

# List of Course Hand-outs (Odd and Even Semester)

# Department of Automobile Engineering SAMM Manipal University Jaipur (RJ)



# School of Automobile, Mechanical, Mechatronics Engineering

# Department of Automobile Engineering

# Vision, Mission and PEOs of the Department

# Vision

• Create globally competent automotive engineers having research aptitude with human values for societal development.

## Mission

- Impart quality education with state-of-art academic environment to meet global industrial challenges.
- Provide conducive environment for interdisciplinary research through collaborations with industry and research organizations.
- Develop technical and managerial skills with ethical values contributing to societal development.

# Program Educational Objectives

- Enable graduates to exhibit professional skills on global platform in Automobile Engineering and allied domains.
- Prepare graduates to pursue higher education and research in interdisciplinary area.
- Graduates shall exhibit teamwork and leadership quality with ethical behaviour.

# PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

# **Program Outcomes**

**[PO.I]. Engineering knowledge**: <u>Apply the knowledge of mathematics</u>, <u>science</u>, <u>engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems.

**[PO.2]. Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

**[PO.3]. Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

**[PO.4]. Conduct investigations of complex problems**: Use research- based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the

information to provide valid conclusions

**[PO.5]. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern</u> <u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations

**[PO.6]. The engineer and society**: Apply reasoning informed by the <u>contextual knowledge to assess</u> <u>societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice

**[PO.7]. Environment and sustainability**: Understand the <u>impact of the professional engineering</u> <u>solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development

**[PO.8]. Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices

**[PO.9]. Individual and team work**: Function effectively as an individual, and as a <u>member or leader in</u> <u>diverse teams</u>, and in multidisciplinary settings

**[PO.10]. Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

**[PO.II]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

**[PO.12]. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

## **Program Specific Outcomes**

**[PSO.I].** Analyze, design, and diagnose automotive systems to improve performance, safety, service and maintenance.

**[PSO.2].** Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.

**[PSO.3].** Demonstrate the use of quality tools for internship projects to solve industrial problems.



# School of Automobile, Mechanical, Mechatronics Engineering

# **Department of Automobile Engineering**

# Manipal University Jaipur

# Course Handout- (2020-21)

| SI. No | Course Code | Course Name                                   | Page Number      |
|--------|-------------|-----------------------------------------------|------------------|
| 1      | BB0025      | Value Ethics & Governance                     | 07               |
| 2      | MA2102      | Engineering Mathematics-III                   | 12               |
| 3      | AU2101      | Material Science and Metallurgy               | 18               |
| 4      | AU2102      | Strength of Materials                         | 27               |
| 5      | AU2103      | Theory of Automotive Engines                  | 1 32 40, 11      |
| 6      | AU2104      | Engineering Thermodynamics                    | 40               |
| 7      | AU2130      | Automotive Engines Lab                        | 44               |
| 8      | AU2131      | Strength of Materials Lab                     | 48               |
| 9      | AU2170      | Seminar                                       | 52               |
| 10     | EO2001      | Economics                                     | 55               |
| 11     | MA2203      | Engineering Mathematics-IV                    | 61               |
| 12     | AU2201      | Automotive Chassis System                     | 67               |
| 13     | AU2202      | Kinematics and Dynamics of Automobile         | 76               |
| 14     | AU2203      | Fluid Mechanics                               | 82               |
| 15     | AU2230      | Computer Aided Drawing Lab 🚴 🔒 👘 👘            | 86               |
| 16     | AU2231      | Fluid Mechanics Lab                           | 31H 2 (89) 3 A 1 |
| 17     | AU2270      | Project Based Learning I                      | 91               |
| 18     | BB1540      | Organization & Management                     | 95               |
| 19     | AU1512      | Automotive Transmission System                | 104              |
| 20     | AU1513      | Heat Transfer in Automotive System            | 110              |
| 21     | AU1514      | Automotive Design                             | 115              |
| 22     | AU1553      | Advanced Internal Combustion Engines          | 121              |
| 23     | AU1554      | Two and Three Wheeled Vehicle Systems         | 129              |
| 24     | AU1602      | Automotive Electrical Systems                 | 134              |
| 25     | AU1606      | Electronic Control for Vehicle System         | 140              |
| 26     | AU1607      | Quality Assurance and Reliability Engineering | 145              |
| 27     | AU1630      | CAD/ CAM Lab                                  | 150              |
| 28     | AU1657      | Product Design and Development                | 154              |
| 29     | AU1658      | Automotive Air Conditioning Systems           | 158              |
| 30     | AU1660      | Computer Aided Design & FEA                   | 163              |
| 31     | AU1661      | Vehicle Body Engineering                      | 169              |
| 32     | AU1662