plants and its operation	Basic understanding of construction and working of Diesel Power Plant			Home Assignment Class Quiz
Т3	L5 – L11	Numerical problems based on L5-L11	Tutorial	[1502.1]	Mid Term Exam
L12	Effect of the system voltage and regulation	Calculation of Economic Voltage and voltage regulation	Lecture	[1502.2]	Home Assignment Class Quiz Mid Term Exam
L13	Voltage drop in AC and DC distribution system, Comparison of various distribution system	Comparison of different DC and AC distribution system based on equal power loss	Lecture	[1502.2]	Home Assignment Class Quiz Mid Term Exam
L14	AC-3 phase 4-wire distribution system	Calculation of conductor size for same power transfer and power loss for 3-phase	Lecture	[1502.2]	Class Quiz Mid Term Exam
L15	Types of primary and secondary distribution systems	Calculation of size of conductor for same power transfer and power loss for I-phase	Lecture	[1502.2]	Class Quiz Mid Term Exam
L16	Kelvin's Law and flickering of Lamps	Calculation of economic cost of conductor based on installation cost and operating cost	Lecture	[1502.2]	Class Quiz Mid Term Exam
T4 – T5	L12–L16	Numerical problems based on L12-L16	Tutorial	[1502.2]	Mid Term Exam
L17 - L18	Flux linkages within and outside the conductor producing fluxes, Inductance of single phase two wire line and of composite conductor lines	Derivation of basic relation of inductance of single phase transmission line for single, two wire and stranded conductors.	Lecture	[1502.3]	Home Assignment Class Quiz Mid Term Exam

L19 – L20	Inductance of three phase line with equilateral and unsymmetrical spacing, inductance of bundled conductors	Estimation of inductance of three phase transmission line in different configuration including bundle conductors and double circuit	Lecture	[1502.3]	Home Assignment Class Quiz Mid Term Exam
L21 - L22	Electric field and potential difference, capacitance of two- wire line, Capacitance of 3-phase line with equilateral spacing and unsymmetrical spacing	Derivation of basic relation of capacitance of single phase transmission line for single, two wire and stranded conductors.	Lecture	[1502.3]	Home Assignment Class Quiz Mid Term Exam
L23 – L24	Capacitance of Bundled conductor lines and double circuit three phase lines	Estimation of inductance of three phase transmission line including bundle conductors and double circuit	Lecture	[1502.3]	Home Assignment Class Quiz Mid Term Exam
T6 – T7	L17 – L24	Numerical problems based on L17-L24	Tutorial	[1502.3]	Mid Term Exam
L25	Representation of transmission lines, per unit method and advantages of per unit method	Per unit calculation of different transmission line parameters	Lecture	[1502.3]	Home Assignment Class Quiz Mid Term Exam
L26 – L27	Short and medium transmission lines	Representation and calculation of transmission line parameters	Tutorial	[1502.3]	Class Quiz Mid Term Exam
L28 – L29	Long transmission lines, ABCD parameters and equivalent T and pi networks.	Representation and calculation of transmission line parameters in equivalent T and π networks	Lecture	[1502.3]	Home Assignment Class Quiz Mid Term Exam
L30	Ferranti effect, power formulae for transmission lines	Analysis of Ferranti effect and its significance in power system	Lecture	[1502.3]	Home Assignment Class Quiz Mid Term Exam
T8 – T9	L29 – L33	Numerical problems based on L25-L30	Tutorial	[1502.3]	Mid Term Exam
L31 – L32	Natural loads and power circle diagrams	Calculation of sending end and receiving end power	Lecture	[1502.4]	Class Quiz Mid Term Exam
L33 – L34	Line voltage regulation and its control through reactive power regulation, power factor improvement	Formation of sending end and receiving end power circle diagram and power factor improvement	Lecture	[1502.4]	Home Assignment Class Quiz Mid Term Exam
T10	L31-L34	Numerical problems based on L31-L34	Tutorial	[1502.4]	Mid Term Exam
L35 – L37	Insulators, Voltage distribution in insulator string and improvement of string efficiency	Voltage distribution in different discs and calculation of string efficiency	Lecture	[1502.5]	Class Quiz Mid Term Exam
L38 – L39	Corona phenomenon, Corona loss, factors and conditions affecting corona loss	Process of Corona, calculation of disruptive voltage and factors affecting corona losses	Lecture	[1502.5]	Home Assignment Class Quiz Mid Term Exam
L40	Radio interference due to corona and corona in bundled conductors	Impact of corona including RI and factors reducing corona losses	Lecture	[1502.5]	Class Quiz Mid Term Exam
T11 – T12	L35-L40	Numerical problems based on L35-L40	Tutorial	[1502.5]	Mid Term Exam
L41	Underground cables: Insulation, sheath, armour and covering, Classification of cables, effective conductor resistance	Basic construction of cables and its classification and different parameters	Lecture	[1502.5]	Home Assignment Class Quiz Mid Term Exam
42	Grading of cables, capacitance of three core belted cable, Breakdown of cables, current rating of cables	Categorization of cables based on capacitance grading	Lecture	[1502.5]	Home Assignment Class Quiz Mid Term Exam

Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES								CORRELATION WITH PROGRAM SPECIFIC OUTCOMES					
		PO 1	РО 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE 1502.1	Describe the basic operation and working of different conventional generation plants and their relative technical comparison.		1	2				3					1		2	1
EE 1502.2	Interpret and illustrate the fundamental importance and develop the skills for working on various transmission and distribution systems.	1	1		3											3
EE 1502.3	Recognize transmission line parameters and understand characteristics / performance of short, medium and long transmission lines used for complex electrical power network.	3	2			1							1	3		1
EE 1502.4	Analyze and formulate the tasks of reactive power control, power factor improvement and voltage control.		3	1			2								2	1
EE 1502.5	Identify the characteristics of overhead transmission lines, Corona effect, different Insulators and underground cables.			3		1		2					1	2	1	1

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Course Outcome Attainment Level Matrix:

со	STATEMENT		ATTAINMENT OF PROGRAM OUTCOMES THRESHOLD VALUE: 40%								ATTAINMENT OF PROGRAM SPECIFIC OUTCOMES					
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE 1502.1	Describe the basic operation and working of different conventional generation plants and their relative technical comparison.		1	2				3					1		2	1
EE 1502.2	Interpret and illustrate the fundamental importance and develop the skills for working on various transmission and distribution systems.	1	1		3											3
EE 1502.3	Recognize transmission line parameters and understand characteristics / performance of short, medium and long transmission lines used for complex electrical power network.	3	2			1							1	3		1
EE 1502.4	Analyze and formulate the tasks of reactive power control, power factor improvement and voltage control.		3	1			2								2	1
EE 1502.5	Identify the characteristics of overhead transmission lines, Corona effect, different Insulators and underground cables.			3		1		2					1	2	1	1

0-No Attainment; I- Low Attainment; 2- Moderate Attainment; 3- Substantial Attainment

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronics and Communication Engineering

Department of Electrical Engineering Course Hand-out

Microcontrollers | EE 2203 | 3 Credits | 2 1 0 3

Session: JAN2021 – MAY2021 | Faculty: Abhishek Kumar | Class: IV Sem B Tech (E&E)

- A. Introduction: This course is offered by Dept. of Electrical Engineering as a core course, targeting students who wish to work in the area of embedded systems and automation. This course provides an understanding about the concepts and basic architecture of 8051,8085 and AMR microcontroller, an overview of difference between microprocessor and micro controller, background knowledge and core expertise in microcontroller, study the architecture and addressing modes of 8051, knowledge about assembly language programs of 8051, knowledge of different types of external interfaces including LEDS, LCD, Keypad Matrix, Switches & Seven segment display, motors etc. The course also build up the basic understanding of the importance of different peripheral devices & their interfacing to 8051 and give an overview of recent growth and trends of ARM controllers & processors.
- B. Course Outcomes: At the end of the course, students will be able to

[EE2203.1] Acquire the knowledge of Microcontroller types and variants, its features, specifications and architecture. Bloom's Level: Cognitive level Knowledge.

[EE2203.2] Simulate, **Analyze** and **develop** Microcontroller 8051 based programs using assembly language and high level language ('C') in simulation software like Keil. **Bloom's Level: Cognitive level Analysis, Synthesis.**

[EE2203.3] Analyze and simulate the working of on-chip features of 8051 like timers, interrupts of 8051 Bloom's Level: Cognitive level Analysis.

[EE2203.4] Design, analyze and simulate circuits to interface stepper motor and LCD to 8051 microcontroller Kit. Bloom's Level: Cognitive level Synthesis, Analysis.

[EE2203.5] Ability to analyze a problem and formulate appropriate computing solution for microcontroller and microprocessor based applications and hence enhancing skill development in the area. Bloom's Level: Cognitive level Analysis, Synthesis, Evaluation.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

[PO.1]. Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems

- **[PO.2]. Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3]. Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4]. Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments</u>, <u>analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- **[PO.5]. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- **[PO.6]. The engineer and society**: Apply reasoning informed by the <u>contextual</u> <u>knowledge to</u> <u>assess societal</u>, <u>health</u>, <u>safety</u>, <u>legal</u>, <u>and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice</u>
- **[PO.7]. Environment and sustainability**: Understand the <u>impact of the professional</u> <u>engineering solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8]. Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- **[PO.9]. Individual and team work**: Function effectively as an individual, and as a <u>member</u> <u>or leader in diverse teams</u>, and in multidisciplinary settings
- **[PO.10]. Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.11]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12]. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change.
- **[PSO.1].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.

[PSO.3]. Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D. Assessment Plan:

Criteria	Description	Maximum Marks
	Sessional Exam I	20

Internal Assessment	Sessional Exam II	20					
(Summative)	In class Quizzes and	20					
	Assignments , Activity feedbacks						
	(Accumulated and Averaged)						
End Term Exam	End Term Exam	40					
(Summative)							
	Total	100					
Attendance	A minimum of 75% Attendance is	s required to be maintained by a					
(Formative)	student to be qualified for taking	g up the End Semester					
	examination. The allowance of 2	25% includes all types of leaves					
	including medical leaves.						
Make up Assignments	Students who misses a class will have to report to the teacher						
(Formative)	about the absence. A makeup as	ssignment on the topic taught on					
	the day of absence will be given	which has to be submitted within					
	a week from the date of absence	e. No extensions will be given on					
	this. The attendance for that pa	rticular day of absence will be					
	marked blank, so that the studer	nt is not accounted for absence.					
	These assignments are limited to	a maximum of 5 throughout the					
	entire semester.						
Homework/ Home Assignment/	There are situations where a stu	dent may have to work in home,					
Activity Assignment	especially before a flipped class	room. Although these works are					
(Formative)	not graded with marks. Howeve	er, a student is expected to					
	participate and perform these ass	signments with full zeal since the					
	activity/ flipped classroom partie	cipation by a student will be					
	assessed and marks will be aw	arded.					

E. SYLLABUS

Introduction to microprocessors and microcontrollers, general purpose and embedded systems, CISC and RISC architectures, AT89C51 (8051) microcontroller: Architecture, pin diagram, addressing modes, instruction set, programming, stack, subroutines, GPIO, timers, serial port, interrupts. Interfacing keyboard, LCD, ADC and DAC to 8051. Embedded software development in 'C'. Programming 8051 in 'C'. ARM7 based NXPLPC21XX microcontroller: architecture, programming and interfacing.

F. TEXT BOOKS

T1. M. A. Mazidi and G. Mazidi, *The 8051 Microcontroller and embedded systems, using assembly and 'C'*, Pearson education, 2013.

T2. K. Ayala, *The 8051 Microcontroller and embedded systems, using assembly and 'C'*, Cengage Learning, 2009.

T3. S. Furber, ARM System - on – Chip Architecture (2e), Pearson, 2015.

T4. W. Hohl and H. Christopher, ARM Assembly Language, CRC Press, 2016.

H. Lecture Plan:

Lec No	Topics	Session Objective	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
1	Revision : Introduction of number system, Digital system, Adder, MUX, DeMUX, Decoder, Encoder	Recall of concepts of digital electronics	Lecture	[EE2203.1].	
2	Memory : Flip flop, Register, Definitions of Bit, nibble, byte, word, Memory Organization, Memory size & address line, data lines	Recall of concepts of digital electronics and memory managements	Lecture	[EE2203.1].	
3	Introduction of Keil Software, Creating the new project, Create, translate, build and debug of Assembly program	Introduce the concepts of simulation software and its features	Lecture, Hands on Practice Session	[EE2203.2].	
4	Computer system: Organization, Block diagram; Introduction of Embedded system, History of ICs, Difference b/w Microprocessor & Microcontroller	Introduce the basic computer systems and its components	Lecture	[EE2203.1].	
5	Introduction of Microcontroller 8051,8085 microprocessor, Various flavors of uC 8051: 8031, 8052, features & specification	Introduce the Microcontroller 8051 and its various variant	Lecture	[EE2203.1.	
6	Assembly programing, Working of CPU, Various blocks available in 8051: CPU registers, register bank, SFRs	Introduce the assembly programming concepts and its functioning	Lecture, Hands on Practice Session	[EE2203.2].	
7	8051 blocks: Internal registers, Program Counter, Instruction Decoder and their role and	Describe the execution functional blocks of Mc 8051	Lecture, Hands on Practice Session	[EE2203.2].	
8	8051 Memory, ROM addressing, RAM architectures: , Various special function registers, Register bank & their selections, bit addressable area, Scratch Pad RAM	Describe the Memory architecture of Mc 8051	Lecture	[EE2203.2].	
9	Memory: ROM, PROM, UVPROM, EEPROM, Flash memory: Descriptions and Role in Computer system	Describe various types of Memory units	Lecture	[EE2203.2].	
10	PSW & its bits, Concept of Carry, Auxiliary Carry, Parity & examples	Introduce the functioning of PSW register	Lecture, Practice Session	[EE2203.2].	
11	Concept of Overflow, Signed & unsigned Number presentation, Concept of overflow in signed operations.	Introduce the signed and unsigned operations and the concept of overflow.	Lecture, Practice Session	[EE2203.2].	
12	Architecture of 8051 : Diagram, Description	Describe the architecture of Mc 8051	Lecture	[EE2203.1].	Class Quiz
13	Pin Diagram of 8051: Discussion on Pins & Signals (1): Supply Pins, Oscillator Pins, Pull up registers, Port PO,	Describe the Pin Diagram of Mc 8051 and its signal functioning	Lecture	[EE2203.3].	END TERM EXAM MID TERM 1

	P1, P2 & P3, their specifications, functions and uses					
14	Instructions: Definitions, general format, Classification:	Describe the various classifications of	Lecture		[EE2203.2].	
	(Bit wise & Byte wise), (1 Byte, 2 bytes & 3 Bytes	assembly language instructions				
	Instructions)					
15	Process flow chart of program execution, Concept of	Describe the systematic execution of	Lecture		[EE2203.2].	
	list file, absolute file & OH file, Hex file, Assembler	assembly language instruction				
	Directives, Data Directives					
16	Addressing Mode: Definition, Types, explanation of	Introduce the Addressing Modes and its	Practice Ses	sion,	[EE2203.1].	
	each types with examples	types	Activities			
17	Instructions (1): Data transfer operations (inside the	Explain the utilisation of instructions in	Lecture, Pra	ctice	[EE2203.2].	
	RAM): MOV , XCH and XCHD ; formats, explanation,	various applications	Session			
	specifications and Assembly Programs					
18	Instructions (2): Data transfer operations (From	Explain the utilisation of instructions in	Lecture, Pra	ctice	[EE2203.2].	
	internal ROM to RAM): MOVC ; formats, explanation,	various applications	Session			
	specifications and Assembly Programs					
19	Instructions (3): Data transfer instructions((B/w	Explain the utilisation of instructions in	Practice Ses	sion,	[EE2203.2].	
	external Memory & RAM): MOVX ; formats,	various applications	Activities			
	explanation, specifications and Assembly Programs					
20	Instructions (4): Arithmetic operations: ADD, ADDC,	Explain the utilisation of instructions in	Lecture, Pra	ctice	[EE2203.2].	
	INC, DEC: formats, explanation, specifications and	various applications	Session			
	Assembly Programs					
21	Instructions (5): Arithmetic operations: SUBB, MUL,	Explain the utilisation of instructions in	Lecture, Pra	ctice	[EE2203.2].	
	DIV, DA : formats, explanation, specifications and	various applications	Session			
	Assembly Programs, BCD operations					
22	Instructions (6): Logical operations: ANL, ORL, XRL,	Explain the utilisation of instructions in	Practice Ses	sion,	[EE2203.2].	
	CLR, CPL : formats, explanation, specifications and	various applications	Activities			
	Assembly Programs					
23	Instructions (7): Rotate Operations: RR, RRC, RL, RLC :	Explain the utilisation of instructions in	Lecture, Pra	ctice	[EE2203.2].	
	formats, explanation, specifications and Assembly	various applications	Session			Class Quiz
	Programs; Stepper motor Programming					FIND TERM FXAM
24	Instructions (8): Boolean Manipulation operation: CLR,	Explain the utilisation of instructions in	Lecture, Pra	ctice	[EE2203.2].	MID TERM 1

	SETB CPL ANI ORL · formats explanation	various applications	Session			
	specifications and Assembly Programs		Cocolon			
25	Instructions (9): Conditional Branching operation: DJNZ, CJNE : formats, explanation, specifications and Assembly Programs, Concept of Looping and Pointers	Explain the utilisation of instructions in various applications	Practice Activities	Session,	[EE2203.2].	
26	Instructions (10): Conditional Branching operation: JZ, JNZ, JC, JNC : formats, explanation, specifications and Assembly Programs, Concept of Looping and Pointers	Explain the utilisation of instructions in various applications	Lecture, Session	Practice	[EE2203.2].	
27	Instructions (11): Unconditional Branching operation: SJMP, LJMP, AJMP: formats, size, range, explanation, Hex code Calculations and Assembly Programs, Concept & calculation of relative address, absolute address.	Explain the utilisation of instructions in various applications	Practice Activities	Session,	[EE2203.2].	
28	Instructions (12): Unconditional Branching operation: ACALL, LCALL, RET: formats, size, range, explanation, Hex code Calculations and Assembly Programs, Role of stack in calling instructions	Explain the utilisation of instructions in various applications	Lecture, Session	Practice	[EE2203.2].	
29	Time delay calculation, Generation using 8051 instructions, Programming using 8051 instructions	Explain the utilisation of instructions for delay generations	Lecture, Session	Practice	[EE2203.3].	
30	8051 timers: Introductions, Timer Registers, TMOD & TCON Registers: Presentations and explanations	Introduce the Timer registers and Timer control registers of Microcontroller	Practice Activities	Session,	[EE2203.3].	
31	8051 Timers, Programming timers, timer modes : Mode 0 and Mode 1 Programming for particular delay generations	Explain the Timer Modes of Timer and its utilisations	Lecture, Session	Practice	[EE2203.3]. [EE2203.5].	
32	Counter programming, Programming using 8051 instructions, parallel I/O ports of 8051, Alternate functions	Explain the Counter Modes of Timer and its utilisations	Practice Activities	Session,	[EE2203.3].	
33	Enabling/Disabling interrupts, IE Register and IP Register: Presentations, explanations and uses	Explain the use of Interrupt in Microcontroller	Lecture, Session	Practice	[EE2203.3].	Class Quiz
34	Interrupt Programming: timer interrupts TO and T1: programming and application Programs, External hardware interrupt.	Explain the use of Interrupt in Microcontroller	Lecture, Session	Practice	[EE2203.3].	Home Assignment END TERM EXAM MID TERM 2

35	LCD Interfacing with 8051: LCD Basics, Pin descriptions, Command Code, Busy flag concept, Programming	Explain the use of LCD and its interface with Microcontroller using ALP and Embedded C.	Practice Activities	Session,	[EE2203.4]. [EE2203.5].	
36		Explain the use of LCD and its interface	Lecture,	Practice	[EE2203.4].	
	LCD Interfacing with 8051 (2): Busy flag concept, LCD	enhancing skill development in the	36551011		[EE2205.5].	
	Read concept, Application Programs	area.				
37		Explain the use of Stepper Motor and its	Lecture,	Practice	[EE2203.4].	
	Stepper motor Interfacing with 8051: Stepper motor	interface with Microcontroller and	Session		[EE2203.5].	
	Basics, Pin descriptions, Rotate sequence,	hence enhancing skill development in				
	Programming, Speed Control using delay	the area.				
38	Keyboard, ADC and DAC interfacing with 8051 microcontroller.	Programming in Embedded C and ALP for interfacing keyboard , ADC and DAC with 8051.	Practice Activities	Session,	[EE2203.4]. [EE2203.5].	
39	ARM7 based NXPLPC21XX microcontroller: architecture,	Explain the architecture and use of ARM microcontroller.	Lecture, Session	Practice	[EE2203.5]	
40	ARM7 based NXPLPC21XX microcontroller: architecture, programming and interfacing.	Interfacing programming concept of ARM microcontroller.	Lecture, Session	Practice	[EE2203.5].	Class Quiz Home Assignment END TERM EXAM

			CORRELATION WITH PROGRAM OUTCOMES						CORRELATION WITH							
со	STATEMENT										PROGRAM SPECIFIC OUTCOMES					
		PO 1	PO	PO 2	PO	PO	PO	PO 7	PO	PO	PO	PO	PO	PSO 1	PSO 2	PSO 3
EE 2203.1	Acquire the knowledge of Microcontroller types and variants, its features, specifications	2	2	3	3	5	6	/	8	9	10	11	2	2		
EE 2203.2	Simulate, Analyze and develop Microcontroller 8051 based programs using assembly language and high level language ('C') in simulation software like Keil.	2	2	1	2	1							1		3	2
EE 2203.3	Analyze and simulate the working of on-chip features of 8051 like timers, interrupts of 8051.	2	2	1	2	1							1		3	2
EE 2203.4	Design, analyze and simulate circuits to interface stepper motor and LCD to 8051 microcontroller Kit.	2	2	2	2	1							1		3	2
EE 2203.5	Ability to analyze a problem and formulate appropriate computing solution for microcontroller and microprocessor based Applications and hence enhancing skill development in the area.	2	3	3	2	2	2	1					2	2	2	3

I. Course Articulation Matrix: (Mapping of COs with POs)

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronics and communication Engineering (SEEC)

Department of Electrical Engineering Course Hand-out

SOLAR PHOTOVOLTAICS | EE 2080| 3 Credits | 3 0 0 3

Session: August 20 – Dec 20 | Faculty: Mahipal Bukya | Class: Open-Elective

A. INTRODUCTION: This course is offered by Dept. of Electrical Engineering as an open-Elective subject, targeting students who wish to pursue researchand development in solar photo-voltaicsystem or higher studies in field of solar energy including solar radiations, PN junction diode & its characteristics, solar cell, solar PV modules, balance of solar PV systems, etc. Students are expected to have background knowledge on semiconductors, charge carriers and their motion in semiconductors, p-type and n-type of semiconductors, etc. for a better learning.

B. COURSE OUTCOMES: At the end of the course, students will be able to

[EE 2080.1]. To understand the basics of Solar Radiations, their measurement and tracking

[EE 2080.2]. Comprehend the PN Junction Diode & Characteristics

[EE 2080.3]. Interpret and explain the Solar Cell and its application in SPV System

[EE 2080.4]. Understand and develop skills for Solar PV Modules

[EE 2080.5]. Acquire knowledge about Balance of System (BOS) and Batteries

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- [PO.9]. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

- [PO.11]. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
- [PSO.1]. To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- [PSO.2]. To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- [PSO.3].Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

Criteria	Description	Maximum Marks				
	Sessional Exam I (Close Book)	15				
Internal Assessment	Sessional Exam II (Close Book)	15				
(Summative)	In class Quizzes and Assignments,	30				
	Activity feedbacks (Accumulated and					
	Averaged)					
End Term Exam	End Term Exam (Close Book)	40				
(Summative)						
	Total	100				
Attendance	A minimum of 75% Attendance is requi	red to be maintained by a student to be				
(Formative)	qualified for taking up the End Semester examination. The allowance of 25%					
	includes all types of leaves including me	dical leaves.				
Make up Assignments	Students who misses a class will have to	report to the teacher about the absence.				
(Formative)	A makeup assignment on the topic taug	th on the day of absence will be given				
	which has to be submitted within a	week from the date of absence. No				
	extensions will be given on this. The	attendance for that particular day of				
	absence will be marked blank, so that the	ne student is not accounted for absence.				
	These assignments are limited to a n	maximum of 5 throughout the entire				
	semester.					
Homework/ Home	There are situations where a student n	nay have to work in home, especially				
Assignment/ Activity	before a flipped classroom. Although the	nese works are not graded with marks.				
Assignment	However, a student is expected to participate and perform these assignments					
(Formative)	with full zeal since the activity/ flipped of	classroom participation by a student will				
	be assessed and marks will be awarded.					

D. ASSESSMENT PLAN:

E. SYLLABUS

Solar Radiation: Spectrum, Terminologies, Measurement, Estimation; Sun-Earth Movement & Angles, Sun Tracking, PN Junction Diode & Characteristics, Solar Cell, Photovoltage, Light Generated Current, I-V equation & Characteristics: Short Circuit Current, Open Circuit Voltage, Maximum Power Point, Fill Factor, Efficiency, Losses, Equivalent Circuit, Effect of Series & Shunt Resistance, Solar Radiation, Temperature on Efficiency, Solar PV Modules: Series & Parallel connection, Hotspots, Bypass & Blocking Diodes, Power Output, Ratings, I-V & Power Curve, Effect of Solar Irradiation & Temperature, Balance of System (BOS): Batteries: Classification, Capacity, Voltage, Depth of Discharge, Life Cycle, Factors affecting Battery Performance; Charge Controllers, DC to DC Converters, DC to AC converters, Maximum Power Point Tracking (MPPT).

F. TEXT BOOKS:

- 1. C. Solanki, Solar Photovoltaics: Fundamentals, Technologies and Application, PHI New Delhi, 2009.
- G. N. Tiwari, Solar Energy: Fundamentals, Design, Modeling and Applications, Narosa Publications New Delhi, 2013.

G. REFERENCE BOOKS

- 1. S. Deambi, Photovoltaic System Design, CRC Press USA, 2016.
- 2. F. Kreith and D. Y. Goswami, Energy Management and Conservation Handbook (2e), CRC Press USA, Fairmont Press, USA, 2017.
- 3. J. Balfour, M. Shaw and N. B. Nash, Advanced Photovoltaic Installations, Jones & Barlett Learning USA, 2013.
- 4. B.H. Khan, Non-conventional Energy Resources, TMH, 2006.
- 5. G.D. Rai, Non-conventional Energy Resources, Khanna Publishers.

H. LECTURE PLAN:

Lecture no.	Topic to be covered
L1	Introduction of course
L2	Introduction Non-renewable and Renewable Energy sources
L3	Solar Energy, applications, & advantages.
L4	Extra-terrestrial Solar radiation
L5	Solar spectrum at the earth surface
L6	Terminologies
L7	Sun-Earth Movement & Angles
L8	Angles of Sunrays on Solar collector
L9	Sun Tracking
L10	Estimation of solar radiation
L11	Measurement of solar radiation
L12	Numericals on Solar radiations
L13	Fundamentals of Semiconductors
L14	Energy bands
L15	Charge carriers, their concentration and distribution, motion,
L16	Electric field and Energy band bending, generation and recombination of carriers
L17	Introduction to P-N junction in equilibrium and non-equilibrium condition
L18	Numericals on PN Junction Diode & Characteristics
L19	Numericals on PN Junction Characteristics
L20	Photovoltage, Light Generated Current
L21	I-V equation and characteristics
L22	Short Circuit Current, Open Circuit Voltage
L23	Maximum Power Point, Fill Factor, Efficiency, Losses
L24	Equivalent Circuit of Solar cell
L25	Effect of Series & Shunt Resistance
L26	Solar Radiation, Temperature on Efficiency
L27	Numericals on Solar Cell
L28	Solar PV modules from Solar cells
L29	Series & Parallel connection
L30	Mismatch in Series connection: Hotspots, Bypass & Blocking Diodes
L31	Mismatch in Parallel connection
L32	Design and Structure of PV modules
L33	PV module Power Output, Ratings, I-V & Power Curve
L34	Effect of Solar Irradiation & Temperature
L35	Numericals on Solar PV Modules
L36	Introduction to Batteries
L37	Factors affecting battery performance
L38	Battery Parameters: Capacity, Voltage, Depth of Discharge, Life Cycle
L39	Batteries for PV systems, comparison
L40	DC to DC Converters
L41	Charge controllers
L42	DC to AC converters
L43	Maximum Power Point Tracking (MPPT)
L44	Numericals on Balance of Solar PV systems

Aspired BY LIT

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronics and communication Engineering (SEEC)

Department of Electrical Engineering

Course Hand-out

Fundamentals of Renewable Energy Sources (FRES) | EE 2082 | 3 Credits | 3 0 0 3

Session: Jan. 2021 – May 2021 | Faculty: Mr. Divya Rishi Shrivastava | Class: IV Semester (Open Elective)

- A. Introduction: This course is offered by Dept. of Electrical Engineering as an Open Elective, targeting students who wish to pursue research & development in industries or higher studies in the field of renewable energy sources and the related electrical engineering practices. Worldwide attention to environmental issues combined with the energy crisis has forced us to increase the use of renewable energy sources which are freely available in the nature and are environment friendly. Energy found in the renewable resources is converted into a form, we can use as heat or electricity. To understand this course students are expected to have background knowledge of electricity and mathematics.
- B. Course Outcomes: At the end of the course, students will be able to

[2082.1]. Discuss the utilization of renewable sources and their pattern in the past, present and future projections of consumption.

[2082.2]. State the fundamentals of power systems and explain the operation and working of various kinds of power generation sources.

[2082.3]. Recognize the need and advancements in the renewable energy sources, analyse the problems and their possible solutions in harnessing energy from renewable sources.

C. PROGRAM OUTCOMES (PO)

- [PO.1]. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations

- [PO.6]. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

D. PROGRAM SPECIFIC OUTCOMES (PSO)

- [PSO.1]. To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- [PSO.2]. To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- [PSO.3]. Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

E. Assessment Plan:

Criteria	Description	Maximum Marks
	Sessional Exam I (Closed Book)	15/20
	Sessional Exam II (Closed Book)	15/20
Internal Assessment (Summative)	In class Quizzes and Assignments,	30/20
	Activityfeedbacks(Accumulated and Averaged)	
End Term Exam (Summative)	End Term Exam (Closed Book)	40/40

	Total	100
Attendance (Formative)	A minimum of 75% Attendance is requine to be qualified for taking up the E allowance of 25% includes all types of	red to be maintained by a student nd Semester examination. The leaves including medical leaves.

F. SYLLABUS

Energy sources and their availability, **Solar Energy** - Solar radiation and measurements, solar energy storage, Solar Photo-Voltaic systems design, **Wind Energy**-Estimation, Maximum power and power coefficient, wind energy conversion systems, design considerations and applications. **Energy from Bio-Mass**-Sources of bio-mass, Biomass conversion technologies, Thermo-chemical conversion and Biochemical conversions, Anaerobic digestion and Fermentation, Bio-gas generation Pyrolysis and Liquefaction, Classification of Gasifiers, **Geo-Thermal Energy, Energy plantation**- Energy from the Oceans, Ocean Thermal Energy Conversion, Open and Closed Cycle plants, Site selection considerations, **Origin of tides**, Tidal energy conversion systems, Wave energy conversion systems, **Hybrid Energy Systems**.

G. REFERENCE BOOKS

- 1. B. H. Khan, *Non-conventional Energy Resources*, TMH, 2009.
- 2. J. W. Twidell & A. D. Weir , *Renewable Energy Resources*, ELBS, 2005.
- 3. D. Mukherjee & S. Chakrabarti, *Fundamentals of Renewable Energy Systems*, New Age Intl., 2004.
- 4. G. D. Rai, Non-Conventional Energy Sources, Khanna Publishers, 2004.

H. Lecture Plan:

Lecture No.	TOPICS
1	Course objective and overview of the contents
2-4	Brief Introduction of the energy sources and their availability
5-13	Solar Energy - Solar radiation and measurements, solar energy
5-15	storage, Solar Photo-Voltaic systems design
44.00	Wind Energy- Estimation, Maximum power and power coefficient, wind
14-20	energy conversion systems, design considerations and applications
04.04	Energy from Bio-Mass- Sources of bio-mass, Biomass conversion
21-24	technologies, Thermo-chemical conversion and Biochemical conversions
05.07	Anaerobic digestion and Fermentation, Bio-gas generation Pyrolysis and
25-27	Liquefaction, Classification of Gasifiers
28-30	Geo-Thermal Energy
31.34	Energy plantation- Energy from the Oceans, Ocean Thermal Energy
51-54	Conversion, Open and Closed Cycle plants, Site selection considerations
35-37	Origin of tides, Tidal energy conversion systems
38-39	Wave energy conversion systems
40-42	Hybrid Energy Systems

I. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES OUTCOMES							I WITH ECIFIC ES						
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	CORRELATION WITH PROGRAM SPECIFIC OUTCOMESPSOPSOPSO123120212212	PSO 3	
EE 2082.1	Discuss the utilization of renewable sources and their pattern in the past, present and future projections of consumption.	3	2	3	2	1	1	2	0	0	0	1	2	1	2	0
EE 2082.2	State the fundamentals of power systems and explain the operation and working of various kinds of power generation sources.	3	2	0	1	1	0	2	0	0	1	0	0	2	1	2
EE 2082.3	Recognize the need and advancements in the renewable energy sources, analyse the problems and their possible solutions in harnessing energy from renewable sources.	3	2	2	2	2	1	2	1	1	1	1	2	2	1	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronics and Communication

Department of Electrical Engineering Course Hand-out

Electrical Machinery Lab - II | EE2230 | I Credits | 0 0 2 I

Session: Jan. 21 – May 21 | Faculty: Dr. Sunil Kumar Goyal | Class: IV Sem. Electrical & Electronics Engineering

A. Introduction: A fundamental course of Electrical Engineering which provides systematic understanding related to operation, working, significance of different electrical machines. The operational characteristics of single-phase induction machines i.e. no-load & blocked rotor test, load test etc. are discussed. Different characteristics of synchronous machines which includes OC/SC test, voltage regulation by EMF, MMF and ZPF methods. The V-Curves and Inverted V-Curves has also been plotted and determination of different reactance are also performed in this lab. Design of different electrical machines i.e. single and three phase transformers, DC machines, Induction machines and synchronous machine on MATLAB platform is also included. It improves the student's understanding of various basic electrical machines and their working in different operating conditions. This course is designed to develop the concepts of the students who are looking for career in the core electrical machine design, electricity supply industry, electrical maintenance or any large industrial network.

B. Course Outcomes: At the end of the course, students will be able to

[EE2230.1]	Understand the working principle and different characteristics of Induction Machines.							
[EE2230.2]	Understand the working principle and different characteristics of Synchronous							
	Machines.							
[EE2220 2]	Designing of various Electrical Machines i.e. Transformers, D.C. Machines, Induction							
[EE2230.3]	and Synchronous Machines.							

A. Program Outcomes and Program Specific Outcomes

- [PO.1]. Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- **[PO.2]. Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3].** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4].** Conduct investigations of complex problems: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- **[PO.5].** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations

- **[PO.6].** The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess</u> <u>societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7].** Environment and sustainability: Understand the <u>impact of the professional engineering</u> solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8].** Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- **[PO.9].** Individual and team work: Function effectively as an individual, and as a <u>member or leader</u> in diverse teams, and in multidisciplinary settings
- **[PO.10].** Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.11]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

PROGRAM SPECIFIC OUTCOMES

- **[PSO.1].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- **[PSO.3].** Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

B. Assessment Rubrics:

Criteria	Description	Maximum Marks					
Internal Assessment (Summative)	Internal Assessment	60					
End Term Exam (Summative)	End Term Exam	40					
	Total	100					
Attendance (Formative)	A minimum of 75% Attendance is required to be maintained by a student to be qualified for taking up the End Semester examination. The allowance of 25% includes all types of leaves including medical leaves						
Make up Assignments (Formative)	Students who misses a class will have to report to the teacher about the absence. A makeup assignment on the topic taught on the day of absence will be given which has to be submitted within a week from the date of absence. No extensions will be given on this. The attendance for that particular day of absence will be marked blank, so that the student is not accounted for absence. These assignments are limited to a maximum of 5 throughout the entire semester.						

Homework/ Home	There are situations where a student may have to work in home, especially before
Assignment/ Activity	a flipped classroom. Although these works are not graded with marks. However, a
Assignment	student is expected to participate and perform these assignments with full zeal since
(Formative)	the activity/ flipped classroom participation by a student will be assessed and marks
. ,	will be awarded.

C. Syllabus

Induction Machine: No load and blocked rotor tests, load test on three phase squirrel cage & Slip ring induction motor, load test on induction generator. Load test on Single Phase Induction Motor. Synchronous Machines: V- and inverted V-curves of synchronous machines, Measurement of X_d and X_q of a salient pole synchronous machine, Predetermination of regulation of alternator. Synchronization of alternator, Design of Electrical Machines.

D. REFERENCE BOOKS

- 1. E. H. Langsdorf, Theory of Alternating Current Machinery (2e), TMH, 2004.
- A. E. Clayton & N. N. Hancock, Performance and Design of Direct Current Machines, CBS, 2004.
- 3. Fitzarald & Kingslay, Electrical Machinery, TMH, 2011.
- 4. P. S. Bhimbra, Electrical Machinery, Khanna Publication, 2011.
- 5. D. P. Kothari & I. J. Nagrath, Electrical Machines (4e), TMH, 2013.

E. Lecture Plan:

Exp No	Experiment Description	Lab Objective	Mode of Delivery	Correspon ding COs	Mode of Assessing Outcome
1	Conduct the no load test & blocked-rotor test on single phase induction motor	Student will learn to perform OC test & Short circuit test on single phase induction motor	Laboratory Tutorial and Experiments	EE2230.1	Continuous Lab Evaluation and End Term Practical exam
2	Toconductloadteston single phase induction motor	Student will learn to perform the load test & draw the different characteristic	Laboratory Tutorial and Experiments	EE2230.1	Continuous Lab Evaluation and End Term Practical exam
3	To conduct the open circuit and short circuit tests on the given 3- phase Alternator.	Student will learn to apply OC & SC test to get the OCC & SCC characteristic of Three phase Alternator	Laboratory Tutorial and Experiments	EE2230.2	Continuous Lab Evaluation and End Term Practical exam
4	To determine the Voltage Regulation of 3- Phase alternator by E.M.F. Method.	Student will learn to determine the Voltage Regulation of Alternator by EMF Method & Understand the Concept of EMF	Laboratory Tutorial and Experiments	EE2230.2	Continuous Lab Evaluation and End Term Practical exam
5	To determine the Voltage Regulation of 3- Phase alternator by M.M.F. Method.	Student will learn to determine the Voltage Regulation of Alternator by MMF Method & Understand the Concept of MMF	Laboratory Tutorial and Experiments	EE2230.2	Continuous Lab Evaluation and End Term Practical exam
6	To determine the Voltage Regulation of 3- Phase alternator by Z.P.F.C. Method.	Student will learn to determine the Voltage Regulation of Alternator by Z.P.F.C Method & Understand the Concept of Z.P.F.C	Laboratory Tutorial and Experiments	EE2230.2	Continuous Lab Evaluation and End Term Practical exam
7	To determine the direct axis and quadrature axis reactance of a salient pole alternator by slip test.	Student will learn to apply Slip test & how to find X_d & X_q of salient pole alternator.	Laboratory Tutorial and Experiments	EE2230.2	Continuous Lab Evaluation and End Term Practical exam

8	To determine the V- curve of synchronous machine.	Student will learn and draw the V-curve of synchronous machine	Laboratory Tutorial and Experiments	EE2230.2	Continuous Lab Evaluation and End Term Practical exam
9	To Synchronize a 3- phase Alternator with incoming grid supply.	Student will learn how to operate the alternator parallel with incoming bus- bar & what conditions should be fulfilled for this operation	Laboratory Tutorial and Experiments	EE2230.2	Continuous Lab Evaluation and End Term Practical exam
10	Designthe 1-phasecore type transformer of given specifications.	Student will learn designing of 1-phase core type transformer of given specifications	Laboratory Tutorial and Experiments	EE2230.3	Continuous Lab Evaluation and End Term Practical exam
11	Designthe3-phasecore type transformer of given specifications.	Student will learn designing of 3-phase core type transformer of given specifications	Laboratory Tutorial and Experiments	EE2230.3	Continuous Lab Evaluation and End Term Practical exam
12	Design the DC machine of given specifications.	Student will learn designing DC machine of given specifications.	Laboratory Tutorial and Experiments	EE2230.3	Continuous Lab Evaluation and End Term Practical exam
13	Design the 3-phase induction machine of given specifications.	Student will learn designing 3-phase induction machine of given specifications	Laboratory Tutorial and Experiments	EE2230.3	Continuous Lab Evaluation and End Term Practical exam
14	Design the 3-phase Synchronous machine of given specifications.	Student will learn designing the 3-phase Synchronous machine of given specifications	Laboratory Tutorial and Experiments	EE2230.3	Continuous Lab Evaluation and End Term Practical exam

Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT	CORRELATION WITH PROGRAM OUTCOMES									CORRELATION WITH PROGRAM SPECIFIC OUTCOMES					
		PO 1	РО 2	PO 3	РО 4	PO 5	РО 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
[EE2230.1]	Understand the working principle and different characteristics of Induction Machines.	3	3	2	3	2				1			2	3	2	3
[EE2230.2]	Understand the working principle and different characteristics of Synchronous Machines.	3	3	2	3	2				2			2	3	2	3
[EE2230.3]	Designing of various Electrical Machines i.e. Transformers, D.C. Machines, Induction and Synchronous Machines.	3	3	3	1	3				1				2	3	2

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Course Outcome Attainment Level Matrix:

со	STATEMENT	ATTAINMENT OF PROGRAM OUTCOMES THRESHOLD VALUE: 40%										ATTAINMENT OF PROGRAM SPECIFIC OUTCOMES				
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
[EE2230.1]	Understand the working principle and different characteristics of Induction Machines.	3	3	2	3	2				1			2	3	2	3
[EE2230.2]	Understand the working principle and different characteristics of Synchronous Machines.	3	3	2	3	2				2			2	3	2	3
[EE2230.3]	Designing of various Electrical Machines i.e. Transformers, D.C. Machines, Induction and Synchronous Machines.	3	3	3	1	3				1				2	3	2

0-No Attainment; 1- Low Attainment; 2- Moderate Attainment; 3- Substantial Attainment

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronics and Communication Engineering

Department of Electrical Engineering Course Hand-out

Microcontroller Laboratory | EE 2231 | 1 Credits | 0 0 2 1

Session: JAN2021 – MAY2021 | Faculty: Abhishek Kumar | Class: IV Sem B Tech (EEE)

A. Introduction: This course is offered by Dept. of Electrical Engineering as a Laboratory course, targeting students who wish to work in the area of embedded systems and automation. This course provides an understanding about the concepts and basic architecture of 8051, background knowledge of Keil Software in microcontroller, knowledge about assembly language programs of 8051 and ARM7 based microcontroller, knowledge of different types of external interfaces including LEDS, LCD, Switches, stepper motor etc. The course also build up the basic understanding of the importance of different peripheral devices & their interfacing to 8051 and give an overview of recent growth and trends of controllers & processors.

B. Course Outcomes: At the end of the course, students will be able to

[EE2231.1] Explain the features of Microcontroller ESA MCB51 Kit, ARM7 kit and Keil Software. **(Bloom's Level: Cognitive level Knowledge).**

[EE2231.2] Introduce Assembly Language Program (ALP) concepts and features. (Bloom's Level: Cognitive level Knowledge).

[EE2231.3] Write ALP for Data block operations, arithmetic and logical operations, Code Conversion operations in 8051 and ARM7 (Bloom's Level: Cognitive level Synthesis, Analysis).

[EE2231.4] Analyze the working of on-chip features of 8051 and ARM7 like timers, counter and interrupts of Microcontroller 8051 and ARM7 processor based microcontroller. **(Bloom's Level: Cognitive level Analysis, Synthesis).**

[EE2231 .5] Simulate various interface kits (LCD, stepper motor, elevator, traffic light control). (Bloom's Level: Cognitive level Analysis, Synthesis).

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- **[PO.1]. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
 - **[PO.2]. Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
 - **[PO.3]. Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified

needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

- **[PO.4]. Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments</u>, <u>analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- **[PO.5]. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- **[PO.6]. The engineer and society**: Apply reasoning informed by the <u>contextual</u> <u>knowledge to</u> <u>assess societal</u>, <u>health</u>, <u>safety</u>, <u>legal</u>, <u>and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice</u>
- **[PO.7]. Environment and sustainability**: Understand the <u>impact of the professional</u> <u>engineering solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8]. Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- **[PO.9]. Individual and team work**: Function effectively as an individual, and as a <u>member or leader in diverse teams</u>, and in multidisciplinary settings
- **[PO.10]. Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.11]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12]. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change.
- **[PSO.1].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmentally friendly and feasible solutions.

[PSO.3]. Develop, investigate, and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D. Assessment Plan:

Criteria	Description	Maximum Marks							
Internal Assessment									
---------------------------------------	--	------------------------------------	--	--	--	--	--	--	--
(60 Marks)	Documentation	Total 60							
	Preparation and Observation	15							
	Regularity and Performance :	10							
	Assignment Submission :	15							
	Internal Viva :	10							
End Term Exam		40							
	Procedure with logic, flowchart	15							
	Experiment Conduction :	10							
	Calculations :	5							
	Viva Voce :	10							
	Total	100							
Attendance	A minimum of 75% Attendance i	s required to be maintained by a							
(Formative)	student to be qualified for takin	g up the End Semester							
	examination. The allowance of	25% includes all types of leaves							
	including medical leaves.								
Make up Assignments	Students who misses a class w	vill have to report to the teacher							
(Formative)	about the absence. A makeup a	ssignment on the topic taught on							
, , , , , , , , , , , , , , , , , , ,	the day of absence will be given	which has to be submitted within							
	a week from the date of absence	e. No extensions will be given on							
	this. The attendance for that pa	articular day of absence will be							
	marked blank, so that the stude	nt is not accounted for absence.							
	These assignments are limited to	o a maximum of 5 throughout the							
	entire semester.	-							
Homework/ Home Assignment/	There are situations where a stu	ident may have to work in home,							
Activity Assignment	especially before a flipped class	room. Although these works are							
(Formative)	not graded with marks. However	er, a student is expected to							
	participate and perform these assignments with full zeal since the								
	activity/ flipped classroom parti	cipation by a student will be							
	assessed and marks will be aw	varded.							

E. SYLLABUS

Module I: Experiments using 8051 Microcontroller simulator. Module II: Interfacing exercises using 8051 microcontroller, Module III: Experiments using ARM7 processor based microcontroller.

F. TEXT BOOKS

T1. M.A. Mazidi and G. Mazidi, The 8051 microcontroller & Embedded Systems using Assembly & **'C'**, Pearson, 2011

T2. Rajkamal, Microcontrollers, Architecture, Programming, Interfacing & System Design, Pearson, 2005.**T3.** Ramesh S. Gaonkar, *Microprocessor architecture, programming, and applications with the 8085 (5e)*, Prentice Hall, 2002.

G. REFERENCE BOOKS

R1. K.J. Ayala, The 8051 Microcontroller & Embedded Systems using Assembly & 'C', Cengage, 2009

R2. Predko, Programming & Customizing the 8051 Microcontroller, Tata McGraw Hill

R3. S. Furber, ARM System - on -Chip Architecture (2e), Pearson, 2016.

H. Lecture Plan:

		Lab Objective	Mode of Delivery	Corresponding	Mode of Assessing
ExpNo	Experiment Description			COs	Outcome
		Student will learn to write an ALP for	Laboratory	EE2231.I	Continuous Lab
	Study of 8051 based Microcontroller Kit (ESA	8051 microcontroller.	Tutorial and	EE2231.2	Evaluation
I	MCB51 Kit) and Keil Software.		Experiments		and End Term Practical
					exam
		Student will learn to develop a logic	Laboratory	EE2231.I	Continuous Lab
n	Write assembly language programs to transfer the data from one memory location to another	of data block transfer among different	Tutorial and	EE2231.2	Evaluation
Z	memory location using different addressing	memories for 8051 microcontroller.	Experiments	EE2231. 3	and End Term Practical
	mode.				exam
		Student will learn to apply the logic of	Laboratory	EE2231.I	Continuous Lab
2	Write assembly language programs to transfer a data block from one place to another place in the memory of Microcontroller 8051	exchanging the data for 8051	Tutorial and	EE2231.2	Evaluation
3		microcontroller.	Experiments	EE2231. 3	and End Term Practical
					exam
		Student will learn to develop a logic	Laboratory	EE2231.I	Continuous Lab
А	Write assembly language programs to search a	for searching algorithms in ALP for	Tutorial and	EE2231.2	Evaluation
7	Microcontroller 8051.	8051.	Experiments	EE2231. 3	and End Term Practical
					exam
		Student will learn to develop a logic	Laboratory	EE2231.I	Continuous Lab
F	Write assembly language programs to sort a	for sorting algorithms in ALP for 8051	Tutorial and	EE2231.2	Evaluation
3	data block available in memory of Microcontroller 8051.	microcontroller.	Experiments	EE2231. 3	and End Term Practical
					exam

		Student will learn to develop a logic	Laboratory	EE2231.I	Continuous Lab
	Write assembly language programs for	for addition and subtraction in ALP for	Tutorial and	EE2231. 2	Evaluation
6	mathematical operation (addition and subtraction) using Microcontroller 8051	8051 microcontroller.	Experiments	EE2231. 3	and End Term Practical
	subtraction) using interocontroller 0051.				exam
		Student will learn to develop a logic	Laboratory	EE2231.I	Continuous Lab
_	Write and perform programs for mathematical	for multiplication and division in ALP	Tutorial and	EE2231.2	Evaluation
7	operation (multiplication and division) using Microcontroller 8051.	for 8051 microcontroller.	Experiments	EE2231. 3	and End Term Practical
					exam
		Student will learn to develop a logic	Laboratory	EE2231.I	Continuous Lab
	Write and perform programs of mathematical	for BCD addition in ALP for 8051	Tutorial and	EE2231.2	Evaluation
8	operations on BCD Numbers.	microcontroller.	Experiments	EE2231. 3	and End Term Practical
					exam
		Student will learn to develop a logic	Laboratory	EE2231.I	Continuous Lab
	Write and perform programs of the various	for code conversion in ALP for 8051	Tutorial and	EE2231.2	Evaluation
9	number system based code conversion operation.	microcontroller.	Experiments	EE2231. 3	and End Term Practical
	- F				exam
		Student will learn to develop a logic	Laboratory	EE2231.I	Continuous Lab
	Write and simulate programs for Delay	for timer and counter in ALP for 8051	Tutorial and	EE2231.2	Evaluation
10	Generation, Timer & Counter operations.	microcontroller.	Experiments	EE2231.4	and End Term Practical
					exam
		Student will learn to develop a logic	Laboratory	EE2231.I	Continuous Lab
11	Write and simulate programs for interrupt	for interrupt operation in ALP for	Tutorial and	EE2231.2	Evaluation
	operation on ESA51 Microcontroller Kit.	8051 microcontroller.	Experiments	EE2231.4	and End Term Practical
	1				

					exam
		Student will learn to develop a logic	Laboratory	EE2231.I	Continuous Lab
	Write and perform programs to display the	for LCD interface to 8051	Tutorial and	EE2231.2	Evaluation
12	data on LCD Screen interfaced with ESA51 Microcontroller	microcontroller.	Experiments	EE2231. 5	and End Term Practical
					exam
		Student will learn to develop a logic	Laboratory	EE2231.I	Continuous Lab
	Write and perform an arithmetic program on	for arithmetic operations interface to	Tutorial and	EE2231. 3	Evaluation
13	ARM 7 processor based microcontroller.	ARM 7 processor based	Experiments	EE2231.4	and End Term Practical
		microcontroller.			exam
		Student will learn to develop a logic	Laboratory	EE2231.I	Continuous Lab
	Write assembly language programs to interface	for stepper motor control interface to	Tutorial and	EE2231.2	Evaluation
14	& run a stepper motor at various speed using ESA51 Microcontroller Kit.	8051 microcontroller.	Experiments	EE2231. 5	and End Term Practical
					exam

I. Course Articulation Matrix: (Mapping of COs with POs)

				(CORRE	LATIO	N WITH	H PROG	GRAM	ουτο	OMES			CORRELATION WITH		
СО	STATEMENT								PROGRAM SPECIFIC OUTCOMES							
		PO 1	РО 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE 2231.1	Explain the features of Microcontroller ESA MCB51 Kit, $ARM7$ kit and Keil Software.	2			3								2	2		
EE 2231.2	Introduce Assembly Language Program (ALP) concepts and features.	2												3	2	1
EE 2231.3	Write ALP for Data block operations, arithmetic and logical operations, Code Conversion operations in 8051 and ARM7.	2	2	1	2	1							1		3	2
EE 2231.4	Analyze the working of on-chip features of 8051 like timers, counter and interrupts of Microcontroller 8051 and ARM7 processor based microcontroller.	2	2	1	2	1							1		3	2
EE 2231.5	Simulate various interface kits (LCD, stepper motor, elevator, traffic light control).	2	2	2	2	1							1		3	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Electrical, Electronic Communication Engineering

Department of Electrical Engineering Course Hand-out

MATLAB & SYSTEM SIMULATION LAB | EE 2232 | | Credit | 0 0 2 |

Session: Jan 2020 – June 2021 | Faculty: Engineering | Class: II Year | Course Coordinator: Dr. Neeraj Kanwar

- A. Introduction: This Lab is offered by Dept. of Electrical Engineering targeting students from the department who wish to pursue a career in system simulation, coding, etc. It offers an understanding of basic programming skill of circuit solving languages using MATLAB. This course offers design and simulation of basic electrical & electronics circuit and their theoretical analysis. Students are expected to have background knowledge on basic of C, C++ for a better learning.
- **B. Course Outcomes:** At the end of the course, students will be able to:

[EE 2232.1] Understand basics of MATLAB and application of different commands. (Bloom's Level: knowledge)

[EE 2232.2] Ability to express programming skills for engineering problems. (Bloom's Level: Application)

[EE 2232.3] Study steady state and transient analysis of electrical circuits using MATLAB. (Bloom's Level: Analysis, Application)

[EE 2232.4] Ability to simulate basic electrical circuit in Simulink. (Bloom's Level: knowledge, Application)

[EE 2232.5] Understand Circuit simulation using Simscape. (Bloom's Level: Application)

C. Program Outcomes and Program Specific Outcomes

- **[PO.1].** Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **[PO.2]. Problem Analysis:** Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **[PO.3]. Design/ Development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
- **[PO.4].** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
- **[PO.5].** Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modelling to complex engineering activities with an under- standing of the limitations.
- **[PO.6].** The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- **[PO.7].** Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.
- **[PO.8].** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- **[PO.9].** Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
- **[PO.10].** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
- **[PO.11]. Project Management and Finance:** Demonstrate knowledge and understanding of engineering and management principles and apply these to owners own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **[PO.12].** Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES:

- **[PSO.1].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- **[PSO.3].** Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D. Assessment Rubrics:

Criteria	Description	Maximum Marks								
Internal Continuous	Student Lab Record	30								
Evaluation	Viva-voce	10								
(Summative)	Quiz Tests / Assignments / Projects	20								
	Total	60								
End Term Exam	Quiz Tests	20								
(Summative)	Viva-voce	20								
	Total	40								
Attendance	A minimum of 75% Attendance is requi	ired to be maintained by a student to be								
(Formative)	qualified for taking up the End Semest	ter examination. The allowance of 25%								
	includes all types of leaves including medical leaves.									

E. Syllabus

Introduction to MATLAB, Basics of MATLAB matrices and vectors, matrix and array operations, Saving and loading data, plotting simple graphs, scripts and functions, Script files, Function files, Global Variables, Loops, Branches, Control flow, Advanced data objects, Multi-dimensional matrices, Structures, Electric circuit simulation using MATLAB, data visualization, functions, file I/O and GUI, Introduction to SIMULINK, Steady state analysis of circuits, Transient analysis of RL, RC, and RLC circuits, Circuit simulation using Simscape. Simulation of basic electrical systems: PV System, Distribution System, Electrical vehicle system.

F. Text Books

T1. Gilat, A.: MATLAB® An Introduction with Applications, John Wiley & Sons, Inc., 3rd Ed., 2007.

T2. S. J. Chapman, Essentials of MATLAB Programming, BAE Systems (3e), Cengage Learning, 2008.

T3. S. L. Eshkavilov, MATLAB & Simulink Essentials: MATLAB & Simulink for Engineering Problem Solving and Numerical Analysis, Lulu Publishing, 2017.

G. Reference Books

R1. Hanselman, D.: Mastering MATLAB 7, Pearson Education, 2005.R2. Rashid, M. H.: SPICE for circuits and Electronics using PSPICE, PHI Learning publications, 1995.

H. Lecture Plan:

Lec. No	Topics	Session Objective	Mode of Delivery (Online/Classroom)	Corresponding CO	Mode of Assessing the Outcome
1	Introduction to MATLAB	Knowledge about basics of MATLAB	Online Lab	EE2232.1	Quiz, Lab Exam and Viva
2	Basic Data Visualization, MATLAB Script files, creating functions, working with files, flow control and introduction to GUIs in MATLAB	Knowledge to write MATLAB programmes	Online Lab	EE2232.1 EE2232.2	Quiz, Lab Exam and Viva

3	Solving Systems of Linear Algebraic Equations using MATLAB, DC Analysis of electrical circuits using MATLAB (Nodal and Mesh Analysis)	Understand to analyse electrical circuits	Online Lab	EE2232.1 EE2232.2	Quiz, Lab Exam and Viva
4	Perform different operations on polynomials	Understand solving a polynomial in MATLAB	Online Lab	EE2232.1 EE2232.2	Quiz, Lab Exam and Viva
5	Basic features of plotting a graph using MATLAB	Learn MATLAB graphics	Online Lab	EE2232.1 EE2232.2	Quiz, Lab Exam and Viva
6	Draw multiple plots using plot, hold and line functions	MATLAB Graphics- Multiple & Sub-Plots	Online Lab	EE2232.1 EE2232.2	Quiz, Lab Exam and Viva
7	MATLAB Programs using For and While loops	Understand looping and branching structures	Online Lab	EE2232.1 EE2232.2	Quiz, Lab Exam and Viva
8	MATLAB Programs using if, if-else loops	Understand looping and branching structures	Online Lab	EE2232.1 EE2232.2	Quiz, Lab Exam and Viva
9	Transient analysis of R-C Circuit	Knowledge of Transient analysis of R-C Circuit	Online Lab	EE2232.2 EE2232.3	Quiz, Lab Exam and Viva
10	Transient analysis of R-L Circuit	Knowledge of Transient analysis of R-L Circuit	Online Lab	EE2232.2 EE2232.3	Quiz, Lab Exam and Viva
11	Introduction to SIMULINK in MATLAB	Acquire knowledge about SIMULINK in MATLAB	Online Lab	EE2232.4	Quiz, Lab Exam and Viva
12	Simulation of RLC Circuits on SIMULINK	Know about simulation of RLC circuit	Online Lab	EE2232.4	Quiz, Lab Exam and Viva
13	Simulation of PV system on Simscape	Learn about simulation of PV system	Online Lab	EE2232.5	Quiz, Lab Exam and Viva
14	Simulation of Electrical vehicle system on Simscape	Learn about simulation of electrical vehicle system	Online Lab	EE2232.5	Quiz, Lab Exam and Viva

I. Course Articulation Matrix: (Mapping of COs with POs)

					COF	RELATIO	ON WITH	H PROG	RAM OL	JTCOME	S			CORREL	ATION	WITH
со	STATEMENT												PROGRAM SPECIFIC			
	JIAILIVILINI												OUTCOMES			
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE 2232.1	Understand basics of MATLAB and application of different commands	1				2							2	1	1	1
EE 2232.2	Ability to express programming skills for engineering problems	3	2	3		2							2	2	2	2
EE 2232.3	Study steady state and transient analysis of electrical circuits using MATLAB	3	3	2		3							2	3	2	3
EE 2232.4	Ability to simulate basic electrical circuit in Simulink	2	2	2	2	2							2	2	2	2
EE 2232.5	Understand Circuit simulation using Simscape	3	3	2	3	3							3	3	3	3

School of Electrical, Electronic Communication Engineering

Department of Electrical Engineering Course Hand-out

PROJECT BASED LEARNING LAB | EE 2233 | | Credit | 0 0 2 |

Session: Jan 2020 – June 2021 | Faculty: Engineering | Class: II Year | Course Coordinator: Vikash Kumar Boradak

- **A. Introduction:** This course is offered by the Dept. of Electrical Engineering to improve the understanding of the technical subjects through faculty guided project activity.
- B. Course Objectives: At the end of the course, students shall be able to
 - [EE 2233.1] To acquire knowledge on hardware and/or software for project implementation
 - [EE 2233.2] Analyse the theoretical concepts into practical/simulated environment.
 - [EE 2233.3] Demonstrate skills related to technical presentation and preparation of technical report.
 - [EE 2233.4] Learn to coordinate in a team project or individual specific projects.

C. Program Outcomes and Program Specific Outcomes

- **[PO.1].** Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **[PO.2]. Problem Analysis:** Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **[PO.3]. Design/ Development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
- **[PO.4].** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
- **[PO.5].** Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modelling to complex engineering activities with an under- standing of the limitations.
- **[PO.6].** The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- **[PO.7].** Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.
- **[PO.8].** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- **[PO.9].** Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
- **[PO.10].** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
- **[PO.11]. Project Management and Finance:** Demonstrate knowledge and understanding of engineering and management principles and apply these to owners own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

[PO.12]. Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES:

- **[PSO.1].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- **[PSO.3].** Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D. Assessment Rubrics:

Criteria	Description	Maximum Marks
	Mid-Term Evaluation (Literature Review,	
Internal	Project Report, Project Execution, and	60
Assessment	Viva)	
(Summative)		
End Term Exam	End Term Evaluation (Literature Review,	40
(Summative)	Project Completion Report, Project	
	Execution, and Viva)	
	Total	100
Attendance	A minimum of 75% Attendance is required	to be maintained by a student to
(Formative)	be qualified for taking up the End Semester	examination. The allowance of
	25% includes all types of leaves including m	edical leaves.
Homework/ Home	A student is expected to participate and perf	form these assignments with full
Assignment/	zeal and should regularly coordinate with fac	culty advisor.
Activity		
Assignment		
(Formative)		

E. Syllabus

Project based learning aims to build students' creative capacity to work through difficult or complex problems. It encompasses student's involvement in designing, developing, and constructing hands-on solutions to a problem, commonly in small teams. Typically, Project based learning takes students through the following phases or steps: Identifying a problem, agreeing on or devising a solution and potential solution path to the problem (i.e., how to achieve the solution), Designing and developing a prototype of the solution, refining the solution based on feedback from experts, instructors, and/or peers. Depending on the goals of the instructor, the size and scope of the project can vary greatly.

I. Course Articulation Matrix: (Mapping of COs with POs)

					COF	RELATIO	ON WITH	H PROG	RAM OL	JTCOME	S			CORREL	ATION	WITH
со	STATEMENT												PROGR	۹M	SPECIFIC	
	STATEMENT													OUTCO	MES	
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE 2233.1	To acquire knowledge on hardware													3	2	3
	and/or software implementation	1		2		3						3	2			
EE 2233.2	Analyse the theoretical concepts into	2	2		2		1							2	1	3
	practical/simulated environment	5	2		2		1									
EE 2233.3	Demonstrate skills related to technical													1	2	1
	presentation and preparation of		2			3			2		3		2			
	technical report															
EE 2233.4	Learn to coordinate in a team project													2	3	2
	or individual specific projects.	1		1	2					3		2				

School of Electrical, Electronics & Communication Engineering

Department of Electrical Engineering Course Hand-out

Control Theory EE 1501(N) | 4 Credits | 3 | 0 4

Session: Aug 20- Dec 20 | Faculty: Abhishek Kumar | Class: V Sem B Tech. (EE)

A. Introduction: This course is offered by Department of Electrical Engineering as a Core Subject, targeting students who wish to pursue research & development in industries or higher studies in field of Control Engineering. This course is to explore the modeling of linear dynamic systems via differential equations and transfer functions utilizing state-space and input-output representations. It involves, the study of principles of system modeling, system analysis and feedback control, and use them to design and evaluate feedback control systems with desired performance; specifically, to acquire the related knowledge and techniques. Students are expected to have background knowledge on Basics of Electrical Science, Basic Mathematics, Signal Systems for a better learning.

B. Course Objectives: At the end of the course, students will be able to

[EE1501(N).1] To identify, formulate and solve engineering problems using transfer function approach and differential equation approach.

[EE1501(N).2] Mathematical modelling of electrical, mechanical and electromechanical systems, using differential equations, transfer functions, block diagrams, and signal flow graphs.

[EE1501(N).3] Analyze the classical stability tests of a first order and second order system in time domain.

[EE1501(N).4] Analyze the design methods and finding the stability of a system using poles zeros location on s domain Routh Hurwitz criterions, Polar plot, Nyquist plots, Root-locus plots and Bode plots.

[EE1501(N).5] Determine and analyze the performance specifications of control systems, such as sensitivity, stability, controllability, tracking, in Time and Frequency domains.

[EE1501(N).6] Design feedback controllers, such as PID, lead and lag compensators, to meet desired system performance specifications and hence foster design skills.

C. Program Outcomes and Program Specific Outcomes

- [PO.1]. Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.2]. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.3]. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.4]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.5]. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- [PO.6]. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.7]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- [PO.8]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- [PO.9]. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

- [PO.10]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.11]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- [PO.12]. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- [PSO.1]. To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- [PSO.2]. To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- [PSO.3]. Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D. Assessment Rubrics:

Criteria	Description	Maximum Marks						
	Sessional Exam I (Closed Book)	15						
Internal Assessment	Sessional Exam II (Closed Book)	15						
(Summative)	In class Quizzes and Assignments.	30						
	Activity feedbacks (Accumulated and							
	Averaged)							
End Term Exam	End Term Exam (Closed Book)	40						
(Summative)								
	Total	100						
Attendance	A minimum of 75% Attendance is require	red to be maintained by a student to be						
(Formative)	qualified for taking up the End Semest	er examination. The allowance of 25%						
	includes all types of leaves including medi	cal leaves.						
Make up Assignments	Students who misses a class will have to	report to the teacher about the absence.						
(Formative)	A makeup assignment on the topic taught	on the day of absence will be given which						
	has to be submitted within a week from t	he date of absence. No extensions will be						
	given on this. The attendance for that p	particular day of absence will be marked						
	blank, so that the student is not accour	ited for absence. These assignments are						
	limited to a maximum of 5 throughout th	e entire semester.						
Homework/ Home Assignment/	There are situations where a student may have to work in home, especially before							
Activity Assignment	a flipped classroom. Although these works are not graded with marks. However,							
(Formative)	student is expected to participate and per	form these assignments with full zeal since						
	the activity/ flipped classroom participatio	on by a student will be assessed and marks						
	will be awarded.							

E. Syllabus

Mathematical Models of Electrical: Mechanical and electro-mechanical systems block diagram - signal flow graphs, Mason's gain formula. Time Response: Transient response specifications of second order systems, system response with additional pole & zero, Steady state error non- unity feedback systems. Sensitivity Stability: Routh - Hurwitz criterion, frequency domain specifications, Root locus plot transient response design by gain adjustment. Frequency Response Plots: Polar plots, Nyquist stability criterion, stability analysis, Bode plots. Controller Design: Proportional, Derivative and Integral controllers, PI, PD & PID controller, State Model, electrical, mechanical and electromechanical systems, physical variable form and phase variable form.

F. Text Books

- TI. K. Ogata, Modern Control Engineering (4th Ed.), Prentice Hall, 2001.
- T2. S.N. Norman, Control Systems Engineering (3rd Ed), John Wiley & Sons, Inc, 2000.
- T3. K.R. Varmah, Control Systems, Tata Mc-Graw Hill, 2010.

G. Reference Books

RI. Benjamin Kuo, Automatic Control Systems (8th Ed.), Prentice-Hall 2002.

H. Lecture Plan:

Lec No	Topics	Session Objective	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome		
I	Course overview, Introduction to Control Systems	To acquaint and clear teachers expectations and understand student expectations	Lecture		NA		
2,3,4,5,6	Mathematical Models of Electrical Systems: Mechanical and electro-mechanical systems	To Understand basic physics and mathematics involved in Electricla, mechanical and electro-mechanical Systems	Lecture	[EE1501(N).1]	In Class Quiz (Not Accounted)		
7,8,9,10	Block diagram	Identify different block diagram reduction steps and use it to determine transfer function of the system	Lecture	[EE1501(N).2]	In Class Quiz		
11,12,13	Signal flow graphs	Identify Signal flow graphs and use them to determine transfer function of the system	Lecture	[EE1501(N).2]	In Class Quiz		
14,15	Mason's gain formula	Able to determine transfer function of the system using Mason's gain formula	Lecture	[EE1501(N).2]	Home Assignment		
16,17,18,19	TimeResponse:Transientresponsespecifications of second order systems	Analyze system response of second order systems	Lecture	[EE1501(N).4]	Class Quiz		
20	System response with additional pole &zero	Analyze System response with addition of pole & zero	Lecture, Activity	[EE1501(N).3] [EE1501(N).4]	Class Quiz		
21	Steady state error non-unity feedback systems	Analyze Steady state error for non- unity feedback systems	Lecture	[EE1501(N).3]	Class Quiz		
22,23,24	Sensitivity Stability: Routh- Hurwitz criterion	Able to determine and comment on stability using Routh- Hurwitz	Lecture	[EE1501(N).3]	Class Quiz		
25	Frequency domain specifications	Understand the Frequency domain specifications	Lecture	[EE1501(N).3] [EE1501(N).4]	Class Quiz		
26,27,28,29,30	Root locus plot	Able to determine and plot the root locus for a given sysytem	Lecture	[EE1501(N).3]	Class Quiz		
31,	Transient response design by gain adjustment	Analyse and able to design the system response by gain adjustment	Lecture	[EE1501(N).4]	Home Assignment Class Quiz		
32,33,34	Frequency Response plots: Polar plots	Able to determine and plot the polar plot for a given sysytem	Lecture	[EE1501(N).4]	Class Quiz		
35,36,37	Nyquist stability criterion, stability analysis	Able to determine and comment on the system stability using Nyquist stability criterion	Lecture	[EE1501(N).3]	Class Quiz		

38,39,40,41	Bode plots	Able to determine and plot the bode plot for a given sysytem	Lecture	[EE1501(N).3]	Class Quiz
42	Controller design: Proportional, Derivative and Integral controllers	Understand the controller design steps	Lecture	[EE1501(N).4] [EE1501(N).6]	Class Quiz
43	PI, PD & PID controller	Able to design PI, PD & PID controller and hence foster design skills.	Lecture	[EE1501(N).5] [EE1501(N).6]	Home Assignment Class Quiz
44	State Space Analysis	Able to analyze and determine the state space design for a given system	Lecture	[EE1501(N).5]	Class Quiz
45,46	State Model, electrical, mechanical and electromechanical systems	Able to analyze and determine the state model for a given electrical, mechanical and electromechanical system and hence foster design skills.	Lecture, Activity	[EE1501(N).5]	Class Quiz
47	Physical variable form	Able to analyze and determine the physical variable form for a given system	Lecture	[EE1501(N).5]	Class Quiz
48	Phase variable form	Able to analyze and determine the phase variable form for a given system	Lecture	[EE1501(N).5]	Class Quiz

I. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES								CORRELATION WITH PROGRAM SPECIFIC OUTCOMES					
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
[EE1501(N).1]	To identify, formulate and solve engineering problems using transfer function approach and differential equation approach.	2		1	3								1	2	2	1
[EE1501(N).2]	Mathematical modelling of electrical, mechanical and electromechanical systems, using differential equations, transfer functions, block diagrams, and signal flow graphs.	2		1	3								2	3	2	1
[EE1501(N).3]	Analyze the classical stability tests of a first order and second order system in time domain.	2		1									1	2	1	2
[EE1501(N).4]	Analyze the design methods and finding the stability of a system using poles zeros location on s domain Routh Hurwitz criterions, Polar plot, Nyquist plots, Root-locus plots and Bode plots.	1	1			1				1		2	1	2	2	3
[EE1501(N).5]	Determine and analyze the performance specifications of control systems, such as sensitivity, stability, controllability, tracking, in Time and Frequency domains.	1		1			1						2	2	1	3
[EE1501(N).6]	Design feedback controllers, such as PID, lead and lag compensators, to meet desired system performance specifications and hence foster design skills.		1		3								1	1	2	1

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Electrical, Electronics and Communication

Department of Electrical Engineering Course Hand-out

Generation, Transmission & Distribution | EE 1502(N) | 4 Credits | 3 | 0 4

Session: Aug. 20 - Dec. 20 | Faculty: Dr. Neeraj Kanwar | Class: V Sem. Electrical Engineering

A. Introduction: A fundamental course of Electrical Engineering which provides systematic understanding related to operation, working, significance of different conventional generating plants, transmission line parameters, concepts of transmission and distribution of electricity. This will help to provide students knowledge of the modern electricity network operation under balanced steady-state and fault conditions. This course is designed to develop the concepts of the students who are looking for career in the electricity supply industry, electrical maintenance or any large industrial network. The basic familiarity of line parameters and concepts of electricity generation is desired from the students for a better learning.

B. Course Outcomes: At the end of the course, students will be able to

[1502 1]	Describe the basic operation and working of different conventional generation plants and					
[1502.1]	their relative technical comparison.					
[1502 2]	Interpret and illustrate the fundamental importance and develop the skills for working on					
[1302.2]	various transmission and distribution systems.					
[1502 3]	Recognize transmission line parameters and understand characteristics / performance of					
[1502.5]	short, medium and long transmission lines used for complex electrical power network.					
[1502 4]	Analyze and formulate the tasks of reactive power control, power factor improvement and					
[1502.4]	voltage control.					
[1502 5]	Identify the characteristics of overhead transmission lines, Corona effect, different					
[1302.3]	Insulators and underground cables.					

A. Program Outcomes and Program Specific Outcomes

- **[PO.I].Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- **[PO.2].Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3].Design/development of solutions**: Design solutions for complex engineering problems and <u>design system</u> <u>components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4].Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- **[PO.5].Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT</u> <u>tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6].The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal, health,</u> <u>safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7].Environment and sustainability**: Understand the <u>impact of the professional engineering solutions in societal and</u> <u>environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development

- **[PO.8].Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- **[PO.9].Individual and team work**: Function effectively as an individual, and as a <u>member or leader in diverse teams</u>, and in multidisciplinary settings
- **[PO.10].** Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

PROGRAM SPECIFIC OUTCOMES

- **[PSO.1].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- **[PSO.3].** Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

Criteria	Description	Maximum Marks						
	Sessional Exam I	15						
Internal Assessment	Sessional Exam II	15						
(Summativo)	In class Quizzes and Assignments , Activity							
(Summative)	feedbacks 30							
	(Accumulated and Averaged)							
End Term Exam	End Term Exam	40						
(Summative)								
	Total	100						
Attendance	A minimum of 75% Attendance is required to be r	maintained by a student to be qualified for						
(Formative)	taking up the End Semester examination. The allowance of 25% includes all types of leaves							
(i of mative)	including medical leaves.							
	Students who misses a class will have to report to the teacher about the absence. A makeup							
	assignment on the topic taught on the day of	absence will be given which has to be						
Make up Assignments	submitted within a week from the date of absence	e. No extensions will be given on this. The						
(Formative)	attendance for that particular day of absence wil	I be marked blank, so that the student is						
	not accounted for absence. These assignments ar	re limited to a maximum of 5 throughout						
	the entire semester.							
Homework/ Home	There are situations where a student may have to	work in home, especially before a flipped						
Assignment/ Activity	classroom. Although these works are not grad	led with marks. However, a student is						
Assignment	expected to participate and perform these assig	gnments with full zeal since the activity/						
(Formative)	flipped classroom participation by a student will b	e assessed and marks will be awarded.						

B. Assessment Rubrics:

C. Syllabus

Generation of Electric Power: Hydro Electric Power Plants, Thermal and Nuclear Power Plants, Diesel Power Plant, Typical AC transmission and distribution scheme: Effect of system voltage and regulation, Distribution network elements, Transmission Line Parameter Calculations, Transmission Line Performance, Ferranti effect, receiving end power circle diagram, regulated system of transmission by reactive power control, Mechanical design of Overhead lines, Line Insulators, Corona, Underground cables.

D. TEXT BOOKS

- 1. B. R. Gupta, *Power System Analysis and Design (7e),* S. Chand Publications, 2014.
- 2. C. L. Wadhwa, Electrical Power System (3e), New Age Intl., 2000.

E. REFERENCE BOOKS

1. S. N. Singh, *Electric Power Generation, Transmission and Distribution (2e)*, PHI Learning, 2004.

F. Lecture Plan:

Lec No	Topics	Session Objective	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
L1	Course objective and overview of the contents	To acquaint students with the outcome based education (OBE) and Course outcome (CO) and program outcome (PO) assessment process	Lecture		NA
L2 – L4	Introduction to Electric Power System, Overview of Generation, Transmission & Distribution, Types of Load, Plant Economics, Important Terms and Factors.	Basic knowledge of different types of loads, economic aspects of power plants.	Lecture	[1502.1]	Class Quiz
T1 – T2	L1 – L4	Numerical problems based on L1 - L4	Tutorial	[1502.1]	Mid Term Exam
L5 – L6	Schematic diagram explanation, different parts of thermal plants, Operation and working of Thermal Electric Power plants	Understanding of Thermal power plant and its different component. Steam, water, flue gases	Lecture	[1502.1]	Home Assignment Class Quiz Mid Term Exam
L7 – L8	Schematic diagram explanation and Operation & working of Hydro Electric Power plants	Basic understanding of construction and working of Hydro Power Plant	Lecture	[1502.1]	Home Assignment Class Quiz Mid Term Exam
L9 – L10	Requirements, construction and operation of nuclear power plants	Basic understanding of construction and working of Nuclear Power Plant	Lecture	[1502.1]	Home Assignment Class Quiz Mid Term Exam
L11	Diesel Power Plants: Plant equipment, layout of the plants and its operation	Basic understanding of construction and working of Diesel Power Plant			Home Assignment Class Quiz
Т3	L5 – L11	Numerical problems based on L5-L11	Tutorial	[1502.1]	Mid Term Exam
L12	Effect of the system voltage and regulation	Calculation of Economic Voltage and voltage regulation	Lecture	[1502.2]	Home Assignment Class Quiz Mid Term Exam
L13	Voltage drop in AC and DC distribution system, Comparison of various distribution system	Comparison of different DC and AC distribution system based on equal power loss	Lecture	[1502.2]	Home Assignment Class Quiz Mid Term Exam
L14	AC-3 phase 4-wire distribution system	Calculation of conductor size for same power transfer and power loss for 3-phase	Lecture	[1502.2]	Home Assignment Class Quiz Mid Term Exam
L15	Types of primary and secondary distribution systems	Calculation of size of conductor for same power transfer and power loss for I-phase	Lecture	[1502.2]	Home Assignment Class Quiz Mid Term Exam
L16	Kelvin's Law and flickering of Lamps	Calculation of economic cost of conductor based on installation cost and operating cost	Home Assignment Class Quiz Mid Term Exam		
T4 – T5	L12–L16	Numerical problems based on L12-L16	Tutorial	[1502.2]	Mid Term Exam

L17 - L18	Flux linkages within and outside the conductor producing fluxes, Inductance of single phase two wire line and of composite conductor lines	Derivation of basic relation of inductance of single phase transmission line for single, two wire and stranded conductors.	Lecture	[1502.3]	Home Assignment Class Quiz Mid Term Exam
L19 – L20	Inductance of three phase line with equilateral and unsymmetrical spacing, inductance of bundled conductors	Estimation of inductance of three phase transmission line in different configuration including bundle conductors and double circuit	Lecture	[1502.3]	Home Assignment Class Quiz Mid Term Exam
L21 - L22	Electric field and potential difference, capacitance of two-wire line, Capacitance of 3-phase line with equilateral spacing and unsymmetrical spacing	Derivation of basic relation of capacitance of single phase transmission line for single, two wire and stranded conductors.	Lecture	[1502.3]	Home Assignment Class Quiz Mid Term Exam
L23 – L24	Capacitance of Bundled conductor lines and double circuit three phase lines	Estimation of inductance of three phase transmission line including bundle conductors and double circuit	Lecture	[1502.3]	Home Assignment Class Quiz Mid Term Exam
T6 – T7	L17 – L24	Numerical problems based on L17-L24	Tutorial	[1502.3]	Mid Term Exam
L25	Representation of transmission lines, per unit method and advantages of per unit method	Per unit calculation of different transmission line parameters	Lecture	[1502.3]	Home Assignment Class Quiz Mid Term Exam
L26 – L27	Short and medium transmission lines	Representation and calculation of transmission line parameters	Tutorial	[1502.3]	Home Assignment Class Quiz Mid Term Exam
L28 – L29	Long transmission lines, ABCD parameters and equivalent T and pi networks.	Representation and calculation of transmission line parameters in equivalent T and π networks	Lecture	[1502.3]	Home Assignment Class Quiz Mid Term Exam
L30	Ferranti effect, power formulae for transmission lines	Analysis of Ferranti effect and its significance in power system	Lecture	[1502.3]	Home Assignment Class Quiz Mid Term Exam
Т8 — Т9	L29 – L33	Numerical problems based on L25-L30	Tutorial	[1502.3]	Mid Term Exam
L31 – L32	Natural loads and power circle diagrams	Calculation of sending end and receiving end power	Lecture	[1502.4]	Home Assignment Class Quiz Mid Term Exam
L33 – L34	Line voltage regulation and its control through reactive power regulation, power factor improvement	Formation of sending end and receiving end power circle diagram and power factor improvement	Lecture	[1502.4]	Home Assignment Class Quiz Mid Term Exam
T10	L31-L34	Numerical problems based on L31-L34	Tutorial	[1502.4]	Mid Term Exam
L35 – L37	Insulators, Voltage distribution in insulator string and improvement of string efficiency	Voltage distribution in different discs and calculation of string efficiency	Lecture	[1502.5]	Home Assignment Class Quiz Mid Term Exam
L38 – L39	Corona phenomenon, Corona loss, factors and conditions affecting corona loss	Process of Corona, calculation of disruptive voltage and factors affecting corona losses	Lecture	[1502.5]	Home Assignment Class Quiz Mid Term Exam

L40	Radio interference due to corona and corona in bundled conductors	Impact of corona including RI and factors reducing corona losses	Lecture	[1502.5]	Home Assignment Class Quiz Mid Term Exam
T11 – T12	L35-L40	Numerical problems based on L35-L40	Tutorial	[1502.5]	Mid Term Exam
L41	Underground cables: Insulation, sheath, armour and covering, Classification of cables, effective conductor resistance	Basic construction of cables and its classification and different parameters	Lecture	[1502.5]	Home Assignment Class Quiz Mid Term Exam
L42	Grading of cables, capacitance of three core belted cable, Breakdown of cables, current rating of cables	Categorization of cables based on capacitance grading	Lecture	[1502.5]	Home Assignment Class Quiz Mid Term Exam

C. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES						CORRELATION WITH PROGRAM SPECIFIC OUTCOMES							
		PO 1	РО 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE 1502.1	Describe the basic operation and working of different conventional generation plants and their relative technical comparison.		1	2				3					1		2	1
EE 1502.2	Interpret and illustrate the fundamental importance and develop the skills for working on various transmission and distribution systems.	1	1		3											3
EE 1502.3	Recognize transmission line parameters and understand characteristics / performance of short, medium and long transmission lines used for complex electrical power network.	3	2			1							1	3		1
EE 1502.4	Analyze and formulate the tasks of reactive power control, power factor improvement and voltage control.		3	1			2								2	1
EE 1502.5	Identify the characteristics of overhead transmission lines, Corona effect, different Insulators and underground cables.			3		1		2					1	2	1	1

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

со	STATEMENT		ATTAINMENT OF PROGRAM OUTCOMES THRESHOLD VALUE: 40%										ATTAINMENT OF PROGRAM SPECIFIC OUTCOMES			
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE 1502.1	Describe the basic operation and working of different conventional generation plants and their relative technical comparison.		1	2				3					1		2	1
EE 1502.2	Interpret and illustrate the fundamental importance and develop the skills for working on various transmission and distribution systems.	1	1		3											3
EE 1502.3	Recognize transmission line parameters and understand characteristics / performance of short, medium and long transmission lines used for complex electrical power network.	3	2			1							1	3		1
EE 1502.4	Analyze and formulate the tasks of reactive power control, power factor improvement and voltage control.		3	1			2								2	1
EE 1502.5	Identify the characteristics of overhead transmission lines, Corona effect, different Insulators and underground cables.			3		1		2					1	2	1	1

0-No Attainment; I- Low Attainment; 2- Moderate Attainment; 3- Substantial Attainment

School of Electrical Electronics and Communication Engineering

Department of Electrical Engineering Course Hand-out

Signals and Systems| EE 1503(N) | 4 Credits | 3 1 0 4

Session: Aug 20 – Dec 20 | Faculty: Divya Rishi Shrivastava | Class: Program Core

- A. Introduction: This course is offered by Dept. of Electrical Engineering as a Program core. The course will help students to pursue research & development in industries or higher studies in field of Electrical Engineering, including robotics, power systems, control theory, signal processing and its applications. The course familiarizes with the detailed understanding of signals and systems, their mathematical foundations and practical applicability. Students are expected to have background knowledge on Engineering Mathematics for a better learning.
- B. Course Outcomes: At the end of the course, students will be able to
 [EE 1503(N).1]. Development of skill set for the classification and mathematical operation on signals and LTI system.
 - **[EE I503(N).2].** Formulate the response of the LTI system to any input signal.
 - **[EE 1503(N).3].** Implement the transform techniques in continuous time and discrete time domain such as Laplace Transform, Fourier analysis and Z transform
 - [EE 1503(N).4]. Determine the stability of the CT and DT systems

[EE 1503(N).5]. Apply signals and systems in circuit theory and power systems

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
- [PSO.1]. To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- [PSO.2]. To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- [PSO.3]. Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

Criteria	Description	Maximum Marks				
	Sessional Exam I (Closed Book)	15				
Internal Assessment	Sessional Exam II (Closed Book)	15				
(Summative)	In class Quizzes and Assignments	30				
	(Accumulated and Averaged)					
End Term Exam	End Term Exam (Closed Book)	40				
(Summative)						
	Total	100				
Attendance	A minimum of 75% Attendance is requi	red to be maintained by a student to be				
	qualified for taking up the End Semest	er examination. The allowance of 25%				
	includes all types of leaves including medi	cal leaves.				
Make up Assignments	Students who miss a class will have to re	port to the teacher about the absence. A				
(Formative)	makeup assignment on the topic taught o	on the day of absence will be given which				
	has to be submitted within a week from	the date of absence. No extensions will				
	be given on this. The attendance for that	particular day of absence will be marked				
	blank, so that the student is not accour	ted for absence. These assignments are				
	limited to a maximum of 5 throughout th	e entire semester.				

D. Assessment Plan:

E. SYLLABUS

Basic Introduction: Basic definitions, classification, Properties, Sampling and quantization, **Time domain analysis of continuous-time and discrete-time signals & systems**: linear-time invariant systems, impulse response, convolution, correlation, causality and stability, representation of LTI systems, **Frequency domain analysis of continuous time signals and systems**: Fourier series, Fourier transform, applications, **Frequency domain analysis of discrete-time signals and systems**: Discrete-time Fourier series, Discrete-time Fourier transform, **Sampling in time domain**: reconstruction, discrete-time processing of continuous-time signals, Relation between frequency domain representation in continuous and discrete-domain, Sampling in frequency domain, **Discrete Fourier transform**: Transform domain analysis of systems, **Laplace and Z transform**, Representation of systems.

F. TEXT BOOKS

1. Haykin S, Signals and Systems, (2e) Wiley, 2007

G. REFERENCE BOOKS

- 1. Oppenheium, Willisky and Nawab, Signals and Systems (2e), PHI, 1997
- 2. R. E. Ziemer; Signals and Systems, (4e), Pearson, 2002

Class Number	Topics	Session Outcome	Mode of Delivery	Corresponding Course Outcome	Mode of Assessing the Outcome
LI	Introduction and Course Hand-out briefing	To acquaint and clear teachers expectations and understand student expectations	Lecture Interaction	-	NA
2 - 3	Signals and systems: classification of signals- continuous and discrete- time signals, even and odd signals, periodic signal and aperiodic signals, Energy and power signals.	Io acquaint students signals and its classification	Lecture Interaction	EE 1503(N).1	
4 – 5	Basic signals: unit impulse, unit step, unit ramp signals. Basic operations on signals: Operations on dependent variable: amplitude scaling, addition, multiplication, differentiation, integration.	To acquaint students operation on independent variable	Lecture Interaction	EE 1503(N).1	
١,2	Tutorial I,2 (LI – L5)	To acquaint students examples and numerical	Lecture Interaction	EE 1503(N).1	Class Quiz Assignment
6 – 7	Operations on independent variable: time scaling, time reflection, time shifting; Properties of systems: stability, memory, causality, time- invariance, linearity	To acquaint students operation on dependent variable and systems	Lecture Interaction	EE 1503(N).1	Mid Term I End Term
8 - 10	Convolution of discrete-time signals: convolution sum. Convolution of continuous- time signals: convolution integral. Properties of convolution	To acquaint students convolution and correlation	Lecture Interaction	EE 1503(N).1 EE 1503(N).2	
3,4	Tutorial 3,4 (L6 – L10)	To acquaint students examples and numerical	Lecture Interaction	EE 1503(N).1 EE 1503(N).2	
11	Properties of LTI systems with respect to impulse response: memory, causality, stability and step response.	To acquaint students LTI systems and operation	Lecture Interaction	EE 1503(N).1 EE 1503(N).2 EE 1503(N).4	
12	Representation of LTI systems: parallel connection, cascade connection.	To acquaint students LTI systems and operation	Lecture Interaction	EE 1503(N).1 EE 1503(N).2	
13 – 16	Differential equations, difference equations, solution of differential and difference equations, zero-input response and zero-state response.	To acquaint students LTI systems and operation	Lecture Interaction	EE 1503(N).1 EE 1503(N).2 EE 1503(N).4 EE 1503(N).5	
5,6	Tutorial 5,6 (LII – LI6)	To acquaint students examples and numerical	Lecture Interaction	EE 1503(N).1 EE 1503(N).2 EE 1503(N).4	
	1	FIRST MID TERM EXA	M		1
17 – 21	Continuous time Fourier series, properties of CTFS; Continuous-time Fourier transforms, properties, inverse CTFT	To acquaint students continuous time Fourier series and transform	Lecture Interaction	EE 1503(N).3	
7,8	Tutorial 7,8 (L17 – L21)	To acquaint students examples and numerical	Lecture Interaction	EE 1503(N).3	

22 – 25	Discrete time Fourier series, properties of DTFS; Discrete- time Fourier transforms, properties inverse DTFT	To acquaint students discrete time Fourier series and transform	Lecture Interaction	EE 1503(N).3	Class Quiz Assignment Mid Term II					
25 – 27	Applications of DTFT representation, Fourier transform representation of periodic signals.	To acquaint students discrete time Fourier series and transform	Lecture Interaction	EE 503(N).3	End Term					
28 – 29	Discrete Fourier transform	To acquaint students discrete transform	Lecture Interaction	EE 1503(N).3						
9,10	Tutorial 9,10 (L22 – L29)	To acquaint students examples and numerical	Lecture Interaction	EE 1503(N).3						
30 – 34	Laplace Transform: Review, poles and zeros, stability.	To acquaint students Laplace transform	Lecture Interaction	EE 1503(N).3 EE 1503(N).4 EE 1503(N).5						
	SECOND MID TERM EXAM									
35,36	Z transform: definition, relation with Laplace transform, region of convergence, properties of z transform.	To acquaint students Z transform	Lecture Interaction	EE 1503(N).2 EE 1503(N).4 EE 1503(N).5	Assignment Class Quiz End Term					
11,12	Tutorial 11,12 (L30 – L36)	To acquaint students examples and numerical	Lecture Interaction	EE 1503(N).3 EE 1503(N).4						
37,38	Poles and zeros, stability, causality; Inverse Z transform- power series method, partial fraction method.	To acquaint students Z transform properties	Lecture Interaction	EE 1503(N).3 EE 1503(N).4						
39,40	Application of Z transform to discrete-time systems, solution of difference equations using z transform.	To acquaint students Z transform applications	Lecture Interaction	EE 1503(N).2 EE 1503(N).3 EE 1503(N).5						
13,14	Tutorial 11,12 (L37 – L40)	To acquaint students Laplace and Z transform applications	Lecture Interaction	EE 1503(N).1 EE 1503(N).2 EE 1503(N).3 EE 1503(N).5						
END TERM EXAM										

2. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT	CORRELATION WITH PROGRAM OUTCOMES							CORRELATION WITH PROGRAM SPECIFIC OUTCOMES							
		PO 1	PO 2	РО 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE 1503(N).1	Development of skill set for the classification and mathematical operation on signals and LTI system	3			2				1				1	3	1	2
EE 1503(N).2	Formulate the response of the LTI system to any input signal		3	1												2
EE 1503(N).3	Implement the transform techniques in continuous – time and discrete – time domain such as Laplace Transform, Fourier analysis and Z transform	2			3	3						2	2	3	3	3
EE 1503(N).4	Determine the stability of the CT and DT systems	1		2		1								1		2
EE 1503(N).5	Apply signals and systems in circuit theory and power systems							1	_	1			1		1	2

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Electrical Electronics and Communication Engineering

Department of Electrical Engineering Course Hand-out

Power Electronics EE 1504(N) | 4 Credits | 3 | 0 4

Session: 17.08.2020 – 20.11.2020 | Faculty: Mr. S P Singh | Class: 5th Sem. | Programme: B Tech (EE)

A. Introduction: This course is offered by Dept. of Electrical Engineering as a Core Course with the purpose to create general awareness among undergraduates about the general nature of power conditioning modules. A simplified treatment of the semiconductor devices used as switching elements in these conditioners is given in this course to start with, in terms of their operating principle and specifications. Different categories of simple generic templates of the power conditioners is presented in bottom-up approach, and then such converters are analysed for their important performance indices. A student taking this course has to have elementary appreciation of circuit analysis, semiconductor fundamentals, and engineering mathematics. This course gives an aptitude for understanding subsequent courses (Solid State Drives, HVDC, FACTS, Renewable Energy System Design, Advanced Power Converters). The most important take-away of this course is to appreciation for the importance of energy conservation and inspiration for designing energy-efficient systems using their knowledge of power electronics.

B. Course Outcomes: At the end of the course, students will be able to

[1504(N).1]. Describe the importance, relevance, interdisciplinary nature & scope of power conditioning equipment's and Interpret and illustrate the static and dynamic V-I characteristics of semiconductor devices.

[1504(N).2]. Synthesize different types of converters (AC to DC, DC to DC, AC to AC, DC to AC) for matching the load requirements, analyse the functionality of different converters.

[1504(N).3]. Analyse the effects of different types of load on the performance of the converters and modify different operating parameters to improve these performances indices and hence develop employability skills.

[1504(N).4]. Describe the methodology to improve power quality issues and recall different power conditioning techniques and judge the best way to achieve energy conversion for a particular application.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

[PO.I]. Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>,

and an engineering specialization to the solution of complex engineering problems

- **[PO.2]. Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3]. Design/development of solutions**: Design solutions for complex engineering problems and <u>design</u> <u>system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4]. Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions

- **[PO.5]. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern</u> <u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- **[PO.6].** The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal</u>, <u>health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7]. Environment and sustainability**: Understand the <u>impact of the professional engineering solutions</u> <u>in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8]. Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- **[PO.9].** Individual and team work: Function effectively as an individual, and as a <u>member or leader in diverse</u> <u>teams</u>, and in multidisciplinary settings
- **[PO.10]. Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12]. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

PROGRAM SPECIFIC OUTCOMES

- **[PSO.1].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- **[PSO.3].** Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D. Assessment Plan:

Criteria	Description	Maximum Marks					
	Sessional Exam I (Open Book)	15					
Internal Assessment	Sessional Exam II (Open Book)	15					
(Summative)	In class Quizzes and Assignments ,	30					
	Activity feedbacks (Accumulated and						
	Averaged)						
End Term Exam	End Term Exam (Open Book)	40					
(Summative)							
	Total	100					
Attendance	A minimum of 75% Attendance is required to be maintained by a student to						
(Formative)	(Formative) qualified for taking up the End Semester examination. The all						
	includes all types of leaves including medical leaves.						

Make up Assignments	Students who misses a class will have to report to the teacher about the absence.
(Formative)	A makeup assignment on the topic taught on the day of absence will be given which
	has to be submitted within a week from the date of absence. No extensions will be
	given on this. The attendance for that particular day of absence will be marked
	blank, so that the student is not accounted for absence. These assignments are
	limited to a maximum of 5 throughout the entire semester.
Homework/ Home Assignment/	There are situations where a student may have to work in home, especially before
Activity Assignment	a flipped classroom. Although these works are not graded with marks. However, a
(Formative)	student is expected to participate and perform these assignments with full zeal since
	the activity/ flipped classroom participation by a student will be assessed and marks
	will be awarded.

E. SYLLABUS

Power Semiconductor devices: SCR, Triac, GTO, BJT, Power MOSFET, IGBT – characteristics, safe operating area, device rating, base/gate drive requirements, **Converter Topologies:** Controlled Rectifiers, Single phase converters - half wave, half controlled and fully controlled bridge converters, Three-phase Converters- half controlled & fully controlled bridge, triggering sequence, operation, effect of source inductance, Line commutated inverters, Dual converters, **AC to AC converters:** Cycloconverters and AC voltage regulators, **DC – DC Converters:** Step down and step up operation, Classification of choppers, **DC – AC Converters:** Single phase and three phase bridge inverters, Square wave operation, PWM Inverters- PWM techniques, harmonics in output voltage , Multi-level inverters, Space vector modulation, **Resonant converters:** Principle of soft switching- concept of zero current switching and zero voltage switching.

F. TEXT BOOKS

- 1. D. W.Hart, Introduction to Power Electronics, PHI Learning Publications, 1997.
- 2. N. Mohan et. al., Power Electronics, Converters, Applications & Design (2e), Wiley.

G. REFERENCES

- 1. L. Umanand, Power Electronics Essentials and Applications, Wiley India Pvt. Ltd., 2014
- 2. https://onlinecourses.nptel.ac.in
H. Lecture Plan:

L/T	Topics to be	Session Objective	Mode of delivery	Correspondi	Mode of assessing the
L1-2	Course hand-out briefing	Describe the need of an undergraduate course on Power Electronics , its interdisciplinary nature power switching)electronics versus analog (linear) electronics, classification of power processors (describe the need for matching the load requirements with available electrical power supply , and discuss the classification DC to DC, DC to AC , AC to DC, and AC to AC and converters) Example Applications: SMPS, renewable energy converters, UPS, etc.	Lecture, Activity (Think Pair Share), Misconception check(is power electronics all about high power applications?),	[1504.1(N)]	Formative Assessment (Classroom Quiz)
L3	Generic controllable switching element	Enumerate desirable characteristics in controllable switches. Review	Lecture	[1504.1(N)]	Formative Assessment(Classroom Quiz)
L4	Semiconductor device fundamentals	Crisply review the fundamentals of semiconductor device carrier action.	Flipped Classroom	[1504.1(N)]	Formative Assessment (Home Assignment,)
L5-6	Semiconductor devices : Diodes	Describe the static characteristics, dynamic characteristics, classification, parameters, breakdown voltage considerations, surge current, thermal viewpoint, and circuit model of diode	Flipped Classroom	[1504.1(N)]	Formative Assessment (Home Assignment)
L7-8	Semiconductor devices : BJTs	Describe the static characteristics, dynamic characteristics, second breakdown , circuit model(Ebers-Moll model), power dissipation, safe operating areas, drive circuits	Flipped Classroom	[1504.1(N)]	Formative Assessment (Home Assignment)
L9-10	Semiconductor devices : MOSFETs	Describe static characteristics, dynamic characteristics, circuit model, safe operating areas, drive circuits	Flipped Classroom	[1504.1(N)]	Formative Assessment (Home Assignment)
L11- 12	Semiconductor devices : IGBTs	Describe the static characteristics, dynamic characteristics, latch-up,	Lecture	[1504.1(N)]	Formative Assessment (Home Assignment)

		drive circuits, comparison				
		with IGBT and MOSFET				
L13-	Semiconductor	Describe the static and	Lecture	[1504.1(N)]	Sumr	native Assessment
17	devices :	dynamic characteristics,				
	Thyristors	thyristor(two-transistor				
		model) model ,thyristor				
		ratings, snubber circuits,				
		gate-drive circuits,				
		thyristor gate				
		characteristics, thyristor				
		commutation ,thyristor				
		protection and snubber				
		circuits, series and				
		parallel operation ,other				
		members of thyristor				
		family.				
T1-2	Computational pro	blems on semiconductor de	vices for power cond	litioning		
L18-	Power	Power and Energy,	Flipped	[1504.1(N)]	Sumr	mative Assessment
19	computations :	Inductors and Capacitors,	Classroom,			
	-	Energy recovery; Effective	Misconception			
		values and parameters,	checkpoints			
		Apparent Power and				
		Power factor; Power				
		computations for				
		sinusoidal AC circuits;				
		Power computations for				
		non-sinusoidal periodic				
		waveforms – Application				
		of Fourier series				
T3-5	Problems on powe	er computations				
L20-	Half-Wave	Analyze the operating	Lecture	[1504.2(N)]	Sumr	native
L20- 22	Half-Wave rectifiers	Analyze the operating principle of uncontrolled	Lecture	[1504.2(N)]	Sumr Asse	native ssment(Class Quiz,
L20- 22	Half-Wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit	Lecture	[1504.2(N)]	Sumr Asses Sessio	native ssment(Class Quiz, onal)
L20- 22	Half-Wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE	Lecture	[1504.2(N)]	Sumr Asses Sessio	native ssment(Class Quiz, onal)
L20- 22	Half-Wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling	Lecture	[1504.2(N)]	Sumr Asses Sessi	native ssment(Class Quiz, onal)
L20- 22	Half-Wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a	Lecture	[1504.2(N)]	Sumr Asses Sessio	native ssment(Class Quiz, onal)
L20- 22	Half-Wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter,	Lecture	[1504.2(N)]	Sumr Asses Sessio	native ssment(Class Quiz, onal)
L20- 22	Half-Wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of	Lecture	[1504.2(N)]	Sumr Asse Sessi	native ssment(Class Quiz, onal)
L20- 22	Half-Wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance	Lecture	[1504.2(N)]	Sumr Asse Sessi	native ssment(Class Quiz, onal)
L20- 22	Half-Wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first	Lecture	[1504.2(N)]	Sumr Asse: Sessi	native ssment(Class Quiz, onal)
L20- 22	Half-Wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential	Lecture	[1504.2(N)]	Sumr Asse Sessi	native ssment(Class Quiz, onal)
L20- 22	Half-Wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing	Lecture	[1504.2(N)]	Sumr Asse: Sessi	native ssment(Class Quiz, onal)
L20- 22	Half-Wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing with first order circuits for	Lecture	[1504.2(N)]	Sumr Asse Sessi	native ssment(Class Quiz, onal)
L20- 22	Half-Wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing with first order circuits for solution of current.	Lecture	[1504.2(N)]	Sumr Asse Sessi	native ssment(Class Quiz, onal)
L20- 22 L23-	Half-Wave rectifiers Full wave	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing with first order circuits for solution of current. Analyze uncontrolled and	Lecture Lecture, Activity	[1504.2(N)] [1504.2(N)]	Sumr Asse Session	native ssment(Class Quiz, onal) mative Assessment
L20- 22 L23- 25	Half-Wave rectifiers Full wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing with first order circuits for solution of current. Analyze uncontrolled and controlled circuit	Lecture Lecture, Activity	[1504.2(N)] [1504.2(N)]	Sumr Asse Session	native ssment(Class Quiz, onal) native Assessment
L20- 22 L23- 25	Half-Wave rectifiers Full wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing with first order circuits for solution of current. Analyze uncontrolled and controlled circuit topologies for R, RL, RLE	Lecture Lecture, Activity	[1504.2(N)] [1504.2(N)]	Sumr Asse Session	native ssment(Class Quiz, onal) native Assessment
L20- 22 L23- 25	Half-Wave rectifiers Full wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing with first order circuits for solution of current. Analyze uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling	Lecture Lecture, Activity	[1504.2(N)] [1504.2(N)]	Sumr Asse Session	native ssment(Class Quiz, onal) mative Assessment
L20- 22 L23- 25	Half-Wave rectifiers Full wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing with first order circuits for solution of current. Analyze uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a	Lecture Lecture, Activity	[1504.2(N)] [1504.2(N)]	Sumr Asse Session	native ssment(Class Quiz, onal) native Assessment
L20- 22 L23- 25	Half-Wave rectifiers Full wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing with first order circuits for solution of current. Analyze uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter,	Lecture Lecture, Activity	[1504.2(N)] [1504.2(N)]	Sumr Asse Session	native ssment(Class Quiz, onal) mative Assessment
L20- 22 L23- 25	Half-Wave rectifiers Full wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing with first order circuits for solution of current. Analyze uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of	Lecture Lecture, Activity	[1504.2(N)] [1504.2(N)]	Sumr Asse: Session	native ssment(Class Quiz, onal) mative Assessment
L20- 22 L23- 25	Half-Wave rectifiers Full wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing with first order circuits for solution of current. Analyze uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance	Lecture Lecture, Activity	[1504.2(N)] [1504.2(N)]	Sumr Asse Session	native ssment(Class Quiz, onal) native Assessment
L20- 22 L23- 25	Half-Wave rectifiers Full wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing with first order circuits for solution of current. Analyze uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Overview of three-phase	Lecture Lecture, Activity	[1504.2(N)] [1504.2(N)]	Sumr Asses Session	native ssment(Class Quiz, onal) mative Assessment
L20- 22 L23- 25	Half-Wave rectifiers Full wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing with first order circuits for solution of current. Analyze uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Overview of three-phase rectifier and m-pulse	Lecture Lecture, Activity	[1504.2(N)] [1504.2(N)]	Sumr Asse: Session	native ssment(Class Quiz, onal) native Assessment
L20- 22 L23- 25	Half-Wave rectifiers Full wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing with first order circuits for solution of current. Analyze uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Overview of three-phase rectifier and m-pulse rectifier systems, dual	Lecture Lecture, Activity	[1504.2(N)] [1504.2(N)]	Sumr Asse: Session	native ssment(Class Quiz, onal) native Assessment
L20- 22 L23- 25	Half-Wave rectifiers Full wave rectifiers	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing with first order circuits for solution of current. Analyze uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Overview of three-phase rectifier and m-pulse rectifier systems, dual converters.	Lecture Lecture, Activity	[1504.2(N)] [1504.2(N)]	Sumr Asses Session	native ssment(Class Quiz, onal) native Assessment
L20- 22 L23- 25	Half-Wave rectifiers Full wave rectifiers Computational pro	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing with first order circuits for solution of current. Analyze uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Overview of three-phase rectifier and m-pulse rectifier systems, dual converters.	Lecture Lecture, Activity	[1504.2(N)] [1504.2(N)]	Sumr Asse: Session	native ssment(Class Quiz, onal) native Assessment
L20- 22 L23- 25 T6-8 L26	Half-Wave rectifiers Full wave rectifiers Computational pro AC voltage	Analyze the operating principle of uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Review of solving first order differential equations for dealing with first order circuits for solution of current. Analyze uncontrolled and controlled circuit topologies for R, RL, RLE load, with freewheeling diode, load with a capacitor filter, commutation, effect of source inductance Overview of three-phase rectifier and m-pulse rectifier systems, dual converters.	Lecture Lecture, Activity Lecture	[1504.2(N)] [1504.2(N)] [1504.2(N)]	Sumr Asse: Session	native ssment(Class Quiz, onal) native Assessment Summative

		AC voltage controller with			
1.27	C alexandra	R and RL load	Locturo	[4504.2/11]	Formativo
L27	Cycloconverters	Analyze the functionality	Lecture	[1504.2(N)]	Assessment
		type cycloconverter -			(Classroom)
		step up and step down			Quiz
		operations			
L28	DC-DC	Identify the need for DC-	Lecture	[1504.2(N)]	Formative
	converters: Buck	DC converters, Buck			Assessment
	converter	converter – synthesis,			(Classroom)
		analysis, issues, simplified			Quiz
120		state-space model	Lecture	[[1504.2(NI)]	Summative
LSU	COnverters: Boost	synthesis analysis issues	Misconception	[[1504.5(N)]	Assessment(CIA
	converter	simplified state-space	check(regarding		Quiz, ETE,
		model	duty cycle-boost		Sessional)
			action		
			correlation)		
L31-	DC-DC	Problems with Buck,	Lecture, Misconcoption	[1504.3(N)]	Summative Assossmont(CIA
32	Converters: Buck-	BOOST, and BUCK-BOOST	check(regarding		Quiz. ETE.
	Ćuk converter	converter and SEPIC -	duty cycle)		Sessional)
	SEPIC	analysis			,
Т9-	Computational pro	blems on DC-DC converters		I	I
11		Γ		Γ	
L33	Isolated DC-DC	Advantages of isolated	Lecture, Think	[1504.2(N)]	Summative
	converters –	converters over	Misconception		Assessment(CIA
	нураск тороюду	Elyback convertor –	checkpoint(regar		Sessional)
		design onerating	ding use of		,
		principle	transformers)		
L34	Isolated DC-DC	Forward converter,	Lecture	[1504.2(N)]	Formative
	converters –	Double ended forward			Assessment
	Forward	converters, Push pull,			
	topology	Current fed converters			
		design, operating			
135-	Resonant	Describe the concept of	Lecture	[1504.3(N)]	Summative
36	converters	soft switching in contrast			Assessment(CIA
		to hard switching; and			Quiz, ETE,
		use the concept of L-C			Sessional)
		resonance to achieve soft			
		switching in ZCS and ZVS			
		buck converter.			
T12	Computational pro	blems on resonant converte	rs Lecture		Summative
L3/- 30	DU-AU	inverter using switching		[1304.4(N)]	Assessment(CIA
35	single phase	elements: analyse the			Quiz, ETE,
	inverters	waveforms; use Fourier			Sessional)
		series analysis to identify			
		the harmonics, and			
		eliminate them using			
		PWM techniques.			
L40-	DC-AC	Synthesize multi-phase	Lecture	[1504.4(N)	Summative Assessment(CIA
42	converters :	nverters from the single			Ouiz, FTF
	inverters	analyse the three phase			Sessional)
		inverters with 120° and			,
		180° CSI and VSI using			
		Fourier series analysis			

	;demonstrate its in VVVF drives with Induction motor speed control as an illustration.	
T13- 14	Computational probler	ns on DC–AC switched mode inverters

I. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES									CORRELATION WITH PROGRAM SPECIFIC OUTCOMES				
		PO 1	PO 2	PO 3	PO ⊿	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE 1504(N).1	Describe the importance, relevance, interdisciplinary nature & scope of power conditioning equipment's and Interpret and illustrate the static and dynamic V-I characteristics of semiconductor devices.	3	1	5	7	5	2	3	3	5			1	1		5
1504(N).2	Synthesize different types of converters (AC to DC, DC to DC, AC to AC, DC to AC) for matching the load requirements, analyse the functionality of different converters.	2	3		2					1					2	3
1504(N).3	Analyse the effects of different types of load on the performance of the converters and modify different operating parameters to improve these performances indices and hence develop employability skills.		2	3		1	2				1			3	3	3
1504(N).4	Describe the methodology to improve power quality issues and recall different power conditioning techniques and judge the best way to achieve energy conversion for a particular application.			3	2			1				1	3	2	3	3

J. Course Outcome Attainment Level Matrix:

со	STATEMENT		ATTAINMENT OF PROGRAM OUTCOMES THRESHOLD VALUE: 40%									ATTAINMENT OF PROGRAM SPECIFIC				
		D O	00	D O	D O	D O	D O		D O	D O	D O	D O	00	OUTC		DCO
		PO 1	2	РО 3	РО 4	РО 5	РО 6	РО 7	90 8	9	10	PO 11	12	PSU 1	2	2 2
1504(N).1	Describe the importance,	_		-			•	-	-						_	•
	relevance,															
	interdisciplinary nature &															
	scope of power															
	conditioning equipment's															
	and Interpret and															
	illustrate the static and															
	aynamic v-i															
	semiconductor devices															
1504(NI) 2	Synthesize different															
1304(11).2	types of converters															
	(AC to DC, DC to DC,															
	AC to AC. DC to AC)															
	for matching the load															
	requirements, analyse															
	the functionality of															
	different converters.															
1504(N).3	Analyse the effects of															
	different types of load															
	the convertors and															
	modify different															
	operating parameters															
	to improve these															
	performances indices															
	and hence develop															
	employability skills.															
1504(N).4	Describe the															
	methodology to															
	improve power quality															
	issues and recall															
	conditioning															
	techniques and judge															
	the best way to achieve															
	energy conversion for a															
	particular application.															

0-No Attainment; I- Low Attainment; 2- Moderate Attainment; 3- Substantial Attainment

MANIPAL UNIVERSITY JAIPUR

School of Electrical & Electronics Engineering Department of Electrical Engineering Course Handout [Organization and Management | BB1540 | 3 Credits | Session: Aug-Dec 2020 | Faculty: Dr. Sonal Sidana | Class: B Tech V Semester|

- A. Course Introduction: Today's world consists of many local, national, multinational and global organizations. Success of all business depends on their effective and efficient management. Therefore, management plays a most powerful and crucial role in the success and survival of the whole world. The significance of the course enlightens the dynamic lifegiving element in every business. Consequently, it will emerge as a great resource as well an important 'discipline of learning' in the modern business world. The objective is to provide an understanding of basic concepts, principles and practices of organization and management. The aim is to inculcate the ability to apply multifunctional approach to organizational objectives. This course will enable students understand the basic concept of organization and management and various functions of it.
- **B.** Course Outcomes: On completion of the course the students shall be able to:
- **[BBI540.1].** Understand theory and practice of organization and management.
- [BBI 540.2]. Build a comprehensive knowledge about marketing and personnel management
- [BBI540.3]. Develop the skills of leadership and motivation.

[BBI540.4]. Illustrate the concept of entrepreneurship for developing skill for employability. **[BBI540.5].** Develop the knowledge of management information system (MIS).

C. Program Outcomes and Program Specific Outcomes

- **[PO.I]. Critical Thinking:** Take informed actions after identifying the assumptions that frame our thinking and actions, checking out the degree to which these assumptions are accurate and valid, and looking at our ideas and decisions (intellectual, organizational, and personal) from different perspectives.
- **[PO.2]. Effective Communication:** Speak, read, write and listen clearly in person and through electronic media in English and in one Indian language, and make meaning of the world by connecting people, ideas, books, media and technology.
- **[PO.3].** Social Interaction: Elicit views of others, mediate disagreements and help reach conclusions in group settings.
- **[PO.4]. Effective Citizenship:** Demonstrate empathetic social concern and equity centered national development, and the ability to act with an informed awareness of issues and participate in civic life through volunteering.

- **[PO.5]. Ethics:** Recognize different value systems including your own, understand the moral dimensions of your decisions, and accept responsibility for them.
- **[PO.6]. Environment and Sustainability:** Understand the issues of environmental contexts and sustainable development.
- **[PO.7]. Self-directed and Life-long Learning:** Acquire the ability to engage in independent and life-long learning in the broadest context socio-technological changes.
- [PSO.I]. Understanding Traditional and Contemporary Managerial Concepts and Models: Understanding in detail, the contents of various functional areas of Business & Management and the implications of psychological and behavioral aspects on the organizations.
- **[PSO.2]. Analyzing Business Environment:** Identifying opportunities existing in the domestic and global business and economic environment and initiating systematic approach towards rational decision making.
- [PSO.3]. Application of Business Concepts and Managerial Skills: Implementing conceptual knowledge in real business situations for ensuring business sustainability and growth.

Criteria	Description	Maximum Marks				
	Sessional Exam I (Closed Book)	15				
Internal Assessment	Sessional Exam II (Closed Book)	15				
(Summative)	In class Quizzes and Assignments, Activity	30				
	feedbacks (Accumulated and Averaged)					
End Term Exam	End Term Exam (Closed Book)	40				
(Summative)						
	Total	100				
Attendance	A minimum of 75% Attendance is required to b	e maintained by a student to be				
(Formative)	qualified for taking up the End Semester exam	nination. The allowance of 25%				
	includes all types of leaves including medical leaves.					
Make up	Students who misses a class will have to report to the teacher about the					
Assignments	absence. A makeup assignment on the topic ta	ught on the day of absence will				
(Formative)	be given which has to be submitted within a v	veek from the date of absence.				
	No extensions will be given on this. The atten	dance for that particular day of				
	absence will be marked blank, so that the stude	nt is not accounted for absence.				
	These assignments are limited to a maximur	m of 5 throughout the entire				
	semester.					
Homework/ Home	There are situations where a student may have	ve to work in home, especially				
Assignment/ Activity	before a flipped classroom. Although these wo	rks are not graded with marks.				
Assignment	However, a student is expected to participate	and perform these assignments				
(Formative)	with full zeal since the activity/ flipped classroom participation by a student will					
	be assessed and marks will be awarded.					

D. Assessment Plan

E. Syllabus

Unit I: Meaning and definition of an organization, Necessity of Organization, Principles of Organization, Formal and Informal Organizations. Management: Functions of Management, Levels of Management, Managerial Skills, Importance of Management, Models of Management, Scientific Management, Forms of Ownership, Organizational Structures, Purchasing and Marketing Management, Functions of Purchasing Department, Methods of Purchasing, Marketing, Functions of Marketing, Advertising.

Unit 2: Introduction, Functions of Personal Management, Development of Personal Policy, Manpower Planning, Recruitment and Selection of manpower.

Unit 3: Motivation – Introduction, Human needs, Maslow's Hierarchy of needs, Types of Motivation, Techniques of Motivation, Motivation Theories, McGregor's Theory, and Herzberg's Hygiene Maintenance Theory. Leadership - Introduction Qualities of a good Leader, Leadership Styles, Leadership Approach, Leadership Theories.

Unit 4: Entrepreneurship – Introduction, Entrepreneurship Development, Entrepreneurial Characteristics, Need for Promotion of Entrepreneurship, Steps for establishing small scale unit.

Unit 5: Data and Information; Need, function and Importance of MIS; Evolution of MIS; Organizational Structure and MIS, Computers and MIS, Classification of Information Systems, Information Support for functional areas of management.

F. Text Books

- TI. Koontz, Harold, Cyril O'Donnell, and Heinz Weihrich: Essentials of Management, Tata McGraw-Hill, New Delhi
- T2. Robbins, Stephen P, and Mary Coulter: Management, Prentice Hall, New Delhi
- T3. E. S. Buffa and R. K. Sarin "Modern Production / Operations Management", 8th Edition, Wiley, 1987

G. Reference Books

RI. H. J. Arnold and D. C. Feldman "Organizational Behavior", McGraw – Hill

R2. Aswathappa K: Human Resource and Personnnel Management, Tata McGraw Hill R3. William Wether& Keith Davis, Human Resource and Personnel Management, McGraw Hill

H. Lecture Plan

Lecture No.	PARTICULARS	Session Outcome	Mode of Delivery	Corresp onding	Mode of Assessing the
			,	со	Outcome
Ι.	Meaning and definition of an organization, Necessity of Organization	Understands the importance and concepts of organization management.	Lecture PPT , Discussion	BB1540.1	Class Quiz Mid Term I End Term
2.	Principles of Organization, Formal and Informal Organizations	Learn and understand the process and principles as well learn types of organizations	Lecture PPT, Discussion	BB1540.1	Class Quiz Mid Term I End Term
3.	Management Function: Planning & Organizing	Learn the principles of management and administration as well how they are applicable in a business Organization	Lecture PPT, Discussion	BB1540.1	Class Quiz Mid Term I End Term
4.	Management Function: Leading & Controlling	Understand the basic process of various management functions and how they are applicable in the organization	Lecture PPT, Discussion	BB1540.1	Class Quiz Mid Term I End Term
5.	Managerial Skills, Importance of Management,	Understanding of different managerial skills	Lecture PPT, Discussion	BB1540.1	Class Quiz Mid Term I End Term
6.	Activity	Understanding of previous lectures	Class activity	BB1540.1	Quiz/ Case study
7.	Models of Management: Scientific and Administrative management	Students will gain the knowledge of different Scientific and Administrative management	Lecture , Discussion	BB1540.1	Class Quiz Mid Term I End Term
8.	Models of Management: Behavioral approach	Understand the approach of behavioral management	Lecture , Discussion	BB1540.1	Class Quiz Mid Term I End Term

9.	Activity related models of management	Understanding of previous lectures	Class activity	BB1540.1	Class Quiz/ case study
10.	Forms of Ownership and Organization Structures	Understanding of Ownership and Organization Structures	Lecture, Discussion	BB1540.2	Class Quiz Mid Term I End Term
11.	Activity	Understanding of previous lectures	Class activity	BB1540.2	Class Quiz/ case study
12.	Purchasing Function and Marketing Function	Understanding of purchasing function and marketing function	Lecture PPT ,Discussio n	BB1540.2	Class Quiz Mid Term I End Term
13.	Advertising and Changing Dynamics of Advertising	Students will gain knowledge of advertising and how advertising is changing with market	Lecture PPT, Discussion	BB1540.2	Class Quiz Mid Term I End Term
14.	Activity	Understanding of previous lectures	Class activity	BB1540.2	Class Quiz/ case study
15.	Introduction, Functions of Personnel Management, Development of Personnel Policy	Understanding of human resource function and policies of personnel management	Lecture PPT, Discussion	BB1540.2	Class Quiz Mid Term II End Term
16.	Manpower Planning	Students will gain the knowledge of manpower planning	Lecture, Discussion	BB1540.2	Class Quiz Mid Term II End Term
17.	Recruitment of Manpower	Students will gain the knowledge of various steps and process of recruitment in human resource	Lecture PPT, Discussion :	BB1540.2	Class Quiz Mid Term II End Term

18.	Selection of Manpower	Students will gain the knowledge of various steps and process of selection in human resource	Lecture PPT, Discussion	BB1540.2	Mid Term II End Term
19.	Activity	Understanding of previous lectures	Class activity	BB1540.2	Class Quiz/ case study
20.	Introduction to Motivation, Human needs, Maslow's Hierarchy of needs	Understand the meaning of the motivation, human needs and the Maslow's theory of motivation Students will learn various types of motivation.	Recap of previous lecture, Lecture PPT, Discussion	BB1540.3	Class Quiz Mid Term II End Term
21.	Types and techniques of Motivation	Understand different techniques of motivation and their uses.	Lecture PPT, Discussion	BB1540.3	Class Quiz Mid Term II End Term
22.	McGregor's Theory, Herzberg's Hygiene Maintenance Theory	Students will learn the popular theories of motivation.	Lecture PPT, Discussion	BB1540.3	Class Quiz Mid Term II End Term
23.	Activity	Understanding of previous lectures	Class activity	BB1540.3	Class Quiz/ case study
24.	Leadership - Introduction Qualities of a good Leader, Leadership Styles	Students will learn different approaches of leadership.	Lecture PPT, Discussion	BB1540.3	Class Quiz Mid Term II End Term
25.	Leadership Theories	Understand different theories of leadership	Lecture PPT, Discussion	BB1540.3	Class Quiz Mid Term II End Term
26.	Leadership Theories	Understand different theories of leadership	Class Activity, PPT	BB1540.3	Class Quiz Mid Term II End Term

27.	Activity	Understanding of previous lectures	Class activity	BB1540.3	Class Quiz/ case study
28.	Entrepreneurship – Introduction, Entrepreneurship Development	Students will learn about entrepreneurship and its development.	Lecture PPT, Discussion	BB1540.4	Class Quiz Mid Term II End Term
29.	Entrepreneurial Characteristics, Need for Promotion of Entrepreneurship	Understand the characteristics and need for promoting entrepreneurship unit.	Lecture, Discussion	BB1540.4	Class Quiz Mid Term II End Term
30.	Steps for establishing small scale unit	Analyze the various steps involved in establishing small scale.	Lecture PPT, Discussion	BB1540.4	Class Quiz Mid Term II End Term
31.	Activity	Understanding of previous lectures.	Class activity	BB1540.4	Class Quiz/ case study
32.	Data and Information; Need and Importance of MIS	Understand the difference between data and information and the importance of managerial information system in an organization.	Lecture, Discussion	BB1540.5	Class Quiz End Term
33.	Functions of MIS and Evolution of MIS	Understand different phases related to evolution of MIS.	Lecture PPT, Discussion	BB1540.5	Class Quiz End Term
34.	Activity	Understanding of previous lectures	Class activity	BB1540.5	Class Quiz/ case study
35.	Organizational Structure and MIS	Understand the use of managerial information system in organizational structure. Student will learn about management information system.	Lecture PPT, Discussion	BB1540.5	Class Quiz End Term

36.	Activity	Analyze the close ended case	Case study	BB1540.5	Case study
	Activity	management.			anarysis
37.		Understand the basic	Lecture	BB1540.5	Class Quiz
	Computers and MIS	requirement of management	PPT,		End Term
		and computers in business	Discussion		
38.	Classification of Information	Learn the importance of	Lecture	BB1540.5	Class Quiz
	Systems and Information	Control and it is the fourth	PPT,		End Term
	Support for functional areas of	and final principle element of	Discussion		
	management	the managerial process.			
39.	Classification of Information	Lear the controlling that	Lecture	BB1540.5	Class Quiz
	Systems and Information	intends to ensure that	PPT,		End Term
	Support for functional areas of	everything occurs in	Discussion		
	management	conformity with the plans			

I. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT	CORRELATION WITH PROGRAM OUTCOMES CORRELATION W PROGRAM SPEC OUTCOMES							ON WITH PECIFIC MES		
		PO I	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO I	PSO 2	PSO 3
BB 1540.1	Understand theory and practice of organization and management	2							2		2
BB 1540.2	Build a comprehensive knowledge about marketing and personnel management		I	2						I	
BB 1540.3	Develop the skills of leadership and motivation.		2	2		2			2		
BB 1540.4	Illustrate the concept of entrepreneurship.	2			I		Ι		1		
BB 1540.5	Develop the knowledge of management information system.							I			2

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronics and Communication Engineering

Department of Electrical Engineering Course Hand-out

Microprocessor & Microcontroller | EE 1601N | 4 Credits | 3 1 0 4

Session: JAN2021 – MAY2021 | Faculty: Abhishek Kumar | Class: VI Sem B Tech (EE)

A. Introduction: This course is offered by Dept. of Electrical Engineering as a core course, targeting students who wish to work in the area of embedded systems and automation. This course provides an understanding about the concepts and basic architecture of 8051,8085 and 8086, an overview of difference between microprocessor and micro controller, background knowledge and core expertise in microcontroller, study the architecture and addressing modes of 8051,8085 and 8086, knowledge about assembly language programs of 8051, knowledge of different types of external interfaces including LEDS, LCD, Keypad Matrix, Switches & Seven segment display, motors etc. The course also build up the basic understanding of the importance of different peripheral devices & their interfacing to 8051 and give an overview of recent growth and trends of controllers & processors.

B. Course Outcomes: At the end of the course, students will be able to

[EE1601(N).1] Acquire the knowledge of Microcontroller types and variants, its features, specifications and architecture. (Bloom's Level: Cognitive level Knowledge).

[EE1601(N).2] Acquire the knowledge of Microprocessor types and variants, its features, specifications and architecture. (Bloom's Level: Cognitive level Knowledge).

[EE1601(N).3] Simulate, Analyze and develop Microcontroller 8051 based programs using assembly language and high level language ('C') in simulation software like Keil. (Bloom's Level: Cognitive level Analysis, Synthesis).

[EE1601(N).4] Analyze and simulate the working of on-chip features of 8051 like timers, interrupts of 8051. (Bloom's Level: Cognitive level Analysis).

[EE1601(N).5] Design, analyze and simulate circuits to interface stepper motor and LCD to 8051 microcontroller Kit. (Bloom's Level: Cognitive level Synthesis, Analysis).

[EE1601(N).6] Ability to analyze a problem and formulate appropriate computing solution for microcontroller and microprocessor based applications and hence enhancing skill development in the area. (Bloom's Level: Cognitive level Analysis, Synthesis, Evaluation).

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

[PO.1]. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering problems.

- **[PO.2]. Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3]. Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4]. Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments</u>, <u>analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- **[PO.5]. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual</u> <u>knowledge to</u> <u>assess societal</u>, <u>health</u>, <u>safety</u>, <u>legal</u>, <u>and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. Environment and sustainability: Understand the <u>impact of the professional</u> <u>engineering solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8]. Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- **[PO.9]. Individual and team work**: Function effectively as an individual, and as a <u>member</u> or <u>leader in diverse teams</u>, and in multidisciplinary settings
- **[PO.10]. Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.11]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12]. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change.
- **[PSO.1].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmentally friendly and feasible solutions.

[PSO.3]. Develop, investigate, and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D. Assessment Plan:

Criteria	Description	Maximum Marks
	Sessional Exam I (Close Book)	15

Internal Assessment	Sessional Exam II (Close Book)	15						
(Summative)	In class Quizzes and	30						
	Assignments , Activity feedbacks							
	(Accumulated and Averaged)							
End Term Exam	End Term Exam (Close Book)	40						
(Summative)								
	Total	100						
Attendance	A minimum of 75% Attendance is	s required to be maintained by a						
(Formative)	student to be qualified for taking	g up the End Semester						
	examination. The allowance of 2	25% includes all types of leaves						
	including medical leaves.							
Make up Assignments	Students who misses a class will have to report to the teacher							
(Formative)	about the absence. A makeup as	ssignment on the topic taught on						
	the day of absence will be given	which has to be submitted within						
	a week from the date of absence	. No extensions will be given on						
	this. The attendance for that pa	rticular day of absence will be						
	marked blank, so that the studer	nt is not accounted for absence.						
	These assignments are limited to	a maximum of 5 throughout the						
	entire semester.							
Homework/ Home Assignment/	There are situations where a stu	dent may have to work in home,						
Activity Assignment	especially before a flipped class	room. Although these works are						
(Formative)	not graded with marks. Howeve	er, a student is expected to						
	participate and perform these ass	signments with full zeal since the						
	activity/ flipped classroom partie	cipation by a student will be						
	assessed and marks will be aw	arded.						

E. SYLLABUS

Introduction: Evolution of microprocessors and microcontrollers, memory devices, number system, architecture, interrupts instruction set and assembly language programming of **8085** microprocessor. **8086** Microprocessor: Pin assignments, minimum and maximum mode, architecture, addressing modes, interrupts, instruction format, instruction set and assembly language programming, introduction to 8087 math coprocessor. **Peripheral Devices and Their Interfacing:** Introduction, memory and I/O interfacing, data transfer schemes, programmable peripheral interface (8255), programmable DMA controller (8257, 8237A), programmable interrupt controller (8259), programmable communication interface (8251), programmable counter/interval timer (8253 and 8254), elements and circuits for interfacing, Microcontrollers: Architecture, instruction set and assembly language programming of 8051 microcontroller, introduction to 8031/8052 microcontroller. Applications: Measurement and control of electrical and physical quantities, case studies.

F. TEXT BOOKS

T1. M.A. Mazidi and G. Mazidi, The 8051 microcontroller & Embedded Systems using Assembly & **'**C**'**, Pearson, 2011

T2. Rajkamal, Microcontrollers, Architecture, Programming, Interfacing & System Design, Pearson, 2005

T3. Ramesh S. Gaonkar, *Microprocessor architecture, programming, and applications with the 8085 (5e)*, Prentice Hall, 2002.

G. REFERENCE BOOKS

R1. K.J. Ayala, The 8051 Microcontroller & Embedded Systems using Assembly & 'C', Cengage, 2009

R2. Predko, Programming & Customizing the 8051 Microcontroller, Tata McGraw Hill

R3. Ray A.K. and Bhurchandi K.M., *Advanced Microprocessors and Peripherals (2e)*, Mc Graw Hill Education, 2009.

H. Lecture Plan:

Lec No	Topics	Session Objective	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
1	Revision : Introduction of number system, Digital system, Adder, MUX, DeMUX, Decoder, Encoder	Recall of concepts of digital electronics	Lecture	[1601N.1].	
2	Memory : Flip flop, Register, Definitions of Bit, nibble, byte, word, Memory Organization, Memory size & address line, data lines	Recall of concepts of digital electronics and memory managements	Lecture	[1601N.2].	Class Quiz
3	Introduction of Keil Software, Creating the new project, Create, translate, build and debug of Assembly program	Introduce the concepts of simulation software and its features	Lecture, Hands on Practice Session	[1601N.1].	Home Assignment Software based executions
4	Computer system: Organization, Block diagram; Introduction of Embedded system, History of ICs, Difference b/w Microprocessor & Microcontroller	Introduce the basic computer systems and its components	Lecture	[1601N.2].	
5	Introduction of Microcontroller 8051,8085 microprocessor, Various flavors of uC 8051: 8031, 8052, features & specification	Introduce the Microcontroller 8051 and its various variant	Lecture	[1601N.2].	
6	Assembly programing, Working of CPU, Various blocks available in 8051: CPU registers, register bank, SFRs	Introduce the assembly programming concepts and its functioning	Lecture, Hands on Practice Session	[1601N.2].	
7	8051 blocks: Internal registers, Program Counter, Instruction Decoder and their role and	Describe the execution functional blocks of Mc 8051	Lecture, Hands on Practice Session	[1601N.2].	
8	8051 Memory, ROM addressing, RAM architectures: , Various special function registers, Register bank & their selections, bit addressable area, Scratch Pad RAM	Describe the Memory architecture of Mc 8051	Lecture	[1601N.2].	
9	Memory: ROM, PROM, UVPROM, EEPROM, Flash memory: Descriptions and Role in Computer system	Describe various types of Memory units	Lecture	[1601N.2].	
10	PSW & its bits, Concept of Carry, Auxiliary Carry, Parity & examples	Introduce the functioning of PSW register	Lecture, Practice Session	[1601N.2].	
11	Concept of Overflow, Signed & unsigned Number presentation, Concept of overflow in signed operations.	Introduce the signed and unsigned operations and the concept of overflow.	Lecture, Practice Session	[1601N.2].	
12	Architecture of 8051 : Diagram, Description	Describe the architecture of Mc 8051	Lecture	[1601N.1].	Home Assignment
13	Pin Diagram of 8051: Discussion on Pins & Signals (1): Supply Pins, Oscillator Pins, Pull up registers, Port PO,	Describe the Pin Diagram of Mc 8051 and its signal functioning	Lecture	[1601N.3].	MID TERM 1 END TERM

	P1, P2 & P3, their specifications, functions and uses				
14	Pin Diagram of 8051: Discussion on Pins & Signals (2): Reset Pin, Special function pins: ALE, PSEN, EA/VPP	Describe the Pin Diagram of Mc 8051 and its signal functioning	Lecture	[1601N.3].	
15	Reset Operations in 8051, Power on status of 8051,	Describe the Pin Diagram of Mc 8051	Lecture, Practice	[1601N.3].	
	Address data De-multiplexing and external memory interface	and RESET signal functioning	Session		
16	Instructions: Definitions, general format, Classification:	Describe the various classifications of	Lecture	[1601N.3].	
	(Bit wise & Byte wise), (1 Byte, 2 bytes & 3 Bytes Instructions)	assembly language instructions			
17	Process flow chart of program execution, Concept of	Describe the systematic execution of	Lecture	[1601N.3].	
	list file, absolute file & OH file, Hex file, Assembler	assembly language instruction			
18	Addressing Mode: Definition, Types, explanation of each types with examples	Introduce the Addressing Modes and its types	Practice Session, Activities	[1601N.3].	
19	Instructions (1): Data transfer operations (inside the	Explain the utilisation of instructions in	Lecture, Practice	[1601N.3].	
	RAM): MOV , XCH and XCHD ; formats, explanation,	various applications	Session		
	specifications and Assembly Programs				
20	Instructions (2): Data transfer operations (From	Explain the utilisation of instructions in	Lecture, Practice	[1601N.3].	Home Assignment Class Quiz
	internal ROM to RAM): MOVC ; formats, explanation, specifications and Assembly Programs	various applications	Session		MID TERM 1 END TERM
21	Instructions (3): Data transfer instructions((B/w	Explain the utilisation of instructions in	Practice Session,	[1601N.3].	
	external Memory & RAM): MOVX ; formats,	various applications	Activities		
	explanation, specifications and Assembly Programs				
22	Instructions (4): Arithmetic operations: ADD, ADDC,	Explain the utilisation of instructions in	Lecture, Practice	[1601N.3].	
	Assembly Programs	various applications	Session		
23	Instructions (5): Arithmetic operations: SLIBB MUL	Explain the utilisation of instructions in	Lecture Practice	[1601N 3]	
20	DIV. DA : formats. explanation. specifications and	various applications	Session	[100114.5].	
	Assembly Programs, BCD operations				
24	Instructions (6): Logical operations: ANL, ORL, XRL,	Explain the utilisation of instructions in	Practice Session,	[1601N.4].	
	CLR, CPL : formats, explanation, specifications and	various applications	Activities		
	Assembly Programs				
25	Instructions (7): Rotate Operations: RR, RRC, RL, RLC :	Explain the utilisation of instructions in	Lecture, Practice	[1601N.4].	
	formats, explanation, specifications and Assembly	various applications	Session		Home Assignment
	Programs; Stepper motor Programming			[1001:1]	MID TERM 2
26	Instructions (8): Boolean Manipulation operation: CLR,	Explain the utilisation of instructions in	Lecture, Practice	[1601N.4].	END TERM

						-
	SETB, CPL, ANL, ORL : formats, explanation,	various applications	Session			
	specifications and Assembly Programs					
27	Instructions (9): Conditional Branching operation:	Explain the utilisation of instructions in	Practice	Session,	[1601N.4].	
	DJNZ, CJNE : formats, explanation, specifications and	various applications	Activities			
	Assembly Programs, Concept of Looping and Pointers					
28	Instructions (10): Conditional Branching operation: JZ,	Explain the utilisation of instructions in	Lecture,	Practice	[1601N.4].	
	JNZ, JC, JNC : formats, explanation, specifications and	various applications	Session			
	Assembly Programs, Concept of Looping and Pointers					
29	Instructions (11): Unconditional Branching operation:	Explain the utilisation of instructions in	Practice	Session,	[1601N.4].	-
	SJMP, LJMP, AJMP: formats, size, range, explanation,	various applications	Activities			
	Hex code Calculations and Assembly Programs,					
	Concept & calculation of relative address, absolute					
	address.					
30	Instructions (12): Unconditional Branching operation:	Explain the utilisation of instructions in	Lecture,	Practice	[1601N.4].	-
	ACALL, LCALL, RET: formats, size, range, explanation,	various applications	Session			
	Hex code Calculations and Assembly Programs, Role of					
	stack in calling instructions					
31	Time delay calculation, Generation using 8051	Explain the utilisation of instructions for	Lecture,	Practice	[1601N.4].	-
	instructions, Programming using 8051 instructions	delay generations	Session			
32	8051 timers: Introductions, Timer Registers, TMOD &	Introduce the Timer registers and Timer	Practice	Session,	[1601N.4].	-
	TCON Registers: Presentations and explanations	control registers of Microcontroller	Activities			
33	8051, 8085 Timers, Programming timers, timer modes	Explain the Timer Modes of Timer and	Lecture,	Practice	[1601N.4].	-
	: Mode 0 and Mode 1 Programming for particular	its utilisations	Session			
	delay generations					
34	8051, 8085 Timers, Programming timers, timer modes	Explain the Timer Modes of Timer and	Lecture,	Practice	[1601N.4].	-
	: Mode 2 (split timer mode)Programming for delay	its utilisations	Session			
	generations					
35	Counter programming. Programming using 8051	Explain the Counter Modes of Timer	Practice	Session.	[1601N.5].	-
	instructions, parallel I/O ports of 8051. Alternate	and its utilisations	Activities	,		
	functions					
36	Pull un registers Interrunts: Interrunts versus polling	Introduce the concept of Interrupt in	Lecture	Practice	[1601N 5]	-
	Interrupt service routine. Interrupts of 8051	Microcontroller	Session	1 100100	[100110.5].	
37	Enabling/Disabling interrupts IF Register and IP	Explain the use of Interrupt in	Lecture	Practice	[1601N 5]	4
51	Register: Presentations explanations and uses	Microcontroller	Session		[100110.5].	Home Assignment
38	Interrupt Programming: timer interrupts T0 and T1:	Explain the use of Interrupt in	Lecture	Practico	[1601N 5]	Class Quiz
50	nrogramming and application Programs	Microcontroller	Session		[10010.3].	MID TERM 2
						END TERM

39	Interrupt Programming: External Hardware interrupts	Explain the use of Interrupt in	Lecture, Practice	[1601N.5].	
40	LCD Interfacing with 8051: LCD Basics, Pin descriptions, Command Code, Busy flag concept, Programming	Explain the use of LCD and its interface with Microcontroller	Practice Session, Activities	[1601N.4].	
41	LCD Interfacing with 8051 (2): Busy flag concept, LCD Read concept, Application Programs	Explain the use of LCD and its interface with Microcontroller and hence enhancing skill development in the area.	Lecture, Practice Session	[1601N.5]. [1601N.6].	
42	Stepper motor Interfacing with 8051: Stepper motor Basics, Pin descriptions, Rotate sequence, Programming, Speed Control using delay	Explain the use of Stepper Motor and its interface with Microcontroller and hence enhancing skill development in the area.	Lecture, Practice Session	[1601N.5]. [1601N.6].	Home Assignment Class Quiz MID TERM 2 END TERM
43	8085 microprocessor pin diagram and architecture	Explain the use of microprocessor	Practice Session, Activities	[1601N.2].	
44	8085 addressing modes with instructions	Explain the use of 8085 addressing modes	Lecture, Practice Session	[1601N.2].	
45	8086 microprocessor pin diagram and architecture	Explain the fundamentals of 8086	Lecture, Practice Session	[1601N.2].	
46	8086 addressing modes with instructions	Explain the use of addressing modes of 8086	Practice Session, Activities	[1601N.2].	
47	Assembly versus high level programming, Introduction to embedded programming in C/C++, Example programs.	Introduce the high level language like C for Microcontroller 8051 environment	Lecture, Practice Session	[1601N.3].	
48	programming 8051 in C/C++, External memory interfacing	Explain the external memory interface with Microcontroller	Lecture, Practice Session	[1601N.3].	
49	programmable DMA controller (8257, 8237A), programmable interrupt controller (8259)	Explain interface with Microprocessors and hence enhancing skill development in the area.	Lecture	[1601N.2]. [1601N.6].	
50	programmable communication interface (8251), programmable counter/interval timer (8253 and 8254)	Explain interface with Microprocessors and hence enhancing skill development in the area.	Lecture, flipped Classroom	[1601N.2]. [1601N.6].	Home Assignment Class Quiz END TERM

			CORRELATION WITH PROGRAM OUTCOMES							CORRELATION WITH						
со	STATEMENT										PROGRAM SPECIFIC OUTCOMES					
		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO 1	PSO 2	PSO 3
		1	2	3	4	5	6	7	8	9	10	11	12			
EE	Acquire the knowledge of Microcontroller	2			3								2	2		
1601N.1	types and variants, its features, specifications															
	and architecture															
EE	Acquire the knowledge of Microprocessor	2												3	2	1
1601N.2	types and variants, its features, specifications															
	and architecture															
EE	Simulate, Analyze and develop Microcontroller	2	2	1	2	1							1		3	2
1601N.3	8051 based programs using assembly language															
	and high level language ('C') in simulation															
	software like Keil.															
EE	Analyze and simulate the working of on-chip	2	2	1	2	1							1		3	2
1601N.4	features of 8051 like timers, interrupts of 8051.															
EE	Design, analyze and simulate circuits to	2	2	2	2	1							1		3	2
1601N.5	interface stepper motor and LCD to 8051															
	microcontroller Kit.															
EE	Ability to analyze a problem and formulate	2	3	3	2	2	2	1					2	2	2	3
1601N.6	appropriate computing solution for															
	microcontroller and microprocessor based															
	applicationsandhenceenhancingskill															
	development in the area.															

I. Course Articulation Matrix: (Mapping of COs with POs)

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronics and Communication Engineering

Department of Electrical Engineering Course Hand-out

Power System Analysis| EE 1602 (N) | 4 Credits | 3 1 0 4

Session: Jan 2021 – May 2021 | Faculty: Dr. Amit Saraswat | Class: VI Semester, B.Tech. (EE)

- A. Introduction: The course is offered by Department of Electrical Engineering as a Regular Course, targeting all the students of VI Semester, B.Tech. (EE). It is one of the foundation courses in the domain of Power System. The main objective of the course is to develop an attitude and aptitude, in the undergraduate students of Electrical Engineering, to solve complex power system problems. The course offers an in-depth understanding of mathematical modelling of various basic power system components (i.e. Generators, Transformers, Transmission Lines and Electrical Loads) and basic power system analysis concepts such as: Symmetrical and Unsymmetrical Fault Analysis (Short-Circuit Analysis), Load Flow Analysis, and Power System Stability Analysis. Students are expected to have prerequisite knowledge of engineering mathematics, electrical circuit analysis and electrical machines.
- **B. Course Outcomes:** Upon successful completion of the course, the student will be able to:
 - [EE1602N.1] Develop the appropriate mathematical representation i.e. one-line diagram and its per-phase per-unit impedance (or reactance) diagram for a given power system.
 - [EE1602N.2] Analyze the behaviour of synchronous machines in the small power system under symmetrical fault condition (i.e. 3-phase short circuit condition).
 - [EE1602N.3] Draw the positive, negative and zero sequence diagrams for the given small power system and analyze its behaviour under different unsymmetrical fault conditions (i.e. L-G, L-L and L-L-G faults).
 - [EE1602N.4] Develop the appropriate mathematical model and analyze the real power angle stability of the given small power system.
 - [EE1602N.5] Evaluate bus admittance matrix (i.e. Y_{BUS}), formulate the load flow problem and carryout load flow analysis for the given small power systems.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1] Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- [PO.2] Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- [PO.3] Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- [PO.4] Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- [PO.5] Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

- [PO.6] The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- [PO.7] Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- [PO.8] Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices.
- [PO.9] Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- [PO.10] Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- [PO.11] Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- [PO.12] Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- [PSO.1] To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- [PSO.2] To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- [PSO.3] Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

Criteria	Description	Maximum Marks					
	Sessional Exam I (Closed Book)	15					
Internal Assessment	Sessional Exam II (Closed Book)	15					
(Summative)	In class Quizzes and Assignments	30					
	(Accumulated and Averaged)						
End Term Exam	End Term Exam (Closed Book)	40					
(Summative)							
	Total	100					
Attendance	A minimum of 75% Attendance is required to be maintained by a student to be						
(Formative)	qualified for taking up the End Sem	nester examination. The allowance of 25%					
	includes all types of leaves including	medical leaves.					
Make up	Students who miss a class will have t	o report to the teacher about the absence. A					
Assignments	makeup assignment on the topic taugh	nt on the day of absence will be given which					
(Formative)	has to be submitted within a week from	m the date of absence. No extensions will be					
	given on this. The attendance for that particular day of absence will be marked						
	blank, so that the student is not accounted for absence. These assignments are						
	limited to a maximum of 5 throughout	t the entire semester.					

D. Assessment Plan

EE 1602 (N) POWER SYSTEM ANALYSIS [3 1 0 4]

Representation of power systems: One line diagram, impedance diagram, per unit notations, selection and change of base quantities, Thevenin's model, equivalent circuit of three-winding transformers. **Symmetrical three-phase faults:** Short circuit current and reactance of synchronous machines, short-circuit current calculations of unloaded and loaded generators and power systems, selection of circuit breakers, current limiting reactors. **Asymmetrical faults:** Symmetrical components, Sequence components of line and phase voltages and currents of star-delta transformer banks, sequence impedances and sequence networks of power systems, analysis of unsymmetrical faults in generators and power systems under no-load and loaded conditions, faults through impedances. **Stability studies:** Steady-state and transient-state stability, swing equation, critical clearing time, Multi machine stability. **Load flow studies:** Admittance & impedance model for power systems & network calculations Load flow studies. Load flow solution techniques using Gauss-Siedel method, Newton-Raphson's method.

F. TEXT BOOKS

[T1] I. J. Nagrath & D. P. Kothari, *Modern Power System Analysis (2e)*, Tata Mc-Graw Hill, 2008.

[T2] T. K. Nagsarkar and M. S. Sukhija, Power system Analysis (1e), Oxford University Press, 2007.

G. **REFERENCE BOOKS**

[R1] J. J. Grainger and W. D. Stevenson, Elements of Power System Analysis (4e), Tata McGraw Hill, 2003.

- [R2] H. Saadat, *Power System Analysis*, MGH Publications, 1999.
- [R3] C. L. Wadhwa, *Electrical Power Systems (6e)*, New Age International Private Limited, 2010.

EE 1602 (N): Power System Analysis (PSA)

Lecture / Tutorial No.	Topic to be covered	Session Objectives	Mode of Delivery	Corresponding Course Outcome	Mode of Assessing the Outcome
L1	Preamble of the Course: Discussion on Course Contents (Syllabus), Course Prerequisites, Course Objectives and Outcomes.	To acquaint students with the outcome-based education (OBE) and Course outcomes (COs) and program outcomes (POs) assessment process	Lecture & Interaction	N.A.	N.A.
L2-L3	Brief Introduction to Power System Analysis	Structure of a typical power system, Basic components, Operational and Control Issues.	Lecture & Interaction	EE1602N.1	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L4-L5	RepresentationofPowerSystem:One-linediagram,Impedance and Reactancediagram	One-line diagram, Impedance and Reactance diagram	Lecture & Interaction	EE1602N.1	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L6-L7	Per-Unit Representation: Per unit notations, selection and change of base quantities	Per unit notations, selection and change of base quantities	Lecture & Interaction	EE1602N.1	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L8-L9	Per-Unit Representation: Equivalent circuit of three- winding transformers.	Equivalent circuit of three- winding transformers.	Lecture & Interaction	EE1602N.1	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L10	Thevenin'smodel:Representation and its significancein power system analysis	Representation and its significance in power system analysis	Lecture & Interaction	EE1602N.1	Quiz Test / Mid Term Exam / End Term Exam

T1-T2	Problems and Numerical Examples	Numerical problems based on $L1 - L10$	Tutorial & Interaction / Group Discussion	EE1602N.1	Mid Term Exam / End Term Exam
L11	Brief Introduction to Fault (Short-circuit) Analysis	Classification and Types of faults in power system, Purpose of short-circuit (fault) analysis	Lecture & Interaction	EE1602N.2	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L12-L13	Symmetrical three-phase faults: Transients on transmission lines, Short Circuit Capacity (SCC)	Transients on transmission lines, Short Circuit Capacity (SCC)	Lecture & Interaction	EE1602N.2	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L14-L15	Symmetrical three-phase faults: Short circuit current and reactance of synchronous machines on No- load condition	Short circuit current and reactance of synchronous machines on No-load condition	Lecture & Interaction	EE1602N.2	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
Т3-Т4	Problems and Numerical Examples	ProblemsandNumericalNumerical problems based onExamplesL11 – L15		EE1602N.2	Mid Term Exam / End Term Exam
L16	Symmetrical three-phase faults: Short circuit current and reactance of synchronous machines under Loaded condition	Short circuit current and reactance of synchronous machines under Loaded condition	Lecture & Interaction	EE1602N.2	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
Т5	Problems and Numerical Examples	Numerical problems based on L16	Tutorial & Interaction / Group Discussion	EE1602N.2	Mid Term Exam / End Term Exam
L17	Symmetrical three-phase faults: Computation of short-circuit current using Thevenin's Theorem in No-load and loaded conditions	Computation of short-circuit current using Thevenin's Theorem in No-load and loaded conditions	Lecture & Interaction	EE1602N.2	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
Т6	Problems and Numerical Examples	Numerical problems based on L17	Tutorial & Interaction / Group Discussion	EE1602N.2	Mid Term Exam / End Term Exam

L18-T19	Symmetrical three-phase faults: Selection of circuit breakers, current limiting reactors-types and locations	Selection of circuit breakers, current limiting reactors-types and locations	Lecture & Interaction	EE1602N.2	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
Τ7	Problems and Numerical Examples	Numerical problems based on L18-L19	Tutorial & Interaction / Group Discussion	EE1602N.2	Mid Term Exam / End Term Exam
L20	SymmetricalComponents:Definition,ConceptandRepresentationofunbalancedpower systems	Definition, Concept and Representation of unbalanced power systems	Lecture & Interaction	EE1602N.3	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L21-L22	Asymmetrical three-phase faults: Sequence components of line and phase voltages and currents of star-delta transformer banks	Sequence components of line and phase voltages and currents of star-delta transformer banks	Lecture & Interaction	EE1602N.3	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L23-L24	Asymmetricalthree-phasefaults:Sequence impedances andsequencenetworksofpowersystemcomponentssuchsystemcomponentssuchasTransmissionlines,transformersandsynchronousmachines	Sequence impedances and sequence networks of power system components such as Transmission lines, transformers and synchronous machines	Lecture & Interaction	EE1602N.3	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
Т8	Problems and Numerical Examples	Numerical problems based on L20 – L24	Tutorial & Interaction / Group Discussion	EE1602N.3	Mid Term Exam / End Term Exam
L25-L26	Analysis of Unsymmetrical Faults: Single Line-to-Ground (L-G) fault, Line-to-Line (L-L) faults and Double Line to Ground (L-L-G) fault in no-load and loaded conditions, faults through impedances.	Single Line-to-Ground (L-G) fault, Line-to-Line (L-L) faults and Double Line to Ground (L- L-G) fault in no-load and loaded conditions, faults through impedances.	Lecture & Interaction	EE1602N.3	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
T9-T10	Problems and Numerical Numerical problems based on Examples L25 – L26		Tutorial & Interaction / Group Discussion	EE1602N.3	Mid Term Exam / End Term Exam

L27-L28	Stabilitystudies:BriefIntroduction,Concept of RotorAnglestability,Dynamics ofsynchronousmachine	Brief Introduction, Concept of Rotor Angle stability, Dynamics of synchronous machine	Lecture & Interaction	EE1602N.4	Quiz Test / Mid Term Exam / End Term Exam
L29-L30	Stability studies: Swing Equation, Power Angle Equation and Power Angle Curve	Swing Equation, Power Angle Equation and Power Angle Curv	Lecture & Interaction	EE1602N.4	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L31	Stabilitystudies:Simpleexamplesofsinglemachineconnected to infinite busand twomachine system	Simple examples of single machine connected to infinite bus and two machine system	Lecture & Interaction	EE1602N.4	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
T11	Problems and Numerical Examples	Numerical problems based on L27 – L30	Tutorial & Interaction / Group Discussion	EE1602N.4	Mid Term Exam / End Term Exam
L32-L33	Stability studies: Definitions and Concept of Steady-state stability and Transient-state stability, Critical Clearing Time	Definitions and Concept of Steady-state stability and Transient-state stability, Critical Clearing Time	Lecture & Interaction	EE1602N.4	Quiz Test / Mid Term Exam / End Term Exam
L34-L35	Stability studies: Equal Area Criterion for Transient-state stability	Equal Area Criterion for Transient-state stability	Lecture & Interaction	EE1602N.4	Quiz Test / Mid Term Exam / End Term Exam
L36-L37	Mathematical Modelling of Power System	Admittance (Y_{BUS}) & impedance (Z_{BUS}) models representations for power systems & networks	Lecture & Interaction	EE1602N.5	Quiz Test / Mid Term Exam / End Term Exam
T12	Problems and Numerical Examples	Numerical problems based on L31 – L37	Tutorial & Interaction / Group Discussion	EE1602N.5	Mid Term Exam / End Term Exam
L38-L39	Load Flow Studies: Types of Power system Buses - PQ, PV and Slack Buses, Bus Mismatch, Mathematical Formulation of Load Flow Problem	Types of Power system Buses - PQ, PV and Slack Buses, Bus Mismatch, Mathematical Formulation of Load Flow Problem	Lecture & Interaction	EE1602N.5	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam

L40-L41	Load Flow Solution Techniques: Gauss-Siedel method	Gauss-Siedel method	Lecture & Interaction	EE1602N.5	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam			
T13	Problems and Numerical Examples	Numerical problems based on L38 – L41	Tutorial & Interaction / Group Discussion	EE1602N.5	Mid Term Exam / End Term Exam			
L42-L43	Load Flow Solution Techniques: Newton-Raphson's method	Newton-Raphson's method	Lecture & Interaction	EE1602N.5	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam			
T14	Problems and Numerical Examples	Numerical problems based on L42–L43	Tutorial & Interaction / Group Discussion	EE1602N.5	Mid Term Exam / End Term Exam			

I. Course Articulation Matrix: (Mapping of COs with POs)

CO No.	CO STATEMENT	CORRELATION WITH PROGRAM OUTCOMES											CORRELATION WITH PROGRAM SPECIFIC OUTCOMES			
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE1602N.1	Develop the appropriate mathematical representation i.e. one line diagram and its per-phase per-unit impedance (or reactance) diagram for a given power system.	3	2		2						10	11	1	2	1	1
EE1602N.2	Analyze the behaviour of synchronous machines in the small power system under symmetrical fault condition (i.e. 3-phase short circuit condition).	3	2		2								1	2	1	1
EE1602N.3	Draw the positive, negative and zero sequence diagrams for the given small power system and analyze its behaviour under different unsymmetrical fault conditions (i.e. L- G, L-L and L-L-G faults).	3	2		2									2	1	1
EE1602N.4	Develop the appropriate mathematical model and analyze the real power - angle stability of the given small power system.	3	2		2									2	1	1
EE1602N.5	Evaluate bus admittance matrix (i.e. Y_{BUS}), formulate the load flow problem and carryout load flow analysis for the given small power systems.	3	2		2									2	2	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

J. Course Outcome Attainment Level Matrix:

СО	STATEMENT	ATTAINMENT OF PROGRAM OUTCOMES THRESHOLD VALUE: 40%													ATTAINMENT OF PROGRAM SPECIFIC OUTCOMES				
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3			
EE1602N.1	Develop the appropriate mathematical representation i.e. one line diagram and its per-phase per-unit impedance (or reactance) diagram for a given power system.																		
EE1602N.2	Analyze the behaviour of synchronous machines in the small power system under symmetrical fault condition (i.e. 3-phase short circuit condition).																		
EE1602N.3	Draw the positive, negative and zero sequence diagrams for the given small power system and analyze its behaviour under different unsymmetrical fault conditions (i.e. L-G, L-L and L-L- G faults).																		
EE1602N.4	Develop the appropriate mathematical model and analyze the real power - angle stability of the given small power system.																		
EE1602N.5	Evaluate bus admittance matrix (i.e. Y_{BUS}), formulate the load flow problem and carryout load flow analysis for the given small power systems.																		

0-No Attainment; 1- Low Attainment; 2- Moderate Attainment; 3- Substantial Attainment

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronics and Communication Engineering

Department of Electrical Engineering Course Hand-out

CMMUNICATION SYSTEMS| EE1603 (N) | 3 Credits | 3 0 0 3

Session: Jan 21- May 21 | Faculty: Vikash Kumar Boradak | Class: VI Sem B Tech (EE)

- **A. INTRODUCTION:** This course is offered by Dept. of Electrical Engineering as a regular course, targeting students who wish to pursue research& development in industries or higher studies in field of Communication Engineering, including AM, FM, Digital comm., Optical comm., and Satellite communication. Offers basic knowledge necessary for transmitting and receiving information using today's communication technologies. The techniques that will be studied involve coding information onto a carrier (modulation) which is then transmitted. The received signal is then decoded (demodulated) yielding the original information. Emphasis will be given to analog modulation of both analog and digital signals.
- **B.** Course Outcomes: At the end of the course, students will be able to
- EE1603(N).1. Interpret and illustrate various techniques for analog modulation and demodulation, compare their performance based on different parameters and analyze efficiency. (Bloom's Level: knowledge, Comprehensive)
- EE1603(N).2. Interpret and illustrate various techniques for angle modulation and demodulation and describe frequency division multiplexing. (Bloom's Level: knowledge, Comprehensive)
- EE1603(N).3. Familiarize students with digitization and methods for generating pulse modulation technique- PAM, PWM and PPM concepts, PCM, and time division multiplexing. (Bloom's Level: Application)
- EE1603(N).4. Recognize different digital modulation techniques and judge the best way to achieve overall performance for a specific application and error control coding. (Bloom's Level: Analysis)
- EE1603(N).5. Recognize and classify the structures of Optical fiber and types, describe the channel impairments and basics of satellite communication systems. (Bloom's Level: Application, Synthesis)
- EE1603(N).6. Impart and exemplify the concepts and operation of Multiple Access Techniques, Microwave links, wireless communication hence develop employability skills. (Bloom's Level: Application)

C. Program Outcomes and Program Specific Outcomes

- **[PO.1].** Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **[PO.2]. Problem Analysis:** Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **[PO.3]. Design/ Development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
- **[PO.4].** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
- **[PO.5].** Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modelling to complex engineering activities with an under- standing of the limitations.
- **[PO.6].** The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- **[PO.7].** Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.
- **[PO.8].** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- **[PO.9].** Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
- **[PO.10].** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
- **[PO.11]. Project Management and Finance:** Demonstrate knowledge and understanding of engineering and management principles and apply these to owners own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **[PO.12].** Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES:

- **[PSO.1].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyze the prevalent domains of electrical systems for sustainable, reliable, environmentally friendly and feasible solutions.
- **[PSO.3].** Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D. Assessment Rubrics:

Criteria	Description	Maximum Marks							
	Sessional Exam I (Close Book)	15							
Internal Assessment	Sessional Exam II (Close	15							
(Summative)	Book)								
	Quizzes and Assignment	30							
End Term Exam	End Term Exam (Close Book)	40							
(Summative)									
	Total	100							
Attendance	A minimum of 75% Attendance	is required to be maintained by a							
(Formative)	student to be qualified for taking u	p the End Semester examination.							
	The allowance of 25% include	s all types of leaves including							
	medical leaves.								
Quizzes	Quizzes (Close Book)								

E. Syllabus

Elements of an Electrical Communication System: Communication Networks, Analog Communication Systems - Principles of Amplitude modulation, double and single side band, suppressed carrier system, AM circuits, AM Transmitters and Receivers, Angle modulation, Frequency modulation, FM receivers, Digital Communication: Sampling theorem, pulse modulation techniques - PAM, PWM and PPM concepts, PCM encoder and decoder, Multiplexing – TDM, **FDM - Data communication techniques:** Data transmission using analog carriers, MODEMS employing FSK, PSK, DPSK, QPSK, and QAM, error control coding techniques - Multiple Access Techniques, Microwave links, Satellite communication systems, Optical communication systems, Wireless Communication.

F. Text Book:

T1. TI. B. P. Lathi, Modern Analog and Digital Communication - Oxford Press

G. Reference Book:

- R1. Tomasi W., Electronics Communications systems, Pearson Publications, 2001.
- R2. Haykin S., Analog and Digital Communications, Wiley Publishers, 1989.

H. Lecture Plan:

Lecture	Topics to be covered	Session Outcome	Mode of Delivery	Corresponding Course Outcome	Mode of Assessing the Outcome
L1	Course overview	To acquaint students with the outcome-based education (OBE) and Course outcomes (COs) and program outcomes (POs) assessment process	Interaction	-	-
L2	Basics of signals and systems, Fourier transformation	Frequency analysis of signals	Lecture & Interaction	EE1603(N).1	First Session Exam
L3	Communication Networks	Overview of different communication networks	Lecture & Interaction	EE1603(N).1 EE1603(N).2	ET Exam
L4-L5	Analog Communication Systems- Principles of Amplitude modulation	Need of modulation and Representation of AM signals	Lecture & Interaction	EE1603(N).1	
L6-L9	double and single side band, suppressed carrier system	Generation and demodulation of DSB and SSB	Lecture & Interaction	EE1603(N).1	
L10	AM circuits, AM Transmitters and Receivers	Hardware circuit implementation	Lecture & Interaction	EE1603(N).1	
L11-L14	Angle modulation- Frequency modulation,	Representation of FM and PM signals	Lecture & Interaction	EE1603(N).2	
L15	FM receivers	Hardware circuit implementation	Lecture & Interaction	EE1603(N).2	

L16	Digital Communication: Sampling theorem	Signal conversion and its	Lecture &	EE1603(N).3	
		requirement	Interaction	EE1603(N).4	
L17 –	pulse modulation techniques - PAM, PWM and	Different pulse modulation	Lecture &	EE1603(N).3	Sessional Session
L19	PPM concepts, PCM encoder and decoder	schemes	Interaction	EE1603(N).4	Exam
L20-L21	Multiplexing : TDM; FDM	Concept of multiplexing	Lecture &	EE1603(N).3	Quiz
			Interaction	EE1603(N).4	ET Exam
L22	Data communication techniques: Data	Concept of digital data	Lecture &	EE1603(N).3	
	transmission using analog carriers	transmission using analog carrier	Interaction	EE1603(N).4	
L23-L26	MODEMS employing FSK, PSK, DPSK, QPSK, and	Generation and demodulation of	Lecture &	EE1603(N).4	
	QAM	FSK, PSK, DPSK, QPSK, and QAM	Interaction		
L27–L29	error control coding techniques		Lecture & Interaction	EE1603(N).4	
L30	Multiple Access Techniques	Concept and Representation of MAT	Lecture & Interaction	EE1603(N).6	
L31 –	Satellite communication systems	Concept and Representation of	Lecture &		
L33		Satellite communication systems	Interaction	EE1603(N).5	
L34 –	Optical communication systems	Concept and Representation of	Lecture &	EE1603(N).5	
L35		Optical communication systems	Interaction		
L36 –	Wireless Communication, Microwave links	Concept and Representation of	Lecture &		Quiz
L37		Wireless Communication, Microwave links	Interaction	EE1603(N).6	ET Exam

I. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT	CORRELATION WITH PROGRAM OUTCOMES							CORRELATION WITH PROGRAM SPECIFIC OUTCOMES							
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE1603(N).1	Interpret and illustrate various techniques for analog modulation and demodulation, compare their performance based on different parameters and analyze efficiency	2	2	5	•	5	2			5	2					
EE1603(N).2	Interpret and illustrate various techniques for angle modulation and demodulation, and describe frequency division multiplexing.	3	2	2			2				3					
EE1603(N).3	Familiarize students with digitization and methods for generating pulse modulation technique- PAM, PWM and PPM concepts, PCM, and time division multiplexing.	2	2													
EE1603(N).4	Recognize different digital modulation techniques and judge the best way to achieve overall performance for a specific application and error control coding.	1	2							1						
EE1603(N).5	Recognize and classify the structures of Optical fiber and types, describe the channel impairments and basics of satellite communication systems.	3	3				1						2			
EE1603(N).6	Impart and exemplify the concepts and operation of Multiple Access Techniques, Microwave links, wireless communication hence develop employability skills.	2	3				2				1					

School of Electrical, Electronics & Communication Engineering (SEEC) Department of Electrical Engineering Course Hand-out Renewable Energy Resources | EE1653| 3 Credits | 3003

Session: Oct. 2020 – Jan.2021 | Faculty: Dr. Amit Soni | Class: VI Sem B Tech. (EE)

- A. Introduction: Department of Electrical Engineering offers this course as Program Elective in view to provide Introduction to Energy Systems and Renewable Energy Resources and their applications. This will help to explore present needs, challenges and future energy demands of leading Renewable Energy Sources such as Solar, Biomass (conversions), Wind power, Geothermal, and Ocean Thermal Energy conservation methods. Present course emphasizes and will be targeting students who wish to pursue Research & Development in the related areas of alternate energy resources.
- **B.** Course Objectives: At the end of the course, students will be able to:
- [1653.1]. To understand Present Energy Scenario, Energy Sources and their Availability in various forms.
- [1653.2]. Describe various forms of Conventional and Non-Conventional Energy Resources. In addition, the Awareness will be made related to Need for Energy Conservation.
- [1653.3]. Analyse and understand operating principles and concepts of Renewable Energy Production using various renewable sources, especially Solar, Wind Energy, Biomass, Geo-Thermal, Ocean and Hybrid Energy Systems.
- [1653.4]. Interpret and compare advantages and disadvantages of various renewable energy technologies and propose the best possible energy conversion system for a particular location.
- [1653.5]. To understand and make comparisons among energy uses, resources, and technologies for different Energy Resources.

C. Program Outcomes and Program Specific Outcomes

- **[PO.1].** Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and an engineering specialization to the solution of complex engineering problems.
- **[PO.2].** Problem analysis: <u>Identify</u>, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **[PO.3].** Design/development of solutions: Design solutions for complex engineering problems and <u>design</u> <u>system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **[PO.4].** Conduct investigations of complex problems: Use research-based knowledge and research methods including <u>design of experiments</u>, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- [**PO.5**]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern engineering</u> <u>and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations.
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal</u>, <u>health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice.
- [PO.7]. Environment and sustainability: Understand the <u>impact of the professional engineering solutions in</u> <u>societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development.
- **[PO.8].** Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices.
- [PO.9]. Individual and teamwork: Function effectively as an individual, and as a <u>member or leader in diverse</u> <u>teams</u>, and in multidisciplinary settings.

- **[PO.10].**Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- [PO.11].Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- [PO.12].Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change
- D. Program Specific Outcomes (PSO): At the end of the program student should be able
- **[PSO.1].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- **[PSO.3].** Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

Criteria	Description	Maximum Marks							
	Sessional Exam I (Closed Book)	15							
Internal Assessment	Sessional Exam II (Closed Book)	15							
(Summative)	In class Quizzes and Assignments, Activity feedbacks (Accumulated and Averaged)	30							
End Term Exam (Summative)	40								
	Total	100							
Attendance (Formative)	A minimum of 75% Attendance is required to be maintained by qualified for taking up the End Semester examination. The allowance all types of leaves including medical leaves.	a student to be e of 25% includes							
Make up	Assignment on the topic related to the running unit will be given	which has to be							
Assignments (Formative)	submitted within a week. These assignments are limited to a maximum of 5 throughout the entire semester.								
Activity Assignment (Formative)	Activity Assignment Formative)A student is expected to participate and perform the activity/ flipped classroom participation related to the course which will be assessed, and marks will be awarded.								

E. Assessment Plan:

F. Syllabus:

Energy sources and their availability: **Solar Energy**, solar radiation and measurements, solar energy storage, Solar Photo-Voltaic systems design, **Wind Energy** estimation, Maximum power and power coefficient, wind energy conversion systems, design considerations and applications, **Energy from Bio Mass**: Sources of biomass, Bio-mass conversion technologies, Thermo-chemical conversion and Biochemical conversions, Anaerobic digestion and Fermentation, Bio-gas generation Pyrolysis and Liquefaction, Classification of Gasifiers, Energy plantation, Geo-Thermal Energy, Energy from the Oceans: Ocean Thermal Energy Conversion, Open and Closed Cycle plants, Site selection considerations, Origin of tides: Tidal energy conversion systems, Wave energy conversion systems, Hybrid Energy Systems.

G. Text Books:

T1. B. H. Khan, Non-conventional Energy Resources (3e), Tata Mc-Graw Hill, 2009.

T2. G. D Rai, Non- Conventioal Energy Sources, Khanna Publishers, 2004.

H. Reference Books:

R1. Twidell, T. Weir, Renewable Energy Resources (4e), ELBS, 2015.

R2. Mukherjee, S. Chakrabarti, Fundamentals of Renewable Energy Systems (1e), New Age Intl., 2007.

I. Lecture Plan:

Lec No	Topics	Session Outcome	Mode of	Corresponding	Mode of Assessing the
			Delivery	СО	Outcome
L1	Introduction, Course Objective and overview of the contents of Renewable Energy Resources	To Understand and provide overview related to Aims, Objective and Contents and to understand student expectations	Lecture	NA	NA
L2-L3	Introduction, Classification, Importance, Advantages & Disadvantages of different Energy Sources on the basis of different criterions.	To Understand Classification, and Importance of different types of Energy Sources	Lecture	[1653.1]	In Class Quiz (Not Accounted)
L4	Review related to availability of Energy Sources and Energy Scenario of India	To analyse availability of Energy Sources and Indian Energy Scenario.	Lecture	[1653.2]	In Class Quiz Mid Term
L5	Introduction of Solar Energy and Solar Radiation and Measurements.	Able to understand Solar Energy concepts and measurements.	Lecture	[1653.2]	Home Assignment End Term
L6 - L7	Solar energy storage and Solar Photo- Voltaic systems	Able to understand SPV Systems	Lecture	[1653.3]	In Class Quiz End Term
L8	Solar Cell Materials, Characteristics and Equivalent Circuit.	Analyze different materials and its characteristics	Lecture	[1653.3]	Class Quiz Mid Term I End Term
L9	Solar Cell Design and Classification.	Analyze designing and classifications	Lecture	[1653.3]	Class Quiz Mid Term 1 End term
L10	Solar PV Module and Maximum Power Point Tracking.	Analyze MPPT concepts related to maximum power	Lecture	[1653.3]	Home Assignment Class Quiz Mid Term 1 End Term
L11	Classification of Solar PV Systems and Applications of Solar PV Modules.	Able to determine various classifications	Lecture	[1653.3]	Class Quiz Mid Term 1 End Term
T1	L2 – L11	Analyse analytical approaches for topics covered above.	Tutorial	[1653.1] [1653.3]	Class Quiz Mid Term I

I 12	Introduction to Wind Energy Systems and	To understand Wind energy systems	Lecture	[1653.2]	Class Quiz
LIZ	Origin of Winds	and its concepts			End Term
	Estimation of Wind Energy and Different	Analyse and understand different	Lecture	[1653.3]	Class Quiz
L13	Technological Terms	technological terms.			Mid Term II
	rechnological remis.				End Term
	Maximum power and power coefficient,	Able to determine existing design	Lecture	[1653.3]	Class Quiz
L14-L15	wind energy conversion systems, design	considerations and applications			Mid Term II
	considerations and applications				End Term
		Analyse analytical approaches for	Tutorial	[1653.1]	Class Quiz
T2	L12 - L15	topics covered above.		[1653.3]	Mid Term II
					End Term
	Introduction to Dio Mass Energy	To understand concepts of Bio Mass	Lecture	[1653.2]	Class Quiz
L16	Conversion	Energy Conversion			Mid Term II
	Conversion.				End Term
I 17	Sources of bio-mass, Bio-mass conversion	Understand different sources of Bio	Lecture	[1653.3]	Class Quiz
LIT	technologies.	Mass and conversion technologies			End Term
T 19	Anaerobic digestion and Fermentation,	Able to understand Biogas generation	Lecture	[1653.3]	Class Quiz
LIO	Bio-gas generation				End Term
I 10	Purelysis and Liquefaction	Able to understand Pyrolysis and	Lecture	[1653.3]	Class Quiz
LIJ	Tyrorysis and Erqueraction.	Liquefaction.			End Term
1.20	Classification of Gasifiers, Energy	To understand Classifications of	Lecture	[1653.3]	Class Quiz
L20	plantation	Gasifiers and energy plantation			End Term
Т2	116 120	Analyse analytical approaches for	Tutorial	[1653.2]	Class Quiz
15	L10 - L20	topics covered above.		[1653.3]	End Term
I 21	Introduction to Geo-Thermal Energy and	To understand concepts of Geo-	Lecture	[1653.2]	Class Quiz
	its Applications.	Thermal energy			End term
1.22	Types of Geothermal Resources and their	To acquaint with different resources	Lecture	[1653.3]	Class Quiz
LZZ	Analysis.	of Geothermal			
		To Understand Geothermal Energy	Lecture	[1653.3]	Class Quiz
L23	Geothermal Energy Scenario in India.	Scenario in India			Mid Term II
					End Term
		Analyse analytical approaches for	Tutorial	[1653.2]	Class Quiz
T4	L21-L23	topics covered above.		[1653.3]	Mid Term II
					End Term

	Introduction to Energy from the Oceans:	To understand concepts of Ocean	Lecture	[1653.2]	Class Quiz
L24	Ocean Thermal Energy Conversion	Thermal Energy Conversion.		[1653.3]	Mid Term II
	Ocean mermai Energy Conversion.				End Term
1.25	Open and Closed Cycle plants, Site	Able to determine site selection	Lecture	[1653.2]	Class Quiz
L23	selection considerations, Origin of tides.	considerations and origin of tides		[1653.3]	End Term
1.26	Tidal anargy conversion systems	Analyze Tidal energy conversion	Lecture	[1653.2]	Class Quiz
L20	ridal energy conversion systems.	system		[1653.3]	End Term
1.27	Waya anargy conversion systems	Analyze wave energy conversion	Lecture	[1653.3]	Class Quiz
	wave energy conversion systems.	system			End Term
Т5	1 24 1 27	Analyse analytical approaches for	Tutorial	[1653.2]	Class Quiz
15		topics covered above.		[1653.3]	End Term
1.28	Hybrid Energy Systems	Able to determine concepts of Hybrid	Lecture	[1653.4]	Class Quiz
L20	Tryond Energy Systems	Energy Systems			End Term
1.20	Emerging Technologies used for Energy	Understand Emerging Technologies	Lecture	[1653.4]	Class Quiz
L29	Production.	for Energy Production.			End Term
I 30 31	Review for the Concepts related to	Able to develop the concepts related	Lecture	[1653.5]	NA
L30-31	Renewable Energy Resources	to Renewable Energy Resources			

J. Course Articulation Matrix: (Mapping of COs with POs and PSOs)

														Corr	elation	with
			Correlation with Program Outcomes											Program Specific		
CO	STATEMENT													Outcomes		
				PO	PSO	PSO	PSO									
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	To understand Present Energy Scenario, Energy	2		1	3			2	1				1	2	2	1
EE1653.1	Sources and their Availability in various forms.															
	Describe various forms of Conventional and Non-	2		1	3			2					2	3	2	1
FF1652 2	Conventional Energy Resources. In addition, the															
EE1653.2	Awareness will be made related to Need for Energy															
	Conservation.															

	Analyse and understand operating principles and	2	2	2	1		2			1	2	1	2
	concepts of Renewable Energy Production using												
EE1653.3	various renewable sources, especially Solar, Wind												
	Energy, Bio Mass, Geo-Thermal, Ocean and Hybrid												
	Energy Systems.												
	Interpret and compare advantages and disadvantages	1	1	1	1	1	2	1	2	1	2	2	3
FF1653 A	of various renewable energy technologies and propose												
LE1033.4	the best possible energy conversion system for a												
	particular location.												
	To understand and make comparisons among energy	1	1	1		1				2	2	1	3
EE1653.5	uses, resources, and technologies for different Energy												
	Resources.												

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronics and Communication Engineering

Department of Electrical Engineering Course Hand-out

DATA STRUCTURES AND ALGORITHMS| EE 1654(N) | 3 Credits | 3 0 0 3

Session: Jan. 2020 - June.2021 | Faculty and Course Coordinator: Himanshu Priyadarshi| Class: III Year

A. Introduction: The Computers have become ubiquitous to all scientific and engineering disciplines. This course aims at imparting the fundamental knowledge of data structures and algorithms to Electrical Engineering students. The course will impart the necessary knowledge and skills required in design and analysis of the algorithms, along with relevant data structures for real-time problem solving.

B. Course Outcomes: At the end of the course, students will be able to

[EE1654(N).1] Describe linear and non-linear data-structures (arrays, records, linked structures, stacks, queues, trees, and graphs), its application and representation in memory. (Bloom's Level: knowledge, Comprehensive)

- [EE1654(N).2] Write programs /algorithms and develop skills to use data-structures like arrays, records, linked structures, stacks, queues, trees, and graphs to solve problems. (Bloom's Level: Application)
- [EE1654(N).3] Compare and contrast the operation of common data structures (such as linear structures, priority queues, tree structures, hash tables, maps, and graphs) in terms of time complexity, space utilization, and the abstract data types they implement. (Bloom's Level: Analysis)

[EE1654(N).4] Read an algorithm or program code segment that contains iterative constructs and analyze it in terms of its time and space complexity of the algorithm or code segment. (Bloom's Level: Analysis)

[EE1654(N).5] Draw the graph as well as tree data structure and algorithms related to different operations on them. (Bloom's Level: Application, Synthesis)

C. Program Outcomes and Program Specific Outcomes

- **[PO.1].** Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **[PO.2]. Problem Analysis:** Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **[PO.3]. Design/ Development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
- [PO.4]. Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
- **[PO.5].** Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modelling to complex engineering activities with an under- standing of the limitations.
- **[PO.6].** The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- **[PO.7].** Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.
- **[PO.8].** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- **[PO.9].** Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
- **[PO.10].** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.

- **[PO.11]. Project Management and Finance:** Demonstrate knowledge and understanding of engineering and management principles and apply these to owners own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **[PO.12].** Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES:

- **[PSO.1].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- **[PSO.3].** Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

Criteria	Description	Maximum Marks							
	Sessional Exam I (Close Book)	15							
Internal Assessment	Sessional Exam II (Close Book)	15							
(Summative)	Quizzes (03) and Assignment (03)	30							
End Term Exam	End Term Exam (Close Book)	40							
(Summative)									
	Total	100							
Attendance	A minimum of 75% Attendance is requ	ired to be maintained by a student to be							
(Formative)	qualified for taking up the End Semest	ter examination. The allowance of 25%							
	includes all types of leaves including medical leaves.								
Quizzes	3 Quizzes (Close Book)								

E. Syllabus

Analysis of algorithms - Stacks - application to evaluation of postfix expressions, conversion from infix to postfix representation - Queues - Sequential representation, operations, priority queues, and array implementation Linked Lists – Trees – Graphs – Sorting - Searching - Greedy techniques - Prim's & Kruskal's algorithms for minimum spanning trees, shortest paths, optimal tape storage, job scheduling with deadlines, Knapsack problem - Divide and Conquer - General technique, maximum and minimum., multiplying long integers, Strassen's matrix multiplication, finding the closest pair of points - Dynamic programming - matrix chain ordering, all pairs shortest paths, optimal BST – Backtracking - NP completeness - Introduction to parallel algorithms.

F. Text Book:

TI. Data structures with C, Lipschutz, McGraw Hill, (Thirteenth Edition), 2017

G. Reference Book:

RI. Introduction to algorithms, Cormen, Leiserson and Rivest, McGraw Hill (Fifth Edition), 2001.

R2. Design and Analysis of Algorithms, Aho, Hopcroft and Ulmann, Addison Wesley, $2000\,$

H. Lecture Plan:

Lec No	Topics	Session Objective	Mode of Delivery	Corresponding	Mode of Assessing the
			(Online/Classroom)	СО	Outcome
1-2	Introduction to Data structures and Algorithms	Appreciate the relevance of the course	Lecture	EE 1654(N).1	
3	Analysis of Algorithms (Introduction)	Understand the method of analyzing algorithms for their time and space complexity	Lecture	EE1654[N].5	
4-6	Introduction to Basic Data structures	Explain the relevance of data structures for programming	Lecture	EE1654[N].1	
7-8	Review of pointers in C/C++, Introduction to implementation of data structures using C/C++	Explain the power of pointers and arrays for implementing data structures starting from struct	Lecture/Hand-on coding	EE1654[N].1 EE1654[N].2	Assignments Class Quiz Mid-Term I End-Term
9-10	Stacks and Queues Data structures.	Explain the uses cases of stacks and queues for specific applications	Lecture/Hand-on coding	EE1654[N].1 EE1654[N].2	
11-12	Application of stacks for evaluation of Postfix expressions, conversion from infix to postfix	Appreciate the importance of postfix expressions and write codes for postfix-infix conversions	Lecture/Hand-on coding	EE1654[N].1 EE1654[N].2	
13-14	Sequential representation of the Queues, Operation on queues, priority queues and array implementation of queues	Perform basic operations on queues	Lecture/Hand-on coding	EE1654[N].1 EE1654[N].2	
15-16	Linked List and implementation using C	Appreciate linked list for data handling and storage	Lecture/Hand-on coding	EE1654[N].1 EE1654[N].2	
17-18	Trees and implementation, adding, deleting, searching, traversal and sorting	Understanding trees and their importance for problem-solving	Lecture	EE1654[N].3 EE1654[N].4 EE1654[N].4	Assignments Class Quiz
19-20	Searching and Sorting Algorithms – Design and Analysis	Implement sorting and searching algorithms and analyze their time and space complexity	Lecture	EE1654[N].1 EE1654[N].2 EE1654[N].3	Mid-Term I End-Term
21-22	Introduction to Graph and Graph Theory concepts;	Revisit the concepts of graph theory	Lecture/Hand-on coding	EE1654[N].2 EE1654[N].5	

23-24	Graphs and implementation using C++	Implement graphs using C++ STL	Lecture	EE1654[N].1 EE1654[N].2	
25-26	Minimum spanning Trees using Prim's and Krushkal Algorithms & Introduction to Shortest path problem	Finding connected components using Prim's, Krushkal, and Dijikstra's algorithm	Lecture/Hand-on coding	EE1654[N].3 EE1654[N].4	
27-28	Application of graphs and algorithms for optimal tape storage, job scheduling with deadlines		Lecture	EE1654[N].3 EE1654[N].4 EE1654[N].5	
29	Knapsack Problem	Implement the algorithm for Knapsack problem	Lecture	EE1654[N].2 EE1654[N].3	
30-32	Divide and Conquer Approach – General Techniques for sorting, searching	Understand Divide and Conquer approach for complicated problems	Lecture	EE1654[N].3 EE1654[N].4 EE1654[N].5	
33-36	Divide and conquer approach for maximum and minimum, multiplying long integers, Strassen's matrix multiplication, finding closest pairs on points	Implement Divide and Conquer approach for maximum and minimum, multiplying long integers, Strassen's matrix multiplication, finding closest pairs on points	Lecture/Hand-on coding	EE1654[N].3 EE1654[N].4 EE1654[N].5	
37-38	Dynamic Programming, matrix chain ordering, all pair shortest path, optimal BST	Appreciate the importance of Dynamic programming and comparing with recursion	Lecture/Hand-on coding	EE1654[N].1 EE1654[N].2 EE1654[N].3	Assignments
39-40	Backtracking, NP Completeness, Introduction to Parallel Programming	Solve N-Queen problem using Backtracking	Lecture/Hand-on coding	EE1654[N].1 EE1654[N].2 EE1654[N].3	Class Quiz Mid-Term II End-Term
41-42	Strongly connected components	Understanding algorithms for strongly connected components	Lecture/Hand-on coding	EE1654[N].3 EE1654[N].4 EE1654[N].5	

I. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT			(CORRE	LATIO	N WITI	H PRO(GRAM	OUTC	OMES			COR PRO	RELATION GRAM SP OUTCOM	I WITH ECIFIC ES
		PO 1	РО 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3

EE	Describe linear and non-linear data-structures (3	3			2				3	2	
1654.1	arrays, records, linked structures, stacks, queues,											
	trees, and graphs), its application and representation											
	in memory											
EE	Write programs /algorithms and develop skills to use	3	3	2						3	2	2
1654.2	data-structures like arrays, records, linked structures,											
	stacks, queues, trees, and graphs to solve problems.											
EE	Compare and contrast the operation of common data	3	3	3	2	2				3	2	2
1654.3	structures (such as linear structures, priority queues,											
	tree structures, hash tables, maps, and graphs) in											
	terms of time complexity, space utilization, and the											
	abstract data types they implement.											
EE	Read an algorithm or program code segment that	2	2							3	2	
1654.4	contains iterative constructs and analyze time											
	complexity of the algorithm or code segment											
EE	Describe the graph and tree data structure and	2	2	2	2	2				3	3	3
1654.5	algorithms related to different operations on them.											

MANIPAL UNIVERSITY JAIPUR

School of Electrical Electronics and Communication Engineering

Department of Electrical Engineering Course Hand-out

Distributed Energy Resources | EE 1663 | 3 Credits | 3 0 0 3

Session: Jan 21 – May 21 | Faculty: Dr. Neeraj Kanwar | Class: B.Tech 6th semester

A. INTRODUCTION: This course is offered by Dept. of Electrical Engineering as a Program Elective, targeting students who wish to pursue research & development in industries or higher studies in field of Electrical Engineering, including Renewable Energy Resources, Distributed Generation, Smart and Micro Grids. The course familiarizes students with the state-of-art understanding of distributed energy resources. It deals with the understanding of their economic potential and practical applicability. Students are expected to have background knowledge on Electric Power Systems for a better learning.

B. COURSE OUTCOMES: At the end of the course, students will be able to

- **[EE 1663.1].** Describe the working knowledge of various distributed generation sources.
- **[EE 1663.2].** Understand the working of various Energy Storage Systems applicable to distributed energy resources.
- [EE 1663.3]. Perform basic analysis and assessment for interconnecting distributed energy resources with grid.
- **[EE 1663.4].** Develop skill set to understand the impact of distributed energy resources on electric power network operation and control.
- **[EE 1663.5].** Develop an understanding of various standards and codes for distributed energy resources integration and future grid structure.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
- [PSO.1]. To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- [PSO.2]. To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- [PSO.3]. Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D. Assessment Plan:

Criteria	Description	Maximum Marks						
	Sessional Exam I (Closed Book)	15						
Internal Assessment	Sessional Exam II (Closed Book)	15						
(Summative)	In class Quizzes and Assignments ,	30						
	(Accumulated and Averaged)							
End Term Exam	End Term Exam (Closed Book)	40						
(Summative)								
	Total	100						
Attendance	A minimum of 75% Attendance is requi	red to be maintained by a student to be						
(Formative)	qualified for taking up the End Semest	er examination. The allowance of 25%						
	includes all types of leaves including medi	cal leaves.						
Make up Assignments	Students who miss a class will have to re	port to the teacher about the absence. A						
(Formative)	makeup assignment on the topic taught c	on the day of absence will be given which						
	has to be submitted within a week from	the date of absence. No extensions will						
	be given on this. The attendance for that particular day of absence will be marked							
	blank, so that the student is not accounted for absence. These assignments are							
	limited to a maximum of 5 throughout th	e entire semester.						

E. SYLLABUS

Overview of Electric Grid: Distributed Generation, Definition, Need and advantages, Renewable Energy Resources: as DGs, Fuel cell powered DG, Gas Turbine Powered DG, Hybrid System, Energy Storage Systems applicable to DGs, Grid interconnection options, Integration of DERs with grid, Analysis of small Generating systems: Equivalent Models, Generators used with DERS for grid interconnection, Control Techniques for DER integration systems, Standards and codes for interconnection, future structure of grid.

F. TEXT BOOKS

- 1. H Lee Willis & W. G. Scott, *Distributed Power Generation- Planning & Evaluation*, CRC Press, 2000.
- 2. F.A. Farret, M. Godoy Simões, Integration of Alternative Source of Energy, Wiley InterScience, 2006.
- 3. M. H. Nehrir & C. Wang, *Modelling and Control of Fuel Cells : Distributed generation Applications,* IEEE Wiley- IEEE Press, 2009.

G. REFERENCE BOOKS

1. T. Funabashi, Integration of Distributed Energy Resources in Power Systems: Implementation Operation, and Control, Academic Press-Elsevier, 2016.

H. LECTURE PLAN:

Lec No	Topics	Session Outcome	Mode of Delivery	Corresponding	Mode of Assessing
				CO	the Outcome
	Introduction and Course Hand-out briefing	To familiarize and clear teachers	Lecture	NA	NA
		expectations and understand student			
		expectations			
2,3	Over view of Electric Grid: History of Electric	Recall and explain evolution of	Lecture	[EE 1663.1]	Class Quiz
	Power Transmission, Evolution of Power Grids	Power Grids			Mid Term I
					End Term
4,5	Distributed Generation – Introduction, Definition,	Describe Distributed Generation,	Lecture, Activity	[EE 1663.1]	Class Quiz
	Need and advantages	definition, importance and		[EE 1663.2]	Mid Term I
		advantages of DER			End Term
6,7	Distributed Generation Sources: Introduction to	Explain power generation and	Lecture	[EE 1663.1]	Class Quiz
	Power Generation Systems and Energy Storage	energy storage sources for DG			Mid Term I
	Systems	sources			End lerm
8,9	DER – Power Generation Systems: Introduction to	Recall different Power Generation	Lecture	[EE 1663.1]	Class Quiz
	Fossil fuel based system - Reciprocating engines and	Sources : f Reciprocating engines and			Mid Term I
	micro turbines and Non fossil fuel based	micro turbines and Non fossil fuel			End Term
		based for Distributed Generation			
10	DER – Power Generation Systems: Introduction to	Recall different Power Generation	Lecture	[EE 1663.1]	Class Quiz
	Non Fossil fuel based system – Electrochemical	Sources : fuel cells and renewable			
	sources and Renewable sources	sources for Distributed Generation			End Term
11,12	DER – Energy Storage Systems: Introduction to	Recall Energy Storage Systems:	Lecture	[EE 1663.1]	Class Quiz
	EDLC, BESS, SMES, FVV, PEV	EDLC, BESS, SMES, FVV, PEV for			
12.14		Distributed Generation			End Term
13,14	Renewable Sources – Types, schemes for DG	Recall on availability of solar	Lecture	[EE 1663.1]	Class Quiz Mid Tanna I
		radiation, solar insolation, solar		[EE 1663.2]	Fild Term I
		constant on given day of year and			End Term
15		location on earth			
15	KS: Solar Electric Power Generation system –	Describe various schemes available	Lecture		Class Quiz Mid Tarres I
	Schemes for STPGS	for solar thermal electric power			
16.17	PS: Solar Electric Power Constant system - PV	Becall working of color coll			
10,17	Concertion	Recall working of solar cell,	Lecture		Class Quiz Mid Terme I
	Generation	for surrent			Fild Term
10 10 20	PS: Wind Power Concration	Describe working of Wind Power	Locturo		
10,17,20	KS. Wind Fower Generation	Concration System and its usage as	Lecture	[EE 1663.1]	Class Quiz Mid Torm II
		distributed generation			Find Term
21 22 22	RS: Other Constation Resources	Identify and understand other	Locturo	FEE 1662 11	
21,22,23	NS. Other Generation Resources	Ronowable Sources Distributed	Lecture	[EE 1003.1]	Mid Torm II
		Generation			End Torm
24.25	Fuel Cell Reward DC: Fuel Cells Proton	Describe working of Proton	Locturo	FEE 1442 11	
27,23	Exchange Membrane Fuel cells Phosphorie Acid	Evenando Mombrano Eucl collo		[EE 1663.1]	Mid Torm II
	Exchange memorane ruer cens, rhosphoric Acid	LACHANGE PREHIDIANE FUEL CENS,			

	Fuel Cells	Phosphoric Acid Fuel Cells, examine			End Term
		their chemical properties and			
		understand the chemical reaction			
		involved.			
26,27	Fuel Cell Powered DG: Molten Carbonate Fuel	Describe working of Molten	Lecture	[EE 1663.1]	Class Quiz
	Cells, Solid Oxide Fuel Cells	Carbonate Fuel Cells, Solid Oxide		[EE 1663.2]	Mid Term II
		Fuel Cells examine their chemical			End Term
		properties and understand the			
		chemical reaction involved.			
28,29	Gas Turbine Powered DG: Types, utility system	Describe the working of Gas	Lecture	[EE 1663.1]	Class Quiz
		Turbine Powered DG, utility system		[EE 1663.2]	Mid Term II
					End Term
30	Gas Turbine Powered DG: Mini Gas and Micro Gas	Describe the working of Mini Gas	Lecture	[EE 1663.1]	Class Quiz
	Turbine Generators	and Micro Gas Turbine Generators		[EE 1663.2]	Mid Term II
					End Term
31	Hybrid System DG	Describe the working of Hybrid	Lecture, Activity	[EE 1663.1]	Class Quiz
		Power System with combination of		[EE 1663.5]	Mid Term II
		Fossil fuel based Generator, wind			End Term
		power and SVC FACTS device			
32,33	Grid Interconnection Options, Integration of DERs	Examine the Grid Interconnection	Lecture	[EE 1663.3]	Class Quiz
	with Grid	Options for DER and their		[EE 1663.4]	End Term
		Integration			
34,35	Analysis of Small Generating Systems – Equivalent	Describe the mathematical model	Lecture	[EE 1663.1]	Class Quiz
	Models, Generators applicable to DER for Grid	for Small Generating Systems			End Term
	interconnection	applicable to DEr			
36,37	DER: Control Techniques for integration systems	Examine Control Techniques for	Lecture	[EE 1663.3]	Class Quiz
		DER integration systems			End Term
38	Standards and Codes for Interconnection	Examine Standards and Codes for	Lecture	[EE 1663.4]	Class Quiz
		Interconnection of DER with Power			End Term
		System			
39,40	Future Structure of Grids: Smart Grid and Micro	Identify the Future structure of	Lecture	[EE 1663.5]	Class Quiz
	Grid	Power Grids, development of Smart			End Term
		and Micro Grids			
41,42	Overview of small example distributed generation	To have general overview of DER	Lab	NA	NA
	system in DIgSILENT Power Factory	using example test system in			
		environment of standard Power			
		system software			

I. COURSE ARTICULATION MATRIX: (MAPPING OF COS WITH POS)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES								CORRELATION WITH PROGRAM SPECIFIC OUTCOMES					
		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO 1	PSO 2	PSO 3
EE 1663.1	Describe the working knowledge of various distributed generation sources.	2	1	2	4	5	0	/	ð	9	10	11	3	2	3	1
EE 1663.2	Understand the working of various Energy Storage Systems applicable to distributed energy resources.	2	1	2	1								3	2	3	1
EE 1663.3	Perform basic analysis and assessment for interconnecting distributed energy resources with grid.	3	3	2	3	2							2	3	1	3
EE 1663.4	Develop skill set to understand the impact of distributed energy resources on electric power network operation and control.	3	2	3	3	2	2						2	3	1	2
EE 1663.5	Develop an understanding of various standards and codes for distributed energy resources integration and future grid structure.	2	1	3	1	3	2						3	2	2	3

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronics and Communication Engineering

Department of Electrical Engineering Course Hand-out

Utilization of Electric Power | EE 1661 | 3 Credits | 3 0 0 3

Session: Jan. 2021 – May 2021 | Faculty: Prof. Ashish Shrivastava | Class: VI Semester, B. Tech. (EE)

- A. Introduction: The course is offered by Department of Electrical Engineering as an Electrical Engineering program elective course, targeting Electrical Engineering students of VI Semester, B. Tech. (EE). The course offers an in-depth understanding of various fundamentals of Utilization of Electric Power and Traction. The topics covered include the Electric drives, AC and DC Drives, electric heating and their advantages, electric welding, AC and DC welding. Electric traction, method of electric braking, mechanism of train movement, speed time curve for different services, specific energy consumption and tractive efforts are also included in the course.
- **B. Course Outcomes:** Upon successful completion of the course, the student will be able to:
 - [EE1661.1] Describe the fundamental concepts of Electric Drives and discuss the applications of Electric drives for different industrial loads. (Bloom's Level: Knowledge)
 - [EE1661.2] Identify the different types and applications of Electric heating. (Bloom's Level: Analysis)
 - [EE1661.3] Understand the different types of electric welding and their advantages & applications. (Bloom's Level: Application)
 - [EE1661.4] Identify the importance of electric traction and analyze special features of existing electric traction system. (Bloom's Level: Analysis)
 - [EE1661.5] Analyze the mechanism of train movement and evaluate different parameters such as tractive effort, power, specific energy consumption for different speed time curves which improves the employability skills. (Bloom's Level: Application)

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- **[PO.1]** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **[PO.2]** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **[PO.3]** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **[PO.4]** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

- **[PO.5]** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **[PO.6]** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **[PO.7]** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **[PO.8]** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices.
- **[PO.9]** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **[PO.10]** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **[PO.11]** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **[PO.12]** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- **[PSO.1]** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2]** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- **[PSO.3]** Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

Criteria	Description	Maximum Marks					
	Sessional Exam I (Closed Book)	15					
Internal Assessment	Sessional Exam II (Closed Book)	15					
(Summative)	In class Quizzes and Assignments	30					
	(Accumulated and Averaged)						
End Term Exam	End Term Exam (Closed Book)	40					
(Summative)							
	Total	100					
Attendance	A minimum of 75% Attendance is req	uired to be maintained by a student to					
(Formative)	be qualified for taking up the End Ser	nester examination. The allowance of					
	25% includes all types of leaves include	ling medical leaves.					
Make up Assignments	Students who miss a class will have to a	report to the teacher about the absence.					
(Formative)	A makeup assignment on the topic taught on the day of absence will be given						
	which has to be submitted within a week from the date of absence. No						
	extensions will be given on this. These assignments are limited to a maximum						
	of 5 throughout the entire semester.						

D. Assessment Plan

E. SYLLABUS

EE1661 UTILIZATION OF ELECTRIC POWER

[3003]

Electric Drives: Type of electric drives, choice of motor, starting and running characteristics, speed control, temperature rise, Particular applications of electric drives, Types of industrial loads, continuous, Intermittent and variable loads, load Equalization. **Electric Heating:** Advantages and methods of electric heating, resistance heating, induction heating and dielectric heating. **Electric Welding:** Electric welding, resistance and arc welding, electric welding equipment, comparison between A.C. and D.C. Welding. **Electric Traction:** System of electric traction and track electrification. Review of existing electric traction systems in India. Special features of traction motor, methods of electric braking-plugging, rheostatic braking and regenerative braking, Mechanics of train movement. Speed-time curves for different services-trapezoidal and quadrilateral speed time curves. Calculations of tractive effort, power, specific energy consumption for given run, effect of varying acceleration and braking retardation, adhesive weight and braking retardation adhesive weight and coefficient of adhesion.

F. TEXT BOOKS

- T1. C. L. Wadhwa, *Generation, Distribution and Utilization of electrical Energy (3e)*, New Age International (P) Limited Publishers, 2010.
- T2. H. Partab, *Modern Electric Traction*, Dhanpat Rai & Sons, 2012

G. **REFERENCE BOOKS**

- R1. N. V. Surya Narayana, Utilization of Electrical Power including Electric drives and Electric traction (1e), New Age International Publishers, 1996.
- R2. R. K. Rajput, Utilization of Electrical Power (2e), Laxmi Publications, 2016.
- R3. G. K. Dubey, Fundamentals of Electric Drives (2e), Narosa Publications, 2016.

H. Lecture Plan:

Lec No.	Topics	Session Objective	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
	Introduction to the Course	To acquaint students with the subject and outcomes of the course. Students will be introduced with outcome based education (OBE) and Course outcome (CO) and program outcome (PO) assessment process	Lecture		NA
Lec - 1	Introduction to the subject	Discuss the subject and its importance in modern engineering education.	Lecture	[EE1661.1]	NA
Lec - 2	Electric drives and Type of electric drives	Introduction to Electric Drives	Lecture	[EE1661.1]	Home Assignment / Mid Term Exam / Class Quiz
Lec - 3	choice of motor, starting and running characteristics	Discuss the selection of motor, starting and running characteristics	Lecture	[EE1661.1]	Home Assignment / Class Quiz / Mid Term Exam
Lec - 4	speed control	Understand the methods of speed control	Lecture	[EE1661.1]	Class Quiz / Mid Term Exam / End Term Exam
Lec - 5	temperature rise, Particular applications of electric drives	Learn the importance of temperature rise and applications of electric drives	Lecture	[EE1661.1]	Class Quiz / Mid Term Exam / End Term Exam
Lec - 6	Types of industrial loads, continuous, Intermittent and variable loads,	Learn fundamentals of types of industrial loads	Lecture	[EE1661.1]	Class Quiz / Mid Term Exam / End Term Exam
Lec - 7	load Equalization	Analyze the process of load Equalization	Lecture	[EE1661.1]	Home Assignment / Class Quiz / Mid Term Exam
Lec - 8	Advantages and methods of electric heating	Learn electric heating and its advantages	Lecture	[EE1661.2]	Class Quiz / Mid Term Exam / End Term Exam
Lec - 9	resistance heating	Learn resistance heating and its merits and demerits	Lecture	[EE1661.2]	Class Quiz / Mid Term Exam / End Term Exam
Lec - 10	induction heating	Understand the concept of induction heating and its advantages & applications	Lecture	[EE1661.2]	Class Quiz / Mid Term Exam / End Term Exam
Lec - 11	dielectric heating	Understand dielectric heating and its industrial applications	Lecture	[EE1661.2]	Class Quiz / Mid Term Exam / End Term Exam
Lec – 12 (Tutorial)	Tutorial – 1 [Problem solving]	Numerical problems based on electric heating	Tutorial	[EE1661.2]	Class Quiz / Mid Term Exam / End Term Exam
Lec - 13	Electric welding	Learn electric welding and its advantages	Lecture	[EE1661.3]	Class Quiz / Mid Term Exam / End Term Exam
Lec - 14	resistance and arc welding	Learn and compare the resistance and arc welding	Lecture	[EE1661.3]	Mid Term Exam / End Term Exam

Lec - 15	electric welding equipment	Understand equipments use in the electric welding	Lecture	[EE1661.3]	Mid Term Exam / End Term Exam
Lec - 16	comparison between A.C. and D.C. Welding	Understand the difference between A.C. and D.C. Welding	Lecture	[EE1661.3]	Mid Term Exam / End Term Exam
Lec - 17 (Tutorial)	Tutorial – 2 [Problem solving]	Numerical problems based on electric welding	Tutorial	[EE1661.3]	Mid Term Exam / End Term Exam
Lec - 18	System of electric traction and track electrification	Learn the electric traction system and related technology advancements	Lecture	[EE1661.4]	Mid Term Exam / End Term Exam
Lec - 19	Review of existing electric traction systems in India	Understand and review the present electric traction systems used in India	Lecture	[EE1661.4]	Mid Term Exam / End Term Exam
Lec - 20	Special features of traction motor	Describe the concept and principle of working of traction motor	Lecture	[EE1661.4]	Mid Term Exam / End Term Exam
Lec - 21, 22	methods of electric braking-plugging, rheostatic braking and regenerative braking	Learn the different methods used for electric braking	Lecture	[EE1661.4]	Class Quiz / Mid Term Exam/ End Term Exam
Lec - 23	Mechanics of train movement	Understand the train movement mechanism	Lecture	[EE1661.5]	Class Quiz / Mid Term Exam/ End Term Exam
Lec - 23, 24	Speed-time curves for different services- trapezoidal speed time curves	Describe the importance of different Speed-time curves for different services	Lecture	[EE1661.5]	Class Quiz / Mid Term Exam/ End Term Exam
Lec - 25 (Tutorial)	Tutorial – 3 [Problem solving]	Numerical problems based on solving exercises based on trapezoidal speed time curves	Tutorial	[EE1661.5]	Class Quiz / Mid Term Exam/ End Term Exam
Lec - 26, 27	Speed-time curves for different services- quadrilateral speed time curves	Describe the importance of quadrilateral speed time curves	Lecture	[EE1661.5]	Class Quiz / Mid Term Exam/ End Term Exam
Lec – 28 (Tutorial)	Tutorial – 4 [Problem solving]	Numerical problems based on trapezoidal speed time curves	Tutorial	[EE1661.5]	Class Quiz / Mid Term Exam/ End Term Exam
Lec - 29, 30	Calculations of tractive effort	Learn the calculation of tractive effort	Lecture	[EE1661.5]	Class Quiz / Mid Term Exam/ End Term Exam
Lec - 31 (Tutorial)	Tutorial – 5 [Problem solving]	Numerical problems based on L29-L30	Tutorial	[EE1661.5]	Class Quiz / Mid Term Exam/ End Term Exam
Lec - 32	power, specific energy consumption for given run	Understand the calculation of power, specific energy consumption for given run	Lecture	[EE1661.5]	Class Quiz / Mid Term Exam/ End Term Exam
Lec – 33 (Tutorial)	Tutorial – 6 [Problem solving]	Numerical problems based on L32	Tutorial	[EE1661.5]	Class Quiz / Mid Term Exam / End Term Exam
Lec - 34, 35	effect of varying acceleration and braking retardation	Learn the effect of acceleration and retardation in electric traction	Lecture	[EE1661.5]	Class Quiz/ Mid Term Exam/ End Term Exam
Lec – 36	adhesive weight and coefficient of adhesion	Understand the importance and calculation of adhesive weight and coefficient of adhesion	Lecture	[EE1661.5]	Class Quiz / Mid Term Exam / End Term Exam

Lec – 37	adhesive weight and coefficient of adhesion	Understand the importance and calculation of adhesive weight and	Lecture	[EE1661.5]	Class Quiz / Mid Term Exam/ End Term Exam
		coefficient of adhesion			
Lec - 38	Tutorial – 7 [Problem solving]	Numerical exercises based on Lectures	Tutorial	[EE1661.5]	Class Quiz / Mid Term Exam/ End
(Tutorial)		36-37			Term Exam
Lec - 39 (Tutorial)	Tutorial – 8 [Problem solving]	Numerical exercises based on Lectures 36-37	Tutorial	[EE1661.5]	Class Quiz / Mid Term Exam/ End Term Exam
Lec - 40 (Tutorial)	Tutorial – 9 [Problem solving]	Numerical exercises based on Lectures 36-37	Tutorial	[EE1661.5]	Class Quiz / Mid Term Exam/ End Term Exam

I. Course Articulation Matrix: (Mapping of COs with POs)

		CORRELATION WITH PROGRAM OUTCOMES										CORRELATION					
CO No.	CO STATEMENT													WITH PROGRAM			
															SPECIFIC		
															OUTCOMES		
		PO 1	PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 12											PSO	PSO	PSO	
														1	2	3	
EE1661.1	Describe the fundamental concepts	3	3	3	2	2	2				2		2	3	2	2	
	of Electric Drives and discuss the																
	applications of Electric drives for																
	different industrial loads.																
EE1661.2	Identify the different types and	3	3	3	2	1								3	2	2	
	applications of Electric heating.																
EE1661.3	Understand the different types of	3	3	3	2	1								3	2	2	
	electric welding and their																
	advantages & applications.	_							-	-				_			
EE1661.4	Identify the importance of electric	2	2											3	1	1	
	traction and analyse special features																
	of existing electric traction system.	-												-			
EE1661.5	Analyse the mechanism of train	3	3	2	2									3	2	2	
	movement and evaluate different																
	parameters such as tractive effort,																
	power, specific energy consumption																
	for different speed time curves																
	which improves the employability																
	SKIIIS.																

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronics and communication Engineering (SEEC)

Department of Electrical Engineering

Course Hand-out

Electrical Energy Systems (EES) | EE 1691 | 3 Credits | 3 0 0 3

Session: Jan. 2021 – May 2021 | Faculty: Mr. Divya Rishi Shrivastava | Class: VI Semester (Open Elective)

A. Introduction: This course is offered by Dept. of Electrical Engineering as an Open Elective, targeting students who wish to pursue research & development in industries or higher studies in the field of Integration of renewable and non-renewable energy sources, including, thermal, nuclear, hydroelectric, solar, wind, biomass, wave and hybrid systems, power generation and transmission and the related electrical engineering practices. Most of the non- renewable energy comes from petroleum and coal and is expected to exhaust in the coming years and the renewable energy comes either directly or indirectly from sun and wind and can never be exhausted, and therefore they are called renewable. Worldwide attention to environmental issues combined with the energy crisis has forced us to increase the use of renewable energy sources which are freely available in the nature and are environment friendly. Energy found in the renewable and non-renewable resources is converted into a form, we can use as heat or electricity. To understand this course students are expected to have background knowledge of electricity and magnetism.

B. Course Outcomes: At the end of the course, students will be able to

[1691.1]. Describe the global and Indian energy scenario and the role of energy in economic development and social transformation

[1691.2]. Discuss the utilization of renewable sources in India, their utilization pattern in the past, present and future projections of consumption pattern.

[1691.3]. State the fundamentals of power systems and explain the operation and working of various kinds of power plants.

[1691.4]. Recognize the need and advancements in the renewable energy sources, analyse the problems and their possible solutions in harnessing renewable and non-renewable energy sources.

C. PROGRAM OUTCOMES (PO)

- [PO.1]. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations

- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

D. PROGRAM SPECIFIC OUTCOMES (PSO)

- [PSO.1]. To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- [PSO.2]. To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- [PSO.3]. Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

E. Assessment Plan:

Criteria	Description	Maximum Marks
----------	-------------	---------------

	Sessional Exam I (Closed Book)	15					
	Sessional Exam II (Closed Book)	15					
Internal Assessment (Summative)	In class Quizzes and Assignments,	30					
	Activity feedbacks (Accumulated and Averaged)						
End Term Exam (Summative)	End Term Exam (Closed Book)	40					
	Total	100					
Attendance (Formative)	A minimum of 75% Attendance is required to be maintained by a student to be qualified for taking up the End Semester examination. The allowance of 25% includes all types of leaves including medical leaves.						
Make up Assignments (Formative)	Students who misses a class will have absence. A makeup assignment on the to be given which has to be submitted withi No extensions will be given on this. The of absence will be marked blank, so th absence. These assignments are limite the entire semester.	to report to the teacher about the pictaught on the day of absence will na week from the date of absence. attendance for that particular day at the student is not accounted for ed to a maximum of 5 throughout					

F. SYLLABUS

Global Energy Scenario: Role of energy in economic development and social transformation: Energy & GDP, GNP and its dynamics. Indian Energy Scenario: Energy resources & Consumption: Commercial and noncommercial forms of energy, Fossil fuels, Renewable sources including Bio-fuels in India, their utilization pattern in the past, present and future projections of consumption pattern, Sector wise energy consumption, Electrical Energy Sources: Diesel Power Plant, Hydro Electric Power Plants, Gas turbine power plant, Applications Combined operation of power plants, load division among different types of power plants, Renewable Energy: Solar, Wind, Biomass, Geothermal, tidal, Fuel Cell, Introduction to transmission and distribution systems, Protection of electrical systems.

G. TEXT BOOKS

1. M. A. El-Sharkawi, *Electric Energy – An Introduction* (2e), CRC press, 2008.

H. REFERENCE BOOKS

- 1. C. E. Brown, World Energy Resources (1e), Springer, 2002.
- 2. V. Balzani, N Armanroli, *Energy for a Sustainable World (1e)*, Wiley-VCH, 2011.
- 3. J. B. Gupta, A Course in Electrical Power, S.K. Kataria & Sons, 1996.
- 4. C. L. Wadhwa, *Electrical Power System (3e)*, New Age Intl., 2000.

I. Lecture Plan:

LEC NO	TOPICS
1	Course objective and overview of the contents
2	Brief Introduction of the energy sources and their availability
3	Introduction and history of Power Systems, Voltage and Frequency Standards
4	Energy Conservation, Management and associated terms & definitions
5-6	Global Energy Scenario: Role of energy in economic development and social transformation
7-8	Energy & GDP, GNP and its dynamics
9-10	Indian Energy Scenario: Energy resources & Consumption
11	Commercial and non-commercial forms of energy
12	Fossil fuels, Renewable sources in India
13-14	Bio-fuels in India
15	Renewable sources : their utilization pattern in the past, present and future
15	projections of consumption pattern
16	Renewable sources : Sector wise energy consumption
17-18	Electrical Energy Sources: Diesel Power Plant
19-20	Hydro Electric Power Plants
21-22	Hydro Electric Power Plants continued
23	Gas turbine power plant
24	Diesel Power Plant
25	Combined operation of power plants
26	Load division among different types of power plants
27-28	Renewable Energy: Solar Energy
29-30	Solar Energy contd.
31	Wind Energy
32-33	Wind Energy contd.
34	Biomass Energy
35	Geothermal Energy
36-37	Tidal Energy, Fuel Cell
38	Introduction to transmission and distribution systems
39	Components of transmission and distribution systems
40	Transformers
41	Induction Motors
42	Protection of electrical systems.

J. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT	CORRELATION WITH PROGRAM OUTCOMES											CORRELATION WITH PROGRAM SPECIFIC OUTCOMES			
			PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE 1691.1	Describe the global and Indian energy scenario and the role of energy in economic development and social transformation.	3	2	3	0	0	1	0	0	0	0	1	2	1	2	0
EE 1691.2	Discuss the utilization of renewable sources including Bio-fuels in India, their utilization pattern in the past, present and future projections of consumption pattern.		2	0	0	1	0	2	0	0	1	0	0	2	1	2
EE 1691.3	State the fundamentals of power systems and explain the operation and working of various kinds of power plants.	3	2	0	1	0	0	0	0	1	0	1	1	2	1	1
EE 1691.5	Recognize the need and advancements in the renewable energy sources, analyse the problems and their possible solutions in harnessing renewable and non-renewable energy sources.	2	3	3	1	0	2	1	1	0	1	1	1	1	0	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Electronics & Electrical Engineering

Department of Electrical Engineering Course Hand-out

Power Electronics & Drives Lab| EE1632(N)| 1 Credits | 0 0 2

Session: July-November 2021 | Faculty: Mahipal Bukya, Himanshu Priyadarshi | Class: VI Semester, B.Tech. (EE)

- A. Introduction: This lab course includes experiments to study the following: ac to dc single phase controlled & Uncontrolled converters, symmetrical & unsymmetrical controlled converters, Harmonics Analysis, performance improvements with freewheeling diode, effects of variable load on performance of converter, power factor improvement, AC to AC voltage controller.
- B. Course Outcomes: At the end of the course, students will be able to
 [EE1632(N).1]. Understand practical aspects of operating various classes of power electronic converters and its firing control circuit. (Bloom's Level: knowledge, Comprehensive)
 [EE 1632(N).2]. Describe the operation of power electronic converters with freewheeling diode to improve the performance of the converters for enhancing the employability. (Bloom's Level: Analysis)
 [EE 1632(N).3]. Examine the performance of phase-controlled converter for different kind of load. (Bloom's Level: Analysis, Synthesis)
 [EE 1632(N).4.]. Understand proper turn on and turnoff of given thyristor by latching & holding currents, for applying it for different power conditioning circuits. (Bloom's Level: Application, Synthesis)

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- **[PO.I].Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- **[PO.2].Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3].Design/development of solutions**: Design solutions for complex engineering problems and <u>design system</u> <u>components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4].Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- **[PO.5].Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT</u> <u>tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6].The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal, health,</u> <u>safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice</u>
- **[PO.7].Environment and sustainability**: Understand the <u>impact of the professional engineering solutions in societal and</u> <u>environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8].Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- **[PO.9].Individual and team work**: Function effectively as an individual, and as a <u>member or leader in diverse teams</u>, and in multidisciplinary settings
- **[PO.10].** Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change
- **[PSO.1].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- **[PSO.3].** Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D. Assessment Plan:

Criteria	Description	Maximum Marks				
	Internal Assessment	60				
Internal Assessment						
(Summative)						
End Term Exam	End Term Exam	40				
(Summative)						
	Total	100				
Attendance	A minimum of 75% Attendance is requi	red to be maintained by a student to be				
(Formative)	qualified for taking up the End Semester examination. The allowance of 25%					
	includes all types of leaves including medi	cal leaves.				

E. SYLLABUS

SCR characteristics : Measurement of latching and holding current, Single Phase Half Wave and Full Wave AC – DC converters, Three Phase Half Wave and Full wave Controlled Converter, AC Voltage Regulator, Cycloconverter controlled Induction machine, Matrix Converter controlled Induction Machine, Open Loop and Closed Loop Speed control of D.C. motor using DSP kit, Open Loop and Closed Loop Speed control of Induction motor using DSP kit, Study harmonics Analysis of Three Phase Power electronic Converter Circuit, Single Phase and Three Phase and Single Phase converter/ Inverter circuit simulation using MATLAB.

F. TEXT BOOKS

TI. Bimbhra P.S., Power Electronics. Khanna Publishers, 2015

T2. Ned Mohan et al, Power Electronics - Converters, Applications and Design, Wiley Publications,

G. REFERENCE BOOKS

RI. D. W. Hart, Power Electronics, TMH, 2011.

R2. L. Umanand, Power Electronics – Essentials and Applications, Wiley India Pvt. Ltd., 2014

Class Number	Topics	Session Outcome	Mode of Delivery	Corresponding Course Outcome	Mode of Assessin g the Outcom
Ι	Single Phase Half-Wave Uncontrolled Rectifier	To Analyze the Operation of Single Phase Half-Wave Uncontrolled Rectifier For R, RL & RL Load .	Hands-on session, Think pair share	EE1632(N).1, EE1632(N).2	Continuo us internal assessme nt, carried
2	Single Phase Half-Wave Uncontrolled Rectifier	To Analyze the Operation of Single Phase Half-Wave Uncontrolled Rectifier For R, RL & RL Load with freewheeling diode	Hands-on session, Think pair share	EE1632(N).1, EE1632(N).2	– out after
3	Single Phase Full Wave Uncontrolled Rectifier	To Verify the Voltage Waveform of Single Phase Full Wave Uncontrolled Rectifier For R and RL load.	Hands-on session, Think pair share – D.I.Y. experiment , capture your experiment in a short video – max 5 minutes	EE1632(N).1, EE1632(N).2 EE1632(N).3, EE1632(N).4	
4	Single Phase Half-Wave Controlled Rectifier	To Verify the Voltage Waveform of Single Phase Half-Wave Controlled Rectifier For R, RL & RL Load with Freewheeling diode.	Hands-on session, Think þair share	EE1632(N).1, EE1632(N).2 EE1632(N).3, EE1632(N).4	
5	Single Phase Full-Wave Controlled Rectifier	To Verify the Voltage Waveform of Single Phase Full-Wave Controlled Rectifier For R, RL & RL Load with Freewheeling diode.	Hands-on session, Think þair share	EE1632(N).1, EE1632(N).2 EE1632(N).3, EE1632(N).4	
6	Latching and holding current determination for SCR.	To find out the Latching and Holding Currents measurement of the given SCR	Hands-on session, Think pair share	EE1632(N).4	
7	Single Phase Full-Wave Half Controlled Asymmetrical Rectifier	To Implement the Single Phase Full-Wave Half Controlled Asymmetrical Rectifier.	Hands-on session, Think þair share	EE1632(N).1, EE1632(N).2 EE1632(N).3, EE1632(N).4	
8	Single Phase Full-Wave Half Controlled Symmetrical Rectifier.	To Implement the Single Phase Full-Wave Half Controlled Symmetrical Rectifier.	Hands-on session, Think pair share	EE1632(N).1, EE1632(N).2 EE1632(N).3, EE1632(N).4	
9	Single Phase AC Voltage Controller	To Verify the Voltage Waveform of Single Phase AC Voltage Controller.	Hands-on session, Think pair share	EE1632(N).1, EE1632(N).2 EE1632(N).3, EE1632(N).4	
10	Power Factor Improvement	To Demonstrate the Power Factor Improvement of Fluorescent Tube.	Hands-on session, Think pair share		

11	Three Phase	Perform the Experiment &	Hands-on session, Think	EE1632(N).1,						
	Half Wave	Harmonic Analysis of Supply	þair share	EE1632(N).2						
	Controlled AC	Currents on Three Phase Half		EE1632(N).3,						
	to DC	Wave Controlled AC to DC		EE1632(N).4						
	Converter	Converter for R & RL Load.								
12	Three Phase	Perform the Experiment &	Hands-on session, Think	EE1632(N).1,						
	Full Wave	Harmonic Analysis of Supply	þair share	EE1632(N).2						
	Controlled AC	Currents on Three Phase Full		EE1632(N).3,						
	to DC	Wave Controlled AC to DC		EE1632(N).4						
	Converter	Converter for R & RL Load.								
13	Buck Converter	Design, simulate and analyze	Hands-on session, Think	EE1632(N).1,						
		Buck Converter from first	þair share	EE1632(N).2						
		principles		EE1632(N).3,						
1.4			· · · · · · · · · · · · · · · · · · ·	EE1632(N).4						
14	Speed Control	Perform Speed Control of AC	Hands-on session, Think	EE1632(N).1,						
	of AC Induction	Induction Motor Drives using	pair share	EE1632(N).2						
	Motor	Micro Controller with Open Loop		EE1632(N).3,						
		& Closed Loop Configuration.		EE1032(N).4						
	END TERM EXAM									

I. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES						CORRELATION WITH PROGRAM SPECIFIC OUTCOMES							
		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
EE 1632(N)1	Understand practical aspects of operating various classes of power electronic converters and its firing control circuit.	3	1	3	4	5	2	3	3	9	10		12	1	2	3
EE 1632(N)2	Describe the operation of power electronic converters with freewheeling diode to improve the performance of the converters for enhancing the employability	2	3		2					1					2	3
EE 1632(N)3	Examine the performance of phase controlled converter for different kind of load.		2	3		1	2				1			3	3	3
EE 1632(N)4	Understand proper turn on and turnoff of given thyristor by latching & holding currents.			3	2			1				1	3	2	3	3

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronics and Communication Engineering

Department of Electrical Engineering Course Hand-out

Microcontroller Laboratory | EE 1631 (N) | 1 Credits | 0 0 2 1

Session: JAN2021 – MAY2021 | Faculty: Abhishek Kumar | Class: VI Sem B Tech (EE)

A. Introduction: This course is offered by Dept. of Electrical Engineering as a Laboratory course, targeting students who wish to work in the area of embedded systems and automation. This course provides an understanding about the concepts and basic architecture of 8051, background knowledge of Keil Software in microcontroller, knowledge about assembly language programs of 8051, knowledge of different types of external interfaces including LEDS, LCD, Switches, stepper motor etc. The course also build up the basic understanding of the importance of different peripheral devices & their interfacing to 8051 and give an overview of recent growth and trends of controllers & processors.

B. Course Outcomes: At the end of the course, students will be able to

[EE1631(N).1] Explain the features of Microcontroller ESA MCB51 Kit and Keil Software. (Bloom's Level: Cognitive level Knowledge).

[EE1631(N).2] Introduce Assembly Language Program (ALP) concepts and features. (Bloom's Level: Cognitive level Knowledge).

[EE1631(N).3] Write ALP for Data block operations, arithmetic and logical operations, Code Conversion operations in 8051 (Bloom's Level: Cognitive level Synthesis, Analysis).

[EE1631(N).4] Analyze the working of on-chip features of 8051 like timers, counter and interrupts of Microcontroller 8051. (Bloom's Level: Cognitive level Analysis, Synthesis).

[EE1631 (N).5] Simulate various interface kits (LCD, stepper motor, elevator, traffic light control). (Bloom's Level: Cognitive level Analysis, Synthesis).

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- **[PO.1]. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
 - **[PO.2]. Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
 - **[PO.3]. Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified

needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

- **[PO.4]. Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments</u>, <u>analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- **[PO.5]. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual</u> <u>knowledge to</u> <u>assess societal</u>, <u>health</u>, <u>safety</u>, <u>legal</u>, <u>and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. Environment and sustainability: Understand the <u>impact of the professional</u> <u>engineering solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8]. Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member</u> or <u>leader in diverse teams</u>, and in multidisciplinary settings
- **[PO.10]. Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.11]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12]. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change.
- **[PSO.1].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmentally friendly and feasible solutions.

[PSO.3]. Develop, investigate, and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D. Assessment Plan:

Criteria	Description	Maximum Marks

Internal Assessment							
(60 Marks)	Documentation	Total 60					
		15					
	Preparation and Observation						
	-	10					
	Regularity and Performance :	15					
	Assignment Submission :	10					
	Internal Viva :	10					
End Term Exam		40					
	Procedure with logic, flowchart	15					
	Experiment Conduction :	10					
	Calculations :	5					
	Viva Voce :	10					
	Total	100					
Attendance	A minimum of 75% Attendance i	s required to be maintained by a					
(Formative)	student to be qualified for takin	g up the End Semester					
	examination. The allowance of	25% includes all types of leaves					
	including medical leaves.						
Make up Assignments	Students who misses a class w	vill have to report to the teacher					
(Formative)	about the absence. A makeup as	ssignment on the topic taught on					
	the day of absence will be given	which has to be submitted within					
	a week from the date of absence	e. No extensions will be given on					
	this. The attendance for that pa	articular day of absence will be					
	marked blank, so that the stude	nt is not accounted for absence.					
	These assignments are limited to	o a maximum of 5 throughout the					
	entire semester.						
Homework/ Home Assignment/	There are situations where a stu	ident may have to work in home,					
Activity Assignment	especially before a flipped class	room. Although these works are					
(Formative)	not graded with marks. However, a student is expected to						
	participate and perform these assignments with full zeal since the						
	activity/ flipped classroom parti	cipation by a student will be					
	assessed and marks will be awarded.						

E. SYLLABUS

Introduction to ESAMCB – 51 kit and Keil software, Programs of Data transfer & Addressing modes, Programs of Data block transfer, Programs of Searching of data in array & sorting of data Array, Programs of Arithmetic & Logical operations, Programs of various Code Conversion techniques, Programs of Delay Generation using timer and counter, Simulation of LCD interface, Simulation of Interrupts Programming on ESA MCB51 Kit, Simulation of Logic Controller Interface, Speed control simulation

of Stepper Motor Interface, Simulation of Traffic Light Interface and Elevator Interface, Arduino based motor and LED array interface.

F. TEXT BOOKS

T1. M.A. Mazidi and G. Mazidi, The 8051 microcontroller & Embedded Systems using Assembly & **'C'**, Pearson, 2011

T2. Rajkamal, Microcontrollers, Architecture, Programming, Interfacing & System Design, Pearson, 2005.**T3.** Ramesh S. Gaonkar, *Microprocessor architecture, programming, and applications with the 8085 (5e)*, Prentice Hall, 2002.

G. REFERENCE BOOKS

R1. K.J. Ayala, The 8051 Microcontroller & Embedded Systems using Assembly & 'C', Cengage, 2009

R2. Predko, Programming & Customizing the 8051 Microcontroller, Tata McGraw Hill

R3. Ray A.K. and Bhurchandi K.M., *Advanced Microprocessors and Peripherals (2e)*, Mc Graw Hill Education, 2009.

H. Lecture Plan:

EvoNo	Experiment Description	Lab Objective	Mode of Delivery	Corresponding	Mode of Assessing
Ехрічо	Experiment Description				Outcome
		Student will learn to write an ALP for	Laboratory	EE1631(N).I	Continuous Lab
	Study of 8051 based Microcontroller Kit (ESA	8051 microcontroller.	Tutorial and	EE1631(N).2	Evaluation
1	MCB51 Kit) and Keil Software.		Experiments		and End Term Practical
					exam
		Student will learn to develop a logic	Laboratory	EE1631(N). I	Continuous Lab
2	Write assembly language programs to transfer the data from one memory location to another	of data block transfer among different	Tutorial and	EE1631(N).2	Evaluation
2	memory location using different addressing	memories for 8051 microcontroller.	Experiments	EE1631(N). 3	and End Term Practical
	mode.				exam
		Student will learn to apply the logic of	Laboratory	EE1631(N). I	Continuous Lab
2	Write assembly language programs to transfer a data block from one place to another place in the memory of Microcontroller 8051.	exchanging the data for 8051	Tutorial and	EE1631(N).2	Evaluation
3		microcontroller.	Experiments	EE1631(N). 3	and End Term Practical
					exam
		Student will learn to develop a logic	Laboratory	EE1631(N).I	Continuous Lab
4	Write assembly language programs to search a	for searching algorithms in ALP for	Tutorial and	EE1631(N).2	Evaluation
7	Microcontroller 8051.	8051 microcontroller.	Experiments	EE1631(N). 3	and End Term Practical
					exam
		Student will learn to develop a logic	Laboratory	EE1631(N). I	Continuous Lab
F	Write assembly language programs to sort a	for sorting algorithms in ALP for 8051	Tutorial and	EE1631(N).2	Evaluation
5	Microcontroller 8051.	microcontroller.	Experiments	EE1631(N). 3	and End Term Practical
					exam

		Student will learn to develop a logic	Laboratory	EE1631(N).I	Continuous Lab
	Write assembly language programs for	for addition and subtraction in ALP for	Tutorial and	EE1631(N).2	Evaluation
6	mathematical operation (addition and subtraction) using Microcontroller 8051.	8051 microcontroller.	Experiments	EE1631(N). 3	and End Term Practical
					exam
		Student will learn to develop a logic	Laboratory	EE1631(N).I	Continuous Lab
	Write and perform programs for mathematical	for multiplication and division in ALP	Tutorial and	EE1631(N).2	Evaluation
7	operation (multiplication and division) using Microcontroller 8051.	for 8051 microcontroller.	Experiments	EE1631(N). 3	and End Term Practical
					exam
		Student will learn to develop a logic	Laboratory	EE1631(N).I	Continuous Lab
	Write and perform programs of mathematical operations on BCD Numbers.	for BCD addition in ALP for 8051	Tutorial and	EE1631(N).2	Evaluation
8		microcontroller.	Experiments	EE1631(N). 3	and End Term Practical
					exam
	Write and perform programs of the various	Student will learn to develop a logic	Laboratory	EE1631(N).I	Continuous Lab
		for code conversion in ALP for 8051	Tutorial and	EE1631(N).2	Evaluation
9	number system based code conversion	microcontroller.	Experiments	EE1631(N). 3	and End Term Practical
	of other states of the states				exam
		Student will learn to develop a logic	Laboratory	EE1631(N).I	Continuous Lab
	Write and simulate programs for Delay	for timer and counter in ALP for 8051	Tutorial and	EE1631(N).2	Evaluation
10	Generation, Timer & Counter operations.	microcontroller.	Experiments	EE1631(N).4	and End Term Practical
					exam
		Student will learn to develop a logic	Laboratory	EE1631(N).I	Continuous Lab
11	Write and simulate programs for interrupt	for interrupt operation in ALP for	Tutorial and	EE1631(N).2	Evaluation
	operation on ESA51 Microcontroller Kit.	8051 microcontroller.	Experiments	EE1631(N).4	
	1				

					and End Term Practical
					exam
		Student will learn to develop a logic	Laboratory	EE1631(N). I	Continuous Lab
	Write and perform programs to display the	for LCD interface to 8051	Tutorial and	EE1631(N).2	Evaluation
12	data on LCD Screen interfaced with ESA51 Microcontroller	microcontroller.	Experiments	EE1631(N). 5	and End Term Practical
					exam
	Write and perform programs of various logic operations on ESA51 Microcontroller Kit.	Student will learn to develop a logic	Laboratory	EE1631(N). I	Continuous Lab
		for logic operations KIT interface to	Tutorial and	EE1631(N).2	Evaluation
13		8051 microcontroller.	Experiments	EE1631(N). 5	and End Term Practical
					exam
		Student will learn to develop a logic	Laboratory	EE1631(N). I	Continuous Lab
	Write assembly language programs to interface	for stepper motor control interface to	Tutorial and	EE1631(N).2	Evaluation
14	& run a stepper motor at various speed using ESA51 Microcontroller Kit.	8051 microcontroller.	Experiments	EE1631(N).5	and End Term Practical
					exam

I. Course Articulation Matrix: (Mapping of COs with POs)

			CORRELATION WITH PROGRAM OUTCOMES						CORRELATION WITH							
СО	STATEMENT								PROGRAM SPECIFIC OUTCOMES							
		PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	РО 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
EE 1631(N). 1	Explain the features of Microcontroller ESA MCB51 Kit and Keil Software.	2			3								2	2		
EE 1631(N). 2	Introduce Assembly Language Program (ALP) concepts and features.	2												3	2	1
EE 1631(N). 3	Write ALP for Data block operations, arithmetic and logical operations, Code Conversion operations in 8051.	2	2	1	2	1							1		3	2
EE 1631(N). 4	Analyze the working of on-chip features of 8051 like timers, counter and interrupts of Microcontroller 8051.	2	2	1	2	1							1		3	2
EE 1631(N). 5	Simulate various interface kits (LCD, stepper motor, elevator, traffic light control).	2	2	2	2	1							1		3	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronic Communication Engineering

Department of Electrical Engineering Course Hand-out

Power System Protection & Switchgear | EE 1701(N) | 3 Credits | 3 0 0 3

Session: Aug. 2020 – Dec. 2020 | Faculty: Dr. Neeraj Kanwar | Class: VII Semester, B. Tech. (EE)

- A. Introduction: This course is offered by Department of Electrical Engineering as core subject, targeting students who wish to pursue research & development in Electric utility or higher studies in field of Switchgear & Protection, including various power system elements and their protection, Fuses, Circuit Breakers, Earthing, Protective Relays, Protection Schemes, recent trends in relays. Students are expected to have background knowledge on Transmission & Distribution System, Various type of faults for a better learning.
- **B. Course Outcomes:** At the end of the course, students will be able to:

[EE 1701(N).1] Understand and explain power system protection, terminologies, classification and essential qualities.

- [EE 1701(N).2] Comprehend different protection schemes and their applications.
- [EE 1701(N).3] Compare and explain static relay, digital protection.
- **[EE 1701(N).4]** Develop skill to acquire knowledge about different types of circuit breakers and their applications.
- [EE 1701(N).5] Understand linear couplers, autoreclosure, metal clad switchgear, Isolators, earthing switches, fuses and neutral grounding.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

[PO.1]. <u>Engineering knowledge:</u> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

[PO.2]. Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

[PO.3]. <u>Design/development of solutions:</u> Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

[PO.4]. <u>Conduct investigations of complex problems:</u> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions

[PO.5]. <u>Modern tool usage:</u> Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations

[PO.6]. <u>The engineer and society:</u> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice

[PO.7]. <u>Environment and sustainability:</u> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

[PO.8]. <u>Ethics:</u> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices

[PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

[PO.10]. <u>Communication:</u> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

[PO.II]. <u>Project management and finance:</u> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

[PO.12]. <u>Life-long learning</u>: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

[PSO.1]. <u>To solve</u> complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.

[PSO.2]. <u>To design</u>, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.

[PSO.3]. <u>**Develop**</u>, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D. Assessment Plan:

Criteria	Description	Maximum Marks					
	Sessional Exam I (Closed Book)	15					
Internal Assessment	Sessional Exam II (Closed Book)	15					
(Summative)	In class Quizzes and Assignments ,	30					
	Activity feedbacks (Accumulated and						
	Averaged)						
End Term Exam	End Term Exam (Closed Book)	40					
(Summative)							
	Total	100					
Attendance	A minimum of 75% Attendance is required to be maintained by a student to be						
(Formative)	qualified for taking up the End Semester examination. The allowance of 25%						
	includes all types of leaves including medi	cal leaves.					
Make up Assignments	Students who misses a class will have to	report to the teacher about the absence.					
(Formative)	A makeup assignment on the topic taught	on the day of absence will be given which					
	has to be submitted within a week from t	he date of absence. No extensions will be					
	given on this. The attendance for that p	particular day of absence will be marked					
	blank, so that the student is not accour	ited for absence. These assignments are					
	limited to a maximum of 5 throughout th	e entire semester.					
Homework/ Home Assignment/	There are situations where a student may	have to work at home, especially before					
Activity Assignment	a flipped classroom. Although these work	s are not graded with marks. However, a					
(Formative)	student is expected to participate and per	form these assignments with full zeal since					
	the activity/ flipped classroom participatic	on by a student will be assessed and marks					
	will be awarded.						

E. Syllabus

Protective Relaying: Functional characteristics, standard definition of relay terminologies, classifications & operating principles, Feeder Protection, Distance Protection, Generator Protection, Transformers Protection, Translay Relay, Carrier Current Protection, Comparators, Static Relays, Digital Protection, Linear Couplers, Current Transformers, Potential Transformers. Circuit breakers: Arc phenomenon, arc interruption theories, Current chopping. CB types: Oil circuit breakers, Air circuit breakers, SF6 CB, Vacuum CB, MCCB, ELCB, RCCB and HVDC circuit breakers. CB rating, testing, operating mechanism, Autoreclosure, metal clad switchgear, Isolators and earthing switches, Fuses, Neutral grounding.

F. Reference Books

- R1. Chakraborti, A., Soni, M.L., Gupta, P.V. and Bhatnagar, U.S.: A Text Book on Power System Engineering, Dhanpat Rai and Co. (P) Ltd., 2008.
- R2. Pathinkar, Y.G. and Bhide, S.R.: Fundamentals of Power System Protection, PHI Learning Pvt. Limited, 2008.
- R3. Deshpande, M.V.: Switchgear and Protection, Tata McGraw-Hill, 2005.
- R4. Elmore, W.A.: Protective Relaying Theory and Applications, ABB Power T and D Company Inc., 2003.

G. Text Books

T1.Rao, S. S.: Switchgear Protection and Power systems, Khanna Publishers, 2015.
T2.Ram, B. and Vishwakarma, D. N.: Power System Protection & Switchgear, MGH, 2014.
T3.Ravindranath, B. and Chander, M.: Power System Protection and Switchgear, New Age International, 2018.
T4.Singh, R. P.: Digital Power System Protection, PHI, 2007.

H. Lecture Plan:

Class Number	Topics	Session Outcome	Mode of Delivery	Corresponding Course Outcome	Mode of Assessing the Outcome
I	Introduction to Power System Protection System and basic introduction of syllabus	Brief knowledge about syllabus	Lecture	NA	NA
2	Protective Relaying and its Functions, Standard definition of relay terminologies, Fundamental characteristic of a protective relay	Know about different functions, definitions and relay characteristics	Lecture	CO1	Mid Term Exam and Class Quiz
3	Operating principle of Electromagnetic attraction and induction relays and their types	Understand principle of operation of different Electromagnetic attraction and induction relays	Lecture	CO1 and CO2	Mid Term Exam and Class Quiz
4	Types of Protection:primaryprotectionandback-upprotection,typesofback-upback-up	Knowledge about primary and back- up protection schemes	Lecture	CO1	Mid Term and End Term Exam
5	Overcurrent Relays	Understand Instantaneous overcurrent relay, Inverse time- current relay, Inverse definite minimum time (IDMT) overcurrent relay, Very inverse relay, and Extremely inverse relay	Lecture and discussion	CO1	Mid Term Exam and Class Quiz
6	Time and current setting of Relays: Plug-setting multiplier (PSM), Time multiplier setting (TMS)	Acquire knowledge about time and current setting of relays and solve numericals	Tutorial	CO1	Mid Term Exam and Class Quiz
7	Basic functional relay types	Understand Induction type overcurrent relays, Induction type reverse power relays, Distance relays, Differential relays and Translay scheme	Lecture	CO2	Mid Term Exam
8	Transformer protection	Understand Buchholz Relay, Earth-Fault or Frame Leakage Protection, Combined Leakage and Overload	Lecture	CO2	Mid Term and End Term Exam

		Protection, Differential protection for Transformer protection			
9	Numericals on Transformer Protection	Solve numericals on Transformer Protection	Tutorial	CO2	Mid Term and End Term Exam
10	Alternator protection	Understand differential protection, balanced earth- fault protection, stator inter-turn protection for Alternator protection	Lecture	CO2	Mid Term and End Term Exam
11	Numericals on Alternator Protection	Solve numericals on Alternator Protection	Tutorial	CO2	Mid Term Exam
12	Busbar protection	Know about Differential protection, Fault bus protection, Frame leakage protection for bus bars used for Busbar protection	Lecture	CO2	Mid Term and End Term Exam
13	Line protection	Understand Time- graded overcurrent protection, Differential protection and Distance protection used for line protection	Lecture	CO2	Mid Term Exam and Class Quiz
14	Numericals on Busbar protection and Line protection	Solve numericals on Numericals on Busbar and Line protection	Tutorial	CO2	Mid Term Exam and Class Quiz
15	Induction motor protection	Understand methods of Induction motor protection	Lecture	CO2	Class Quiz
16	Carrier Current Protection	Understand Carrier current protection	Lecture	CO2	Assignment
17	Static Relays, Advantages of static relays over electromechanical relays	Understand and compare static relays with electromechanical relays	Lecture	CO3	Mid Term Exam
18	Comparators	Learn about amplitude and phase comparators, duality between	Lecture	CO3	Mid Term Exam

		amplitude and phase comparators			
19	Digital Protection	Understand Digital Protection	Lecture	CO3	Assignment and Group discussion
20	Current Transformers (CT)	Study CT operation, different errors and its characteristic	Lecture and discussion	CO5	Mid Term Exam
21	Potential Transformers (PT)	Study PT operation, different errors and its characteristic	Lecture and discussion	CO5	Assignment and Class Quiz
22	Numericals on CT and PT	Solve numericals on CT and PT	Tutorial	CO5	Assignment and Mid Term Exam
23	Circuit breakers	Understand Arc Phenomenon, Principles of Arc Extinction	Lecture	CO4	End Term Exam and Class Quiz
24	Methods of Arc Extinction	Know about methods of Arc Extinction and Low resistance or current zero method	Lecture	CO4	Class Quiz
25	Important Terms	Understand different important terms: Arc Voltage/Restriking voltage/Recovery voltage	Lecture	CO4	End Term Exam and Class Quiz
26	Classification of Circuit Breakers	Understand basic about different types of Circuit Breakers	Lecture	CO4	End Term Exam and Class Quiz
27	Oil Circuit Breakers	Know about advantages and disadvantages, Types of Oil Circuit Breakers: Bulk oil circuit breakers & Low oil circuit breakers	Lecture	CO4	End Term Exam and Class Quiz
28	Oil Circuit Breakers	Know about advantages and disadvantages, working of Low oil circuit breakers	Lecture	CO4	End Term Exam and Class Quiz
29	Plain break oil circuit breakers	Know about construction, operation, and advantages & disadvantages of Plain break oil circuit breakers	Lecture	CO4	Assignment and Class Quiz
30	Arc control oil circuit breakers	Understand different types- Self-blast oil	Lecture	CO4	Assignment and Class Quiz

		circuit breakers & Forced-blast oil circuit breakers, their construction, operation, and advantages & disadvantages			
31	Low Oil Circuit Breakers	Knowledge about construction, operation, and advantages & disadvantages of Low Oil Circuit Breakers	Lecture	CO4	End Term Exam and Class Quiz
32	Air-Blast Circuit Breakers	Knowledge about types, construction, operation, and advantages & disadvantages of Air-Blast Circuit Breakers	Lecture	CO4	Assignment and Class Quiz
33	Sulphur Hexaflouride (SF6)	Understand about construction, operation, advantages & disadvantages, and applications of Sulphur Hexaflouride (SF6) Circuit Breakers	Lecture	CO4	End Term Exam and Class Quiz
34	Vacuum Circuit Breakers (VCB)	Knowledge about construction, operation, advantages & disadvantages, and applications of VCB	Lecture	CO4	Class Quiz
35	Numericals on Circuit Breaker	Solve numericals on Circuit Breaker	Tutorial	CO4	End Term Exam and Class Quiz
36	MCB, MCCB, ELCB, RCCB	Compare and understand MCB, MCCB, ELCB, RCCB	Lecture	CO4	End Term Exam and Assignment
37	HVDC circuit breakers, CB rating, testing, operating mechanism	Understand HVDC circuit breakers, CB rating, testing, operating mechanism	Lecture	CO4	Assignment
38	Autoreclosure, metal clad switchgear	Understand Autoreclosure, metal clad switchgear	Lecture	CO5	Assignment
39	Isolators and earthing switches	Understand Isolators and earthing switches	Lecture	CO5	End Term Exam and Assignment

40	Fuses	Acquire knowledge about selection of fuses, Desirable Characteristics of Fuse Element, Important Terms, Types of Fuses, Current Carrying Capacity of Fuse Element	Lecture and discussion		Mid Term and End Term Exam
41	Numericals on Fuses	Solve numericals on Fuses	Tutorial	CO5	Mid Term and End Term Exam
42	Neutral grounding	Understand methods of Neutral Grounding, advantages, disadvantages and applications	Lecture	CO5	End Term Exam

СО	STATEMENT	Corr	Correlation with Program Outcomes (POs)					Ds)	Correlation with Program Specific					
		POI	PO2	PO3	PO4	PO5	PO6	PO7	PSO I	PSO 2	PSO 3	PSO 4	PSO 5	
[EE1701(N)	I] Understand and explain power system protection, terminologies, classification and essential qualities	3	2	2					2	I	I			
[EE1701(N)	2] Comprehend different protection schemes and their applications		3	3		I			3	2	3			
[EE1701(N)	3] Compare and explain static relay, digital protection	2	3	I		3			2	2	2			
[EE1701(N)	Develop skill to acquire knowledge about different types of circuit breakers and their applications		3	2		2			3	2	3			
[EE1701(N)	N).5] Understand linear couplers, autoreclosure, metal clad switchgear, Isolators, earthing switches, fuses and neutral grounding		2	I		2			2	2	I			

I-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronics and Communication Engineering

Department of Electrical Engineering Course Hand-out

Power System Operation & Control| EE 1703 (N) | 4 Credits | 3 1 0 4

Session: July 2020 – Dec 2020 | Faculty: Dr. Amit Saraswat | Class: VII Semester, B.Tech. (EE)

- A. Introduction: The course is offered by Department of Electrical Engineering as a Regular Course, targeting all the students of VII Semester, B.Tech. (EE). It is one of the advanced courses in the domain of Electrical Power System Engineering. The main objective of the course is to create awareness, in the undergraduate students of Electrical Engineering, about the basic operations and the desired various control actions in modern power system such Automatic Load Frequency Control (ALFC), Automatic Voltage Regulation (AVR), Reactive Power Compensation and Voltage Control, and Economic Operations. The course offers an in-depth understanding of mathematical modelling of various components (i.e. Speed-Governor, Turbine and Generator-Load) of ALFC, fundamentals related to reactive power compensation and voltage control techniques, and economic load dispatch. It deals with the devising and assessment of the operation and control strategies available for practical applicability. Students are expected to have prerequisite knowledge of engineering mathematics, electrical machines, generation transmission and distribution of electrical power and power systems analysis for a better learning.
- **B. Course Outcomes:** Upon successful completion of the course, the student will be able to:
 - [EE1703N.1] Aware about the general structure of modern electrical power system, its operating states and the critical operational and control issues.
 - [EE1703N.2] Formulate the appropriate mathematical models for various components of Automatic Load Frequency Control (ALFC) such as speed-governing system, turbine, generator, load etc.
 - [EE1703N.3] Analyze the mathematical model (Block Diagram Representation) for Automatic Load Frequency Control (ALFC) in Single-Area and Multi-Area control Scenarios, hence develop employability skills.
 - [EE1703N.4] Realize the various critical issues for Reactive Power & Voltage Control in uncompensated and compensated transmission line with FACTs. Also realize the complete block diagram representation of Automatic Voltage Regulator (AVR).
 - [EE1703N.5] Comprehend the appropriate mathematical models for Economic Load Dispatch (ELD) and Unit Commitment (UC) problems.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1] Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- [PO.2] Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- [PO.3] Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

- [PO.4] Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- [PO.5] Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- [PO.6] The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- [PO.7] Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- [PO.8] Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices.
- [PO.9] Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- [PO.10] Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- [PO.11] Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- [PO.12] Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- [PSO.1] To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- [PSO.2] To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- [PSO.3] Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D. Assessment Plan

Criteria	Description	Maximum Marks						
	Sessional Exam I (Closed Book)	15						
Internal Assessment	Sessional Exam II (Closed Book)	15						
(Summative)	In class Quizzes and Assignments	30						
	(Accumulated and Averaged)							
End Term Exam	End Term Exam (Closed Book)	40						
(Summative)								
	Total	100						
Attendance	A minimum of 75% Attendance is required to be maintained by a student to							
(Formative)	be qualified for taking up the End Semester examination. The allowance of							
	25% includes all types of leaves include	ling medical leaves.						
Make up Assignments	Students who miss a class will have to	report to the teacher about the absence.						
(Formative)	A makeup assignment on the topic tau	ght on the day of absence will be given						
	which has to be submitted within a	week from the date of absence. No						
	extensions will be given on this. The	attendance for that particular day of						
	absence will be marked blank, so the	hat the student is not accounted for						
	absence. These assignments are limited	ed to a maximum of 5 throughout the						
	entire semester.							

E. SYLLABUS

EE 1703 (N)POWER SYSTEM OPERATION AND CONTROL[3 1 0 4]

Basic introduction to power system operations and control: The structure of modern electrical power system, Operating states of power system, Basic power system control and objectives - generating unit controls. **Automatic Generation Control (AGC):** Basic generator control loops, automatic load frequency control (ALFC), Mathematical modelling of turbine speed-governing system, steam turbine model and generator load model, complete block diagram representation, stead-state and dynamic analysis, Concept of control area- single and two area control, proportional-integral controller. **Automatic Voltage Regulator** (**AVR**): basic control loop, block diagram representation- exciter system, generator models, stability of excitation system. **Reactive Power & Voltage Control:** Necessity of voltage control, generation and absorption of reactive power, methods of reactive power/voltage control, reactive power flow and voltage collapse, concept of voltage stability, synchronous generator capability curve, reactive power compensation-series & shunt compensation, basic introduction to Flexible AC Transmission Systems (FACTS). **Introduction to Economic Operations:** Basics formulations of Economic Load Dispatch (ELD) and Unit Commitment (UC).

F. TEXT BOOKS

[T1] S. Sivanagaraju & G. Sreenivasan, Power System Operation and Control (1e), Pearson, 2013.

G. REFERENCE BOOKS

- [R1] P. Kundur, Power System Stability Analysis & Control (1e), Tata Mc Graw Hill, 2006.
- [R2] Wood & B. F. Woolenberg, Power System Operation & Control (2e), John Wiley, 2003.
- [R3] J. J. Grainger and W. D. Stevenson, *Elements of Power System Analysis (4e)*, TMH, 2003.
- [R4] D. P. Kothari & I. J. Nagrath, Modern Power System Analysis (2e), TMH, 2013.

H. Lecture Plan

EE 1703 (N): Power System Operation & Control (PSOC)

Lecture / Tutorial No.	Topic to be covered	Session Objectives	Mode of Delivery	Mode of Delivery Outcome	
L1	Preamble of the Course: Discussion on Course Contents (Syllabus), Course Prerequisites, Course Objectives and Outcomes.	To acquaint students with the outcome-based education (OBE) and Course outcomes (COs) and program outcomes (POs) assessment process	Lecture & Interaction	N.A.	N.A.
L2-L3	Brief Introduction to Power System Operation and Control	Structure of a typical power system, Review of basic concepts in power system engineering, Power System Representations.	Lecture & Interaction	EE1703N.1	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L4-L5	Power System Operation and Control: Operating States of Power System, Operational and Control Issues, Objectives of Power System Control.	Operating States of Power System, Operational and Control Issues, Objectives of Power System Control.	Lecture & Interaction	EE1703N.1	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L6-L7	Critical Issues with Power System Operation and Control	Automatic Generating Control (AGC): Automatic Voltage Control (AVC) & Load Frequency Control (LFC), Economic Operations such as ELD, OPF, ORPD, Unit Commitment, Stability & Security Analysis and Contingency Analysis.	Lecture & Interaction	EE1703N.1	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
T1	Problems and Numerical Examples	Numerical problems based on L1 – L7	Tutorial & Interaction / EE1703N.1 Group Discussion		Mid Term Exam / End Term Exam

L8	Automatic Generation Control (AGC): Block Diagram of Generator Control and Load Frequency Control (LFC).	Block Diagram of Generator Control and Load Frequency Control (LFC).	Lecture & Interaction	EE1703N.1	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L9-L10	Automatic Generation Control (AGC): Governor Characteristics of a single generator, Adjustments of governor characteristic of parallel operating units.	Governor Characteristics of a single generator, Adjustments of governor characteristic of parallel operating units.	Lecture & Interaction	EE1703N.1	Quiz Test / Mid Term Exam / End Term Exam
L11-L12	Speed Governing System Schematic diagram, working, components, and Mathematical Modelling of Speed Interaction EE1703N Governing System.		EE1703N.2	Quiz Test / Mid Term Exam / End Term Exam	
L13-L14	Turbine Model and Generator-Load Model	Mathematical Modelling of Automatic Load Frequency Control (ALFC): Turbine Model and Generator-Load Model.	Lecture & Interaction	EE1703N.2	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L15	Mathematical Modelling of Automatic Load Frequency Control (ALFC): Complete Block Diagram Representation.	Complete Block Diagram Representation.	Lecture & Interaction	EE1703N.2	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L16-L17	Single-Area Automatic Load Frequency Control (ALFC): Steady-State Analysis - Free Governor Operation (FGO) and Constant Load Demand, Static Load Frequency Curves.	tomatic Load Frequency C): Steady-State Analysis or Operation (FGO) and Demand, Static LoadSteady-State Analysis - Free Governor Operation (FGO) and Constant Load Demand, Static Load Frequency Curves.Lecture & InteractionEE1703N.		EE1703N.3	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L18	Single-Area Automatic Load Frequency Control (ALFC): Dynamic Analysis – Transient or dynamic Response (Δf Vs t).	Dynamic Analysis –Transient or dynamic Response ($\Delta f \operatorname{Vs} t$).	Lecture & Interaction	EE1703N.3	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam

L19	Proportional-IntegralController:Requirement of Control Strategy in ALFC,AnalysisofProportional-Integralcontroller.	Requirement of Control Strategy in ALFC, Analysis of Proportional-Integral controller.	Lecture & Interaction	Lecture & EE1703N.3 Interaction	
T2-T3	Problems and Numerical Examples	Numerical problems based on L8 – 18	Tutorial & Group Discussion	EE1703N.3	Mid Term Exam / End Term Exam
L20-L21	Two-Area Automatic Load Frequency Control (ALFC): Concept of control areas in an interconnected power system, Block diagram representation.	Concept of control areas in an interconnected power system, Block diagram representation.	Lecture & Interaction	EE1703N.3	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L22-L23	Two-Area Automatic Load Frequency Control (ALFC): Steady-State and Dynamic response.	Steady-State and Dynamic response.	Lecture & Interaction	EE1703N.3	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
T4-T5	Problems and Numerical Examples	Numerical problems based on L19 – L22	Tutorial & Group Discussion	EE1703N.3	Mid Term Exam / End Term Exam
L24-L25	Automatic Voltage Regulator (AVR)	Basic control loop, block diagram representation- exciter system, generator models.	Lecture & Interaction	EE1703N.4	Quiz Test / Mid Term Exam / End Term Exam
L26-L27	Excitation Systems	Types of Exciters, Standard block diagrams - DC Excitation System, AC Excitation System and Static Excitation System and Stability of excitation system.	Lecture & Interaction	EE1703N.4	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L28-L29	Reactive Power & Voltage Control: Generation & absorption of reactive power, Methods of voltage control.	Generation & absorption of reactive power, Methods of voltage control.	Lecture & Interaction	Lecture & EE1703N.4	

L30-L31	Reactive Power & Voltage Control: Generation & absorption of reactive power, Methods of voltage control.	Steady-state operation of uncompensated transmission line, power flow in two bus system, voltage regulation and its relationship with reactive power.	Lecture & Interaction	EE1703N.4	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
Т6-Т7	Problems and Numerical Examples	Numerical problems based on L23 – L30	Tutorial & Interaction / Group Discussion	EE1703N.4	Mid Term Exam / End Term Exam
L32-L33	Reactive Power & Voltage Control: Analysis of uncompensated transmission line at No Loading and Loading condition, Surge Impedance Loading (SIL), No Loading, voltage and current profiles.	Analysis of uncompensated transmission line at No Loading and Loading condition, Surge Impedance Loading (SIL), No Loading, voltage and current profiles.	Lecture & Interaction	EE1703N.4	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L34-L35	Reactive Power & Voltage Control: Power Balance Equations, Concept of Voltage Stability and Voltage Collapse, Methods of improving Voltage Stability.	Power Balance Equations, Concept of Voltage Stability and Voltage Collapse, Methods of improving Voltage Stability.	Lecture & Interaction	EE1703N.4	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
L36-L37	Reactive Power & Voltage Control: Principles of transmission system compensation - series & shunt compensation. Basic Introduction of Flexible AC Transmission Systems (FACTS).	ge Control:on system& shuntcompensation - series & shunt compensation.oduction ofBasicIntroduction ofFlexibleACTransmission Systems (FACTS).		EE1703N.4	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
Т8-Т9	Problems and Numerical Examples	Numerical problems based on L31 – L36	Tutorial & Interaction / Group Discussion	EE1703N.4	Mid Term Exam / End Term Exam
L38-L39	Economic Operations in Power System: Characteristics of Power Generation Units for Economic Operations.	Characteristics of Power Generation Units for Economic Operations.	Lecture & Interaction	EE1703N.5	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam

L40-L41	Economic Operations in Power System: Economic Load Dispatch (ELD) – Mathematical Problem Formulation.	Economic Load Dispatch (ELD) – Mathematical Problem Formulation.	Lecture & Interaction	EE1703N.5	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
T10	SkillsDevelopmentActivitiesforEmployability:Hands-On/Demonstration of/MATLAB based Simulations	Numerical problems / Hands-On / Demonstration of MATLAB Simulations based on L37 – L40	Tutorial & Interaction / Group Discussion	EE1703N.5	Home Assignment / Quiz Test
L42	Economic Operations in Power System: Unit Commitment (UC) – Mathematical Problem Formulation.	Unit Commitment (UC) – Mathematical Problem Formulation.	Lecture & Interaction	EE1703N.5	Home Assignment / Quiz Test / Mid Term Exam / End Term Exam
T11	SkillsDevelopmentActivitiesforEmployability:Hands-On/Demonstration ofMATLAB based Simulations	Hands-On Demonstration of MATLAB Simulations based on L41	Tutorial & Interaction / Group Discussion	EE1703N.5	Home Assignment / Quiz Test

I. Course Articulation Matrix: (Mapping of COs with POs)

CO No.	CO STATEMENT		CORRELATION WITH PROGRAM OUTCOMES										CORRELATION WITH PROGRAM SPECIFIC OUTCOMES			
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	РО	РО	PO 12	PSO	PSO	PSO
											10	11		1	2	3
EE1703N.1	Aware about the general structure of modern electrical power system, its operating states and the critical operational and control issues.	3	2		2								1	2	1	1
EE1703N.2	Formulate the appropriate mathematical models for various components of Automatic Load Frequency Control (ALFC) such as speed-governing system, turbine, generator, load etc.	3	2		2								1	2	1	1
EE1703N.3	Analyze the mathematical model (Block Diagram Representation) for Automatic Load Frequency Control (ALFC) in Single- Area and Multi-Area control Scenarios.	3	2		2									2	1	1
EE1703N.4	Realize the various critical issues for Reactive Power & Voltage Control in uncompensated transmission line and compensated transmission line with FACTs. Also realize the complete block diagram representation of Automatic Voltage Regulator (AVR).	3	2		2									2	1	1
EE1703N.5	Comprehend the appropriate mathematical models for Economic Load Dispatch (ELD) and Unit Commitment (UC) problems.	3	2		2									2	2	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

J. Course Outcome Attainment Level Matrix:

со	STATEMENT	ATTAINMENT OF PROGRAM OUTCOMES A THRESHOLD VALUE: 40% C								ATTAINMENT OF PROGRAM SPECIFIC OUTCOMES						
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
																ļ
EE1703N.1	Aware about the general structure of modern electrical power system, its operating states and the critical operational and control issues.															
EE1703N.2	Formulate the appropriate mathematical models for various components of Automatic Load Frequency Control (ALFC) such as speed-governing system, turbine, generator, load etc.															
EE1703N.3	Analyze the mathematical model (Block Diagram Representation) for Automatic Load Frequency Control (ALFC) in Single-Area and Multi- Area control Scenarios.															
EE1703N.4	Realize the various critical issues for Reactive Power & Voltage Control in uncompensated transmission line and compensated transmission line with FACTs. Also realize the complete block diagram representation of Automatic Voltage Regulator (AVR).															
EE1703N.5	Comprehend the appropriate mathematical models for Economic Load Dispatch (ELD) and Unit Commitment (UC) problems.															

0-No Attainment; 1- Low Attainment; 2- Moderate Attainment; 3- Substantial Attainment

<u>School of Electrical, Electronics & Communication Engineering (SEEC)</u> <u>Department of Electrical Engineering</u> <u>Course Hand-out</u> <u>EHV AC/DC TRANSMISSION | EE1752| 3 Credits | 3 0 0 3</u>

Session: August 20 – December 20 | Faculty: Dr. Amit Soni | Class: VII Sem B Tech. (EE)

- A. Introduction: Department of Electrical Engineering offers this course as Program Elective in view to provide Introduction to Energy Systems and Renewable Energy Resources and their applications. This will help to explore present needs, challenges and future energy demands of leading Renewable Energy Sources such as Solar, Biomass (conversions), Wind power, Geothermal, and Ocean Thermal Energy conservation methods. Present course emphasizes and will be targeting students who wish to pursue Research & Development in the related areas of alternate energy resources.
- **B.** Course Objectives: At the end of the course, students will be able to:

[EE1752.1] Describe and systematically understand different needs and problems associated with EHV transmission systems.

[EE1752.2] Develop the skills of students to identify and calculate the various parameters such as inductance and capacitance of EHV line for modelling.

[EE1752.3] Analyse and assess the effects of electrostatic field, radio & TV interference, corona and to understand the methods of load frequency control.

[EE1752.4] Identify the effect of electrostatic field and over humans, animal and plants and hence the grounding system for EHVAC systems.

[EE1752.5] Interpret, illustrate and develop the skills to understand the concepts of series and shunt compensation, Sub synchronous resonance and Static VAR compensators.

C. Program Outcomes and Program Specific Outcomes

- **[PO.1].** Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and an engineering specialization to the solution of complex engineering problems.
- **[PO.2].** Problem analysis: <u>Identify</u>, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- [PO.3]. Design/development of solutions: Design solutions for complex engineering problems and <u>design</u> <u>system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **[PO.4].** Conduct investigations of complex problems: Use research-based knowledge and research methods including <u>design of experiments</u>, <u>analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions.
- [**PO.5**]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern engineering</u> <u>and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations.
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal</u>, <u>health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice.
- [PO.7]. Environment and sustainability: Understand the <u>impact of the professional engineering solutions in</u> <u>societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development.
- **[PO.8].** Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices.
- [PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader in diverse</u> <u>teams</u>, and in multidisciplinary settings.

- [PO.10].Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- [PO.11].Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- [PO.12].Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change
- D. Program Specific Outcomes (PSO): At the end of the program student should be able
- **[PSO.1].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- **[PSO.3].** Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

Criteria	Description	Maximum Marks					
	Sessional Exam I (Closed Book)	15					
Internal Assessment	Sessional Exam II (Closed Book)	15					
(Summative)	In class Quizzes and Assignments, Activity feedbacks (Accumulated and Averaged)	30					
End Term Exam (Summative)	End Term Exam End Term Exam (Closed Book) (Summative)						
	Total						
Attendance (Formative)	A minimum of 75% Attendance is required to be maintained by a student to be qualified for taking up the End Semester examination. The allowance of 25% includes all types of leaves including medical leaves.						
Make up Assignments (Formative)	Assignment on the topic related to the running unit will be given which has to be submitted within a week. These assignments are limited to a maximum of 5 throughout the entire semester.						
Activity Assignment (Formative)	A student is expected to participate and perform the activity/ flipped classroom participation related to the course which will be assessed and marks will be awarded.						

E. Assessment Plan:

F. Syllabus:

EHV AC Transmission: Need of EHV transmission lines, power handling capacity and surge impedance loading, traveling and standing waves. Problems associated with EHV transmission, Electrostatic fields of EHV lines and their effects, Radio and TV interference due to EHV AC systems and methods to reduce interference. Load Frequency Control: Introduction to control of active and reactive power flow, turbine speed governing system. Speed governing characteristic of generating unit and load sharing between parallel operating generators. Method of Load Frequency Control: Flat frequency, flat tie line and tie line load bias control. Voltage Control: Power circle diagram and its use, Voltage control using synchronous condensers,

Cascade connection of shunt and series compensation, Sub synchronous resonance, Compensated lines, Static VAR compensating system – TCR, FC-TCR and TSC- TCR. HVDC Transmission: Types of D.C. links, advantages and disadvantages of HVDC transmission. Converter configurations and their characteristics, DC link control, converter control characteristics, Ground return, Application of HVDC transmission.

G. Text Books:

T1. R. D. Begamudre, EHV AC Transmission Engineering (4e), New Age International, 2014.T2. K. R. Padiyar, HVDC Power Transmission Systems (3e), New Age Publishers, New Delhi 2017.

H. Reference Books:

R1.W. Kimbark, Direct Current Transmission Vol-I (1e), John-Wiley Interscience, NY 1971. R2.Arrillaga, High voltage Direct Current Transmission (1e), Peter Peregrinus Ltd., London, UK, 1983.

I. Lecture Plan:

Lec No	Topics	Session Outcome	Mode of	Corresponding	Mode of Assessing the	
			Delivery	CO	Outcome	
Ll	Course objective and overview of the contents	To Understand and provide overview related to Aims, Objective and Contents and to understand student expectations	Lecture Online	NA	NA	
L2	Introduction to EHV AC Transmission.	ToUnderstandEHVACTransmission needs	Lecture Online	[1752.1]	Class Quiz (Not Accounted)	
L3	Need of EHV transmission lines.	ToUnderstandEHVACTransmission needs	Lecture Online	[1752.1]	Class Quiz (Not Accounted)	
Activity - 1	BasicConceptsofEHVACTransmission.	To analyse Student understanding and connect with the Course	Activity	[1752.1]	Activity Analysis	
L4	Introduction to terms power handling capacity and surge impedance loading, traveling and standing waves	To understand different terms used for Transmission	Lecture Online	[1752.1]	Mid Term I	
L5 – L6	Problems associated with EHV transmission.	Able to understand various problems associated with EHV	Lecture Online	[1752.1]	Class Quiz Mid term I End Term	
L7	Electrostatic fields of EHV lines and their effects	Analyze effects of electrostatic fields on Human, Plants and Animals	Lecture Online	[1752.3]	Class Quiz Mid Term I End Term	
T1	L1 – L7	Analyze Student understanding for the concepts	Tutorial	[1752.1] [1752.3]	Mid Term 1 End term	
Activity - 2	Understand various installations of EHV transmission Lines	To give practical overview of EHV concepts	Activity	[1752.1]	Activity Analysis	
L9 – L10	Radio and TV interference due to EHV AC systems and methods to reduce interference	Analyze Radio and TV interference due to EHV AC systems	Lecture	[1752.3]	Class Quiz Mid Term 1 End Term	
L11	Load Frequency Control	Able to understand concepts of Load Frequency Control	Lecture	[1752.3]	Class Quiz Mid Term 1 End Term	

	Introduction to control of active and	Analyse active and reactive power	Lecture	[1752.1]	Class Quiz													
L12 reactive power flow, turbine speed		flow.		[1752.3]	Mid Term II													
	governing system.																	
	Speed governing characteristic of	To understand speed governing	Lecture	[1752.2]	Class Quiz													
L13 -L14	generating unit and load sharing between	characteristics and load sharing			End Term													
	parallel operating generators.																	
	Method of Load Frequency Control: Flat	Analyse and understand Method of	Lecture	[1752.3]	Class Quiz													
L15	frequency, flat tie line and tie line load	Load Frequency Control.			Mid Term II													
	bias control				End Term													
π2	10 115	To understand learning of students	Tutorial	[1752.1]	Mid Term II													
12	L9 - L15	for the concepts covered above.		[1752.3]	End Term													
Activity 2	Invited Talk on Tonics Covered above	To give practical exposure to	Activity	[1752.1]	Activity Analysis													
Activity -5	nivited Tark on Topics Covered above	students		[1752.3]														
	Voltage Control: Power circle diagram	To understand concepts of Voltage	Lecture	[1752.2]	Class Quiz													
L16 - L17	and its use	Control and Power Circle diagram.		[1752.3]	Mid Term II													
	and its use				End Term													
L18	Voltage control using synchronous	To understand concepts of	Lecture	[1752.2]	Class Quiz													
	condensers	Synchronous Condensers		[1752.3]	Mid Term II													
	condensers.				End Term													
	Cascade connection of shunt and series	To understand concepts of cascade	Lecture	[1752.5]	Class Quiz													
L19	compensation	connections of shunt and series			Mid Term II													
	compensation	compensation			End Term													
ТЗ	L 16 L 19	To understand learning of students	Tutorial	[1752.3]	Mid Term II													
13		for the concepts covered above.		[1752.5]	End Term													
	Sub synchronous resonance,	To understand concepts of sub	Lecture	[1752.5]	Class Quiz													
1 20 1 21	Compensated lines, Static VAR	synchronous resonance and			Mid Term II													
L20-L21	compensating system - TCR, FC-TCR	compensating schemes			End Term													
	and TSC- TCR.																	
1.22	Introduction to HVDC Transmission	Able to understand HVDC	Lecture	[1752.5]	Class Quiz													
		Transmission.			End Term													
Activity - 4	Overview of 400 kV GSS Heerapura	To understand practical concepts	Activity	[1752.3]	Activity Analysis													
				[1752.5]														
$L_{23} - L_{24}$	Types of D.C. links, advantages and	Analyse different types of DC links	Lecture	[1752.3]	Class Quiz													
	disadvantages of HVDC transmission.			[1752.5]	End Term													
1.25	Converter configurations and their	To under	rstand different converter					Tutorial			[1752.5]				Class Quiz			
-------------------	--	---------------	----------------------------	---------	--------	--------	--------	------------------	--------	-------	------------	---------	----	------------	------------	-----------	---------	--
123	characteristics	configurat	ions												Ene	d term		
$L_{26} - L_{27}$	DC link control, converter control	To acquair	nt with DC link control					Lecture [1752.5]			Class Quiz							
	characteristics.													End Term				
Т4	L23 – L27	To unders	tand	learnir	ng of	stude	nts	Tu	torial		[17	752.5]		Class Quiz				
		for the cor	ncepts	cover	ed abo	ove.									End term			
L28	Ground return, Application of HVDC	Analyse a	analyti	cal a	pproa	ches	for	Le	cture		[17	752.5]		Class Quiz				
120	transmission.	Ground Re	eturn.												Enc	l Term		
1 29 -1 30	Review and Discussions	To review	whole	e cours	se maj	or top	ics	Le	cture		[175	52.1] t	0		Clas	ss Quiz		
L27 L30	Review and Discussions	and discus	sion.								[17	752.5]			Enc	l Term		
J. Course A	rticulation Matrix: (Mapping of COs wit	h POs and I	PSOs))														
															Co	rrelation	n with	
						Corre	lation	with l	Progra	am Ou	tcome	es			Pro	gram Sj	pecific	
CO	STATEMENT													Outcomes				
0	STATEMENT		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO 3	
				2	3	4	5	6	7	8	9	10	11	12	1	2	1505	
	Describe and systematically understand	l different																
[EE1752.1]	needs and problems associated w	ith EHV		1	2				3					1		2	1	
	transmission systems.																	
	Develop the skills of students to identify the skills of	entify and	1	1		2											2	
[EE1752.2]	calculate the various parameters such as	inductance		1		3											3	
	and capacitance of EHV line for modellin	lg.																
[FF1752 3]	Analyse and assess the effects of electron	static field,	3	2			1							1	3		1	
[EE1752.5]	the methods of load frequency control	understand	5	2			1							1	5		1	
	Identify the affect of electrostatic field	and avan																
[EE1752.4]	Identify the effect of electrostatic field and over humans animal and plants and hance the grounding			3	1			2								2	1	
[]	system for EHVAC systems.																	
	Interpret, illustrate and develop the	skills to																
[FF1752 5]	understand the concepts of series	and shunt			3		1		2					1	2	1	1	
[EE1/32.3]	compensation, Sub synchronous reson	nance and			5		1		4						<i>–</i>	1	I	
	Static VAR compensators.																	

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

<u>School of Electrical, Electronics & Communication Engineering (SEEC)</u> <u>Department of Electrical Engineering</u> <u>Course Hand-out</u> POWER QUALITY ISSUES | EE1753 | 3 Credits | 3 0 0 3

Session: August 20 – December 20 | Faculty: Dr. Ashish Shrivastava | Class: VII Sem B Tech. (EE)

- A. Introduction: Department of Electrical Engineering offers this course as Program Elective in order to provide awareness of Power Quality (PQ) Issues and their mitigations, PQ standards, causes of PQ problems. The subject also deals with effect of harmonics on power system equipments and loads. This will also help in understanding different types of voltage and current based PQ problems and their solutions by using passive & active filters, series, shunt and hybrid compensations methods. The present course emphasizes on the number of techniques are evolved for the mitigation of PQ problems resulted into a new direction of research and development activities for the design and development engineers in the field of power electronics, power system, electric drives etc.
- B. Course Objectives: At the end of the course, students will be able to:

[EE1753.1] Describe and systematically understand the importance of Power Quality Standards, different PQ problems and their mitigations. (Bloom's Level: knowledge, Comprehensive)

[EE1753.2] Develop the skills of students to identify PQ problems due to non-linear loads, effect of harmonics on power system equipments and on their performance. (Bloom's Level: Analysis)

[EE1753.3] Analyse the effects of passive and active compensation, passive filtering and to understand the single-phase and three-phase power factor correction methods using different control techniques. (Bloom's Level: Analysis)

[EE1753.4] Identify the effect of active harmonic filtering for single-phase and three-phase systems, active power filtering for harmonic cancellation. (Bloom's Level: Application)

[EE1753.5] Interpret, illustrate and develop the skills to understand the concepts of series, shunt and hybrid compensation for single-phase and three-phase systems, grounding and wiring requirements, and associated problems and their solutions. **(Bloom's Level: Application)**

C. Program Outcomes and Program Specific Outcomes

- **[PO.1].** Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and an engineering specialization to the solution of complex engineering problems.
- **[PO.2].** Problem analysis: <u>Identify</u>, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **[PO.3].** Design/development of solutions: Design solutions for complex engineering problems and <u>design</u> <u>system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **[PO.4].** Conduct investigations of complex problems: Use research-based knowledge and research methods including <u>design of experiments</u>, <u>analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions.
- **[PO.5].** Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern engineering</u> <u>and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations.
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal</u>, <u>health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice.

- **[PO.7].** Environment and sustainability: Understand the <u>impact of the professional engineering solutions in</u> <u>societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development.
- **[PO.8].** Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices.
- **[PO.9].** Individual and team work: Function effectively as an individual, and as a <u>member or leader in diverse</u> teams, and in multidisciplinary settings.
- **[PO.10].**Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- [PO.11].Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- [PO.12].Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change
- D. Program Specific Outcomes (PSO): At the end of the program student should be able
- **[PSO.1].** To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- **[PSO.2].** To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- **[PSO.3].** Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

Criteria	Description	Maximum Marks						
	Sessional Exam I (Closed Book)	15						
Internal Assessment	Sessional Exam II (Closed Book)	15						
(Summative)	In class Quizzes and Assignments, Activity feedbacks (Accumulated and Averaged)	30						
End Term Exam (Summative)	End Term Exam (Closed Book)	40						
	Total	100						
Attendance (Formative)	A minimum of 75% Attendance is required to be maintained by qualified for taking up the End Semester examination. The allowanc all types of leaves including medical leaves.	y a student to be e of 25% includes						
Make up Assignments (Formative)	Assignment on the topic related to the running unit will be given which has to be submitted within a week. These assignments are limited to a maximum of 5 throughout the entire semester.							
Activity Assignment (Formative)	ty nent tive) A student is expected to participate and perform the activity/ flipped classroom participation related to the course which will be assessed and marks will be awarded.							

E. Assessment Plan:

F. Syllabus:

Power Quality Issues: Standards and indices, Voltage sags, swell, surges, spikes, Interruptions, Harmonics: harmonic distortion of fluorescent lamps, effect of power system harmonics on power system equipment and loads, Power factor improvement, Passive Compensation, Passive Filtering, Harmonic Resonance, Control Methods for Single Phase APFC, Three Phase APFC and Control Techniques, PFC Based on Bilateral Single Phase and Three Phase Converter-static var compensators, SVC and STATCOM, Active Harmonic Filtering: Shunt Injection Filter for single phase , three-phase three-wire and three-phase four-wire systems, UPS, constant voltage transformers, series active power filtering techniques for harmonic cancellation and isolation, Dynamic Voltage Restorers, Grounding and wiring, NEC grounding requirements, solutions to grounding and wiring problems.

G. Text Books:

- T1. S. Santoso, H. W. Beaty, R. C. Dugan, M F. McGranaghan, *Electrical Power System Quality*, Second edition, McGraw Hill Pub, 2002.
- T2. C. Shankran, *Power quality*, CRC Press, 2001.

H. Reference Books:

- R1. H. B. Math, Understanding Power Quality Problems, IEEE Press, 1st Edition, 2001.
- R2. J. Arrillaga, Power System Quality Assessment, John Wiley, 2000.
- R3. A. Ghosh and G. Ledwich, *Power Quality Enhancement using Custom Power Devices*, Kluwer Academic Publication, 2002.

I. Lecture Plan:

Lec. No	Topics	Session Outcome	Mode of	Corresponding	Mode of Assessing the
			Delivery	СО	Outcome
	Course outcome and their correlation with	To Understand and provide overview	Lecture Online	NA	NA
T 1	program outcome (PO) and program	related to Aims, Objective and			
LI	specific outcomes (PSO) and overview of	Contents and to understand student			
	the contents	expectations			
1.2	Introduction to power quality, standards	To Understand Power quality	Lecture Online	[1753.1]	Class Quiz
L2	and indices, and definitions of transients	definition, issues and challenges			Mid Term I
	Long duration voltage variations, under	To Understand different parameters	Lecture Online	[1753.1]	Class Quiz
	voltage, sustained interruptions, Short	associated with Power Quality			Mid Term I
1.2	duration voltage variations, interruption,				
LS	voltage sag, voltage swell, Voltage				
	imbalance, voltage fluctuation, notching,				
	dc offset				
	Voltage and Current harmonics, their	To understand the harmonics due to	Lecture Online	[1753.1]	Class Quiz
L4 - L5	effects on power system equipments, and	non-linear loads and its ill effects on			Mid Term I
	loads	different equipments			
	Harmonic distortion in fluorescent lamps	Able to understand various PQ	Lecture Online	[1753.2]	Class Quiz
L6 – L7	and its solution, passive compensation,	problems associated with lighting			Mid Term I
	passive filtering	load and their solutions			End Term
Activity 1	Invited Talk on Tonics Covered above	To give practical exposure to	Activity	[1753.1]	Activity Analysis
Activity - 1	nivited Tark on Topics Covered above	students			
	Power factor improvement in LED	Analyze effects of power quality	Lecture Online	[1753.2]	Class Quiz
L8-L10	lighting as single-phase APFC, harmonic	improvement in LED lighting using			Mid Term I
	resonance	different control schemes			End Term
	Three phase APEC and associated control	Analyze different PFC techniques	Lecture Online	[1753.3]	Class Quiz
L11 – L12	Three-phase AFFC and associated control	used in three-phase systems			Mid Term 1
	techniques				End Term
	PFC based on bilateral single-phase and	Able to understand concepts of	Lecture Online	[1753.3]	Class Quiz
L13-L14	three-phase converters with closed loop	Active PFC using bidirectional single			Mid Term 1
	control	and three-phase converters			End Term

	Introduction to control of active and	Analyse active and reactive power	Lecture Online	[1753.3]	Class Quiz
L15-L16	reactive power flow, Static VAR	flow and shunt compensation			Mid Term II
	compensating system, SVC, STATCOM				
L17-L18	Active harmonic filtering, Shunt injection	To understand concept of active	Lecture Online	[1753.4]	Class Quiz
	filter for single-phase systems	harmonic filtering			End Term
	Shunt injection filter for three-phase	Analyse and understand Method of	Lecture Online	[1753.4]	Class Quiz
L19-L20	three-wire and three-phase four-wire	shunt compensation for three-phase			Mid Term II
	systems, neutral current compensation	systems			End Term
Activity - 2	Invited Talk on Topics Covered above	To give practical exposure to	Activity	[1753.2]	Activity Analysis
	invited fait on ropies covered above	students		[1753.3]	
	UPS UPS switching transients neutral	To understand concepts of UPS and	Lecture Online	[1753.4]	Class Quiz
L21-L22	voltage switching	associated PQ problems.			Mid Term II
					End Term
	Concept of constant voltage transformer	To understand concepts of CVT	Lecture Online	[1753.4]	Class Quiz
L23	(CVT) and its importance				Mid Term II
	(CVT) and its importance				End Term
	Series active power filtering for harmonic	To understand concepts of harmonic	Lecture Online	[1753.5]	Class Quiz
L24-25	cancellation and isolation	cancellation and isolation			Mid Term II
	cancentation and isolation				End Term
126-127	Dynamic voltage restorer LIPOC	To understand concepts of series and	Lecture Online	[1753.5]	Mid Term II
L20-L27	Dynamic vonage restorer, or ge	hybrid compensation			End Term
	Network reconfiguration devices, load	To understand concepts of custom	Lecture Online	[1753.5]	Class Quiz
L28-L29	compensation and voltage regulation	power devices for power quality			Mid Term II
	using DVR, DSTATCOM & UPQC	improvement			End Term
	Power quality measurement devices,	Able to understand different	Lecture Online	[1753.5]	Class Quiz
L30	harmonic analyzer, transient disturbance	measuring instruments used to			End Term
	analyzer	capture PQ Indices			
Activity 3	Invited Talk on Topics Covered above	To understand practical concepts in	Activity	[1753.4]	Activity Analysis
Activity - 5	nivited Tark on Topies Covered above	real time environment		[1753.5]	
I 31	Grounding and wiring, NEC grounding	Analyse different types grounding	Lecture Online	[1753.5]	Class Quiz
	requirements	and wiring requirements			End Term
132	Solutions to Grounding and wiring	To understand solution of grounding	Lecture Online	[1753.5]	Class Quiz
L32 prob	problems	problems			End term

I 22	Improved PQ converters (IPQC) used for	To acquaint with IPQC for power	Lecture Online	[1753.5]	Class Quiz
L33	power quality improvements	quality improvement			End Term
		Exhaustive review of the whole	Lecture Online	[1753.1] to	Class Quiz
L34 -L35	Review and Discussions	course in terms of learning outcome,		[1753.5]	End Term
		major topics and discussion.			

J. Course Articulation Matrix: (Mapping of COs with POs and PSOs)

														Corr	elation	with	
		Correlation with Program Outcomes												Program Specific			
CO	ST & TEMENIT													Outcomes			
	CO STATEVIENT				PO	PSO	PSO	PSO									
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
[EE1753.1]	Describe and systematically understand the importance of Power Quality Standards, different PQ problems and their mitigations.	3	3	3	2	2		2					2	1	1	2	
[EE1753.2]	Develop the skills of students to identify PQ problems due to non-linear loads, effect of harmonics on power system equipments and on their performance.	3	3	3	3	2	2	3					3	3	2	3	
[EE1753.3]	Analyse the effects of passive and active compensation, passive filtering and to understand the single-phase and three-phase power factor correction methods using different control techniques.	3	3	3	3	1		2					2	3	1	2	
[EE1753.4]	Identify the effect of active harmonic filtering for single-phase and three-phase systems, active power filtering for harmonic cancellation.	3	3	3	2	2		2					2	2	2	2	
[EE1753.5]	Interpret, illustrate and develop the skills to understand the concepts of series, shunt and hybrid compensation for single-phase and three-phase systems, grounding and wiring requirements, and associated problems and their solutions.	3	3	3	3	2	2	3					3	3	2	3	

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Electrical Electronics and Communication Engineering

Department of Electrical Engineering Course Hand-out

Smart Grid Systems| EE 1763 | 3 Credits | 3 0 0 3

Session: Aug 20 – Dec 20 | Faculty: Divya Rishi Shrivastava | Class: B.Tech 7 semester

- A. Introduction: This course is offered by Dept. of Electrical Engineering as a Program Elective. The course will help students to understand Smart Grid Systems and its underlying perspectives, including functionality and realization in urban/rural areas. The course familiarizes with the detailed understanding SCADA, control layer and control algorithms. Students are expected to have background knowledge on Engineering Mathematics, basic electrical technology and power system for a better learning.
- B. Course Outcomes: At the end of the course, students will be able to
 - **[EE 1763.1].** Comprehend the characteristics, functionality, reliability and standards of smart grid.
 - **[EE 1763.2].** Understand the vision, realization and operation of Smart Grid.
 - **[EE 1763.3].** Develop skill set to apprehend the SCADA, Control Algorithms and Volt-VAR control.
 - [EE 1763.4]. Know and understand the distribution automation, grid storage systems.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
- [PSO.1]. To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- [PSO.2]. To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.

[PSO.3]. Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

D. Assessment Plan:

Criteria	Description	Maximum Marks							
	Sessional Exam I (Closed Book)	15							
Internal Assessment	Sessional Exam II (Closed Book)	15							
(Summative)	In class Quizzes and Assignments ,	30							
	Activity feedbacks (Accumulated and								
	Averaged)								
End Term Exam	End Term Exam (Closed Book)	40							
(Summative)									
	Total	100							
Attendance	A minimum of 75% Attendance is require	red to be maintained by a student to be							
	qualified for taking up the End Semest	er examination. The allowance of 25%							
	includes all types of leaves including medi	cal leaves.							
Make up Assignments	Students who miss a class will have to report to the teacher about the absence. A								
(Formative)	makeup assignment on the topic taught on the day of absence will be given which								
	has to be submitted within a week from	the date of absence. No extensions will							
	be given on this.								

E. SYLLABUS

Smart Grid Overview- Smart Grid evolution, Definition of the Smart Grid, Key Characteristics of Smart Grid, Key Functions of a Smart Grid, Smart Grid Elements. Traditional Electric Grid Model, Generation, Transmission, Distribution, Energy Storage, Micro-grids, Integration of new technologies into the grid, Smart Grid vision and its realization in Urban/Rural, Smart Grid infrastructure, Functionality, Reliability, Cost/Tariff, Standards, Smart Grid cyber security, Smart Grid Operations-Electric Grid (power delivery), SCADA (supervisory control and data acquisition), Smart Grid Control Layer-fault detection and location, Data collection and management, Control Layer Infrastructure, Software-Define Networks (SDN), Control Algorithms, Volt-VAR control, Distribution automation, Grid storage systems, Intermittent renewable, Cooperative grids.

F. TEXT BOOKS

- 1. J. Momoh, Smart Grid: Fundamentals of Design and Analysis, IEEE press, John Wiley & Sons, 2012.
- 2. T. Sato, Daniel M. Kammen, B. Duan, M. Macuha, Z. Zhou, and Jun Wu, *Smart Grid Standards: Specifications, Requirements, and Technologies*, Wiley-Blackwell, 2015.
- 3. J. Ekanayake, K. Liyanage, Jianzhong Wu, A. Yokoyama, and N. Jenkins, *Smart Grid: Technology and Applications*, Wiley, New Delhi, 2015.
- 4. L. T. Berger and K. Iniewski, Smart Grid Applications, Communications, and Security, Wiley, New Delhi, 2015.
- 5. K. Salman, Introduction to the Smart Grid: Concepts, Technologies and Evolution, The Institution of Engineering and Technology, United Kingdom, 2017

Class Number	Topics	Session Outcome	Mode of Delivery	Corresponding Course Outcome	Mode of Assessing the Outcome			
	Introduction to course and course handout distribution	To acquaint and clear teachers expectations and understand	Lecture Interaction	NA	NA			
		student expectations						
2,3	Introduction to Smart Grid Concept	To introduce concept of smart grid	Lecture Interaction	EE 1763.1	Class Quiz Assignment Mid Term I End Term			
4,5,6,7	CharacteristicsofConventionalElectricalNetworks, SmartGrid vsconventionalelectricalnetworks	To acquaint students difference between conventional and smart grids	Lecture Interaction	EE 1763.1	Class Quiz Assignment Mid Term I End Term			

G. Lecture Plan:

8,9,10	Smart Grid Characteristics	To acquaint	Lecture	EE 1763.1	Class Quiz							
	and motives	students	Interaction		Assignment							
		characteristics			Mid Term I							
		and motives			End Term							
11,12,13	Smart Grid vision and	To acquaint	Lecture	EE 1763.1	Class Quiz							
	realization	students vision	Interaction	EE 1763.2	Assignment							
		and realization			Mid Term I							
					End Term							
14,15	Smart Grid Infrastructure	To acquaint	Lecture	EE 1763.2	Class Quiz							
		students Smart	Interaction		Assignment							
		Grid			Mid Term I							
		Infrastructure			End Term							
FIRST SESSIONAL EXAM												
16	Smart Grid Communication	To acquaint	Lecture	EE 1763.2	Class Quiz							
	and Measurement	students	Interaction		Assignment							
		Communication			Mid Term II							
		and			End Term							
		Measurement										
17,18,19,20,21,22	Monitoring, PMU, Smart	To acquaint	Lecture	EE 1763.2	Class Quiz							
	Meters	students Smart	Interaction		Assignment							
		Meters			Mid Term II							
					End Term							
23,24,25	Multiagent system for smart	To acquaint	Lecture	EE 1763.2	Class Quiz							
	grid implementation	students smart	Interaction		Assignment							
		grid			Mid Term II							
		implementation			End Term							
26	Microgrid vs Smart Grid	To acquaint	Lecture	EE 1763.2	Class Quiz							
		students	Interaction		Assignment							
		Microgrid vs			Mid Term II							
		Smart Grid			End Term							
27,28,29,30,31	SCADA (supervisory	lo acquaint	Lecture	EE 1/63.1	Class Quiz							
	control and data	students	Interaction	EE 1/63.3	Assignment							
	acquisition), Smart Grid	SCADA Smart			Mid Term II							
	Control Layer – fault	Grid Control			Endlerm							
		Layer										
22.22	SECC			EE 1743 0								
52,55	management Control Laver	students Data	Interaction	EE 1765.2	Assignment							
	Infrastructure Software-	collection and	interaction		End Term							
	Define Networks (SDN)	management										
		management										
34.35.36.37	Control Algorithms, Volt-	To acquaint	Lecture	EE 1763.2	Class Quiz							
	VAR control	students Volt-	Interaction	EE 1763.3	Assignment							
		VAR control			End Term							
38,39	Distribution automation.	To acquaint	Lecture	EE 1763.1	Class Ouiz							
	Grid storage systems	students	Interaction	EE 1763.4	Assignment							
		Distribution			End Term							
		automation										
40,41,42	Intermittent renewable,	To acquaint	Lecture	EE 1763.2	Class Quiz							
	Cooperative grids	students	Interaction		Assignment							
		Cooperative			End Term							
		grids										
		END TERM EXA	M		·							

H. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES									CORRELATION WITH PROGRAM SPECIFIC OUTCOMES				
		PO	РО	РО	РО	РО	РО	РО	РО	РО	PO	РО	PO	PSO 1	PSO 2	PSO 3
		1	2	3	4	5	6	7	8	9	10	11	12			
EE 1763.1	Comprehend the characteristics, functionality, reliability and standards of smart grid	3	3			1	1		1				1	1	1	1
EE 1763.2	Understand the vision, realization and operation of Smart Grid	2	2	1		2	2	1	1				2	2	1	1
EE 1763.3	Develop skill set to apprehend the SCADA, Control Algorithms and Volt-VAR control	2	2	1	2	2	1	1	1				1	2	2	2
EE 1763.4	Know and understand the distribution automation, grid storage systems and cooperative grids	1	1			1	1	1					1	1	1	1

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

I. Course Outcome Attainment Level Matrix:

со	STATEMENT		ATTAINMENT OF PROGRAM OUTCOMES THRESHOLD VALUE: 40%												ATTAINMENT OF PROGRAM SPECIFIC OUTCOMES		
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	
EE 1763.1	Comprehend the characteristics, functionality, reliability and standards of smart grid																
EE 1763.2	Understand the vision, realization and operation of Smart Grid																
EE 1763.3	Develop skill set to apprehend the SCADA, Control Algorithms and Volt-VAR control																
EE 1763.4	Know and understand the distribution automation, grid storage systems and cooperative grids																

0-No Attainment; 1- Low Attainment; 2- Moderate Attainment; 3- Substantial Attainment

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronics & Communication Engineering

Department of Electrical Engineering Course Hand-out

Object Oriented Programming (OOPS) | EE 1764 | 3 Credits | 2 | 0 3

Session: Aug 20– Dec 20 | Faculty: Abhishek Kumar | Class: VII Sem B Tech. (EE)

- **A.** Introduction: This course is offered by Department of Electrical Engineering as a program elective, targeting students who wish to get a software job and to pursue research & development in industries or higher studies in field of Programming. This course is to explore the concept and Programming skills in C++. Programming skills in C++ is so fundamental that all companies dealing with systems as well as application development (including web, IoT, embedded systems) have a need for the same. These include Microsoft, Samsung, Xerox, Yahoo, Google, IBM, TCS, Infosys, Amazon, Flipkart, etc. There has been a continual debate on which programming language/s to learn, to use. As the latest TIOBE Index for April 2016 indicates Java (21%), C (14%), C++ (6%), C#(4%), and Python (3%) together control nearly half the programming community. Given this, it is still important to learn C and C++ because of the efficiency they offer. Students are expected to have background knowledge on Programming in C language for a better learning. Besides the constructs, syntax and semantics of C++ (over C), we also focus on various idioms of C++ and attempt to go to depth with every C++ feature justifying and illustrating them with several examples and assignment problems. On the way, we illustrate various OOP concepts. While this course can be understood independently (after a course in C programming), it would help in developing understanding in OOP.
- **B.** Course Objectives: At the end of the course, students will be able to

[EE1764.1] Understand and use the basic programming constructs of C/C++.
[EE1764.2] Manipulate various C/C++ datatypes, such as arrays, strings, and pointers.
[EE1764.3] Isolate and fix common errors in C++ programs.
[EE1764.4] Use memory appropriately, including proper allocation/deallocation procedures.
[EE1764.5] Apply object-oriented approaches to software problems in C++ and hence foster employability skills.

C. Program Outcomes and Program Specific Outcomes

- [PO.1]. Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.2]. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.3]. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.4]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.5]. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- [PO.6]. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.7]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- [PO.8]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

- [PO.9]. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.10]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.11]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- [PO.12]. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- [PSO.1]. To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- [PSO.2]. To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- [PSO.3]. Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

Criteria	Description	Maximum Marks							
	Sessional Exam I (Closed Book)	15							
Internal Assessment	Sessional Exam II (Closed Book)	15							
(Summative)	In class Quizzes and Assignments.	30							
	Activity feedbacks (Accumulated and								
	Averaged)								
End Term Exam	End Term Exam (Closed Book)	40							
(Summative)									
	Total	100							
Attendance	A minimum of 75% Attendance is requir	red to be maintained by a student to be							
(Formative)	qualified for taking up the End Semest	er examination. The allowance of 25%							
	includes all types of leaves including medi	cal leaves.							
Make up Assignments	Students who misses a class will have to	report to the teacher about the absence.							
(Formative)	A makeup assignment on the topic taught	on the day of absence will be given which							
	has to be submitted within a week from t	he date of absence. No extensions will be							
	given on this. The attendance for that p	articular day of absence will be marked							
	blank, so that the student is not accour	ited for absence. These assignments are							
	limited to a maximum of 5 throughout th	e entire semester.							
Homework/ Home Assignment/	There are situations where a student may have to work in home, especially before								
Activity Assignment	a flipped classroom. Although these works are not graded with marks. However, a								
(Formative)	student is expected to participate and perform these assignments with full zeal since								
	the activity/ flipped classroom participatio	n by a student will be assessed and marks							
	will be awarded.								

D. Assessment Rubrics:

E. Syllabus

EE1764: OBJECT ORIENTED PROGRAMMING [3 0 0 3]

Introduction to fundamental concepts of programming language, Object Oriented Programming paradigm, Characteristics of object-oriented languages. Classes and Objects: Class specification, Class objects, Accessing Class Members, Static members, Constructors and Destructors, Parameterized constructors, Multiple Constructors, Friend function. Operator Overloading & Type conversion: Defining operator overloading, Overloading Unary and Binary operators, Overloading using friend function,

Type conversion: Basics to class type, class to basic type and class to another class type. Inheritance: Derived class and base class, Types of inheritance, Levels of Inheritance, Single inheritance, Multiple Inheritance, Hierarchical inheritance and Hybrid inheritance. Polymorphism: Virtual Functions: Pure function, Friend classes. Files and Exception Handling: Classes for file stream operation, Opening and closing a file, file modes, file pointers and manipulators. Exception handling mechanism: throwing, catching all the exceptions.

F. Text Books

T1. E. Balagurusamy, "Object Oriented Programming with C++", (6e), Tata McGraw-Hill Education Pvt. Ltd, New Delhi, 2013.
T2. R. Lafore, "Object Oriented Programming in Turbo C++", (3e), Galgotia Publications Pvt. Ltd., New Delhi, 2006
T3. S. B. Lippman, Josee Lajoie, Barbara E Moo, "C++ Primer", (5e), Addison-Wesley Professional, 2012
T4. H. Schildt, "The Complete Reference C++", (4e), TMH, New Delhi, 2004

G. Reference Books

RI. J. Rumbaugh et. al, "Object Oriented Modeling and Design", PHI, 2004

H. Lecture Plan:

Lec No	Topics	Session Objective	Mode of	Corresponding	Mode of Assessing the
I	Course overview, Introduction to programming language.	To acquaint and clear teacher's expectations and understand student expectations	Lecture		NA
2,3,4	Introduction to Structured programming, object-oriented programming, OOP features, C++ data types	To Understand basic data types of C++ and features of Object oriented programming.	Lecture	[EE1764.1] [EE1764.2]	In Class Quiz
5,6,7,8,9,10	Introduction to classes and objects, structures, unions , inline functions, parameter passing techniques, function overloading, friend functions & classes , constructors , destructors , static class members , nested classes , local classes	To understand the concept of class, function, friend function, function overloading, static class member , constructor and destructors.	Lecture	In Class Quiz	
11,12,13	DynamicmemorymanagementNew & delete operators , array objects , pointerobjects , 'this' pointers , pointers to derivedtype and class members	To be capable of handling dynamic memory management in C++.	Lecture	[EE1764.4]	In Class Quiz
14,15,16,17	OperatoroverloadingOverloading operators using member functions& friend functions , overloading arithmetic andrelational and special operators	Able to understand and implement the operator overloading concept and techniques in C++.	Lecture	[EE1764.2]	Home Assignment
18,19,20,21	Inheritance Introduction , kinds of inheritance , forms of derivation, base and derived class pointers , constructors &destructors	Able to implement and design inheritance concept in C++.	Lecture	[EE1764.1] [EE1764.2]	Class Quiz
22,23,24	DynamicpolymorphismNeed and mechanism of virtual functions , purevirtual functions , abstract classes ,early vs. latebinding , virtual destructors , run time typeidentification.	Analyze and implement Dynamic polymorphism in C++.	Lecture, Activity	[EE1764.3] [EE1764.4] [EE1764.2]	Class Quiz

25,26,27	TemplatesIntroduction ,function templates , classtemplates	Understand the concept of function template and class templates.	Lecture	[EE1764.3]	Class Quiz
28,29,30	StreamhandlingC++ stream class hierarchy , files ,filemanipulations , file pointer manipulations ,error handling	Able to do programming of stream handling and file manipulation.	Lecture	[EE1764.3] [EE1764.5]	Class Quiz
31,32,33	Streamhandling(continued)Manipulators , overloading <<&>> operators	Able to do programming of stream handling and operator overloading.	Lecture	[EE1764.3] [EE1764.5]	Class Quiz
34,35,36	ExceptionhandlingThrowing out an exception , try block , catchingan exception	Understanding Exception handling concept in C++.	Lecture	[EE1764.3] [EE1764.5]	Class Quiz

I. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT	CORRELATION WITH PROGRAM OUTCOMES					CORRELATION WITH PROGRAM SPECIFIC OUTCOMES									
		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO 1	PSO 2	PSO 3
[EE1764.1]	Understand and use the basic programming constructs of C/C++.	3	2	2	2	1	6	/	8	9	10	1	12	2	1	2
[EE1764.2]	Manipulate various C/C++ datatypes, such as arrays, strings, and pointers.	3	2	1	3								2	2	1	1
[EE1764.3]	Isolate and fix common errors in C++ programs.	2	2	1	2				1				1	2	1	2
[EE1764.4]	Use memory appropriately, including proper allocation/deallocation procedures.	2	1	1	2	1			1				1	2	1	3
[EE1764.5]	Apply object-oriented approaches to software problems in C++ and hence foster employability skills.	3	2	2	3	1	1		2	1		1	2	2	2	3

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

MANIPAL UNIVERSITY JAIPUR

School of Electrical, Electronics and communication Engineering (SEEC)

Department of Electrical Engineering Course Hand-out

Solar Photovoltaics Energy Conversion | EE 1792| 3 Credits | 3 0 0 3

Session: August 20 – Dec 20 | Faculty: Mahipal Bukya | Class: Open-Elective

- A. INTRODUCTION: This course is offered by Dept. of Electrical Engineering as an open-Elective subject, targeting students who wish to pursue researchand development in solar photo-voltaicsystem or higher studies in field of solar energy including solar radiations, PN junction diode & its characteristics, solar cell, solar PV modules, balance of solar PV systems, etc. Students are expected to have background knowledge on semiconductors, charge carriers and their motion in semiconductors, p-type and n-type of semiconductors, etc. for a better learning.
- B. COURSE OUTCOMES: At the end of the course, students will be able to
 - [1701.1]. To understand the basics of Solar Radiations, their measurement and tracking
 - [1701.2]. Comprehend the PN Junction Diode & Characteristics
 - [1701.3]. Interpret and explain the Solar Cell and its application in SPV System
 - [1701.4]. Understand and develop skills for Solar PV Modules
 - [1701.5]. Acquire knowledge about Balance of System (BOS) and Batteries

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- [PO.9]. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

- [PO.11]. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
- [PSO.1]. To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- [PSO.2]. To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.
- [PSO.3]. Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

Criteria	Description	Maximum Marks						
	Sessional Exam I (Close Book)	15						
Internal Assessment	Sessional Exam II (Close Book)	15						
(Summative)	In class Quizzes and Assignments,	30						
	Activity feedbacks (Accumulated and							
	Averaged)							
End Term Exam	End Term Exam (Close Book)	40						
(Summative)								
	Total	100						
Attendance	A minimum of 75% Attendance is requi	red to be maintained by a student to be						
(Formative)	qualified for taking up the End Semester examination. The allowance of 25%							
	dical leaves.							
Make up Assignments	Assignments Students who misses a class will have to report to the teacher about the ab							
(Formative)	th on the day of absence will be given							
	which has to be submitted within a	week from the date of absence. No						
	extensions will be given on this. The	attendance for that particular day of						
	absence will be marked blank, so that the	ne student is not accounted for absence.						
	These assignments are limited to a n	maximum of 5 throughout the entire						
	semester.							
Homework/ Home	There are situations where a student may have to work in home, especially							
Assignment/ Activity	before a flipped classroom. Although these works are not graded with marks.							
Assignment	However, a student is expected to participate and perform these assignments							
(Formative)	with full zeal since the activity/ flipped classroom participation by a student							
	be assessed and marks will be awarded.							

D. ASSESSMENT PLAN:

E. SYLLABUS

Solar Radiation: Spectrum, Terminologies, Measurement, Estimation; Sun-Earth Movement & Angles, Sun Tracking, PN Junction Diode & Characteristics, Solar Cell, Photovoltage, Light Generated Current, I-V equation & Characteristics: Short Circuit Current, Open Circuit Voltage, Maximum Power Point, Fill Factor, Efficiency, Losses, Equivalent Circuit, Effect of Series & Shunt Resistance, Solar Radiation, Temperature on Efficiency, Solar PV Modules: Series & Parallel connection, Hotspots, Bypass & Blocking Diodes, Power Output, Ratings, I-V & Power Curve, Effect of Solar Irradiation & Temperature, Balance of System (BOS): Batteries: Classification, Capacity, Voltage, Depth of Discharge, Life Cycle, Factors affecting Battery Performance; Charge Controllers, DC to DC Converters, DC to AC converters, Maximum Power Point Tracking (MPPT).

F. TEXT BOOKS:

- 1. C. Solanki, Solar Photovoltaics: Fundamentals, Technologies and Application, PHI New Delhi, 2009.
- 2. G. N. Tiwari, Solar Energy: Fundamentals, Design, Modeling and Applications, Narosa Publications New Delhi, 2013.

G. REFERENCE BOOKS

- 1. S. Deambi, Photovoltaic System Design, CRC Press USA, 2016.
- 2. F. Kreith and D. Y. Goswami, Energy Management and Conservation Handbook (2e), CRC Press USA, Fairmont Press, USA, 2017.
- 3. J. Balfour, M. Shaw and N. B. Nash, Advanced Photovoltaic Installations, Jones & Barlett Learning USA, 2013.
- 4. B.H. Khan, Non-conventional Energy Resources, TMH, 2006.
- 5. G.D. Rai, Non-conventional Energy Resources, Khanna Publishers.

H. LECTURE PLAN:

Lecture no.	Topic to be covered
L1	Introduction of course
L2	Introduction Non-renewable and Renewable Energy sources
L3	Solar Energy, applications, & advantages.
L4	Extra-terrestrial Solar radiation
L5	Solar spectrum at the earth surface
L6	Terminologies
L7	Sun-Earth Movement & Angles
L8	Angles of Sunrays on Solar collector
L9	Sun Tracking
L10	Estimation of solar radiation
L11	Measurement of solar radiation
L12	Numericals on Solar radiations
L13	Fundamentals of Semiconductors
L14	Energy bands
L15	Charge carriers, their concentration and distribution, motion,
L16	Electric field and Energy band bending, generation and recombination of carriers
L17	Introduction to P-N junction in equilibrium and non-equilibrium condition
L18	Numericals on PN Junction Diode & Characteristics
L19	Numericals on PN Junction Characteristics
L20	Photovoltage, Light Generated Current
L21	I-V equation and characteristics
L22	Short Circuit Current, Open Circuit Voltage
L23	Maximum Power Point, Fill Factor, Efficiency, Losses
L24	Equivalent Circuit of Solar cell
L25	Effect of Series & Shunt Resistance
L26	Solar Radiation, Temperature on Efficiency
L27	Numericals on Solar Cell
L28	Solar PV modules from Solar cells
L29	Series & Parallel connection
L30	Mismatch in Series connection: Hotspots, Bypass & Blocking Diodes
L31	Mismatch in Parallel connection
L32	Design and Structure of PV modules
L33	PV module Power Output, Ratings, I-V & Power Curve
L34	Effect of Solar Irradiation & Temperature
L35	Numericals on Solar PV Modules
L36	Introduction to Batteries
L37	Factors affecting battery performance
L38	Battery Parameters: Capacity, Voltage, Depth of Discharge, Life Cycle
L39	Batteries for PV systems, comparison
L40	DC to DC Converters
L41	Charge controllers
L42	DC to AC converters
L43	Maximum Power Point Tracking (MPPT)
L44	Numericals on Balance of Solar PV systems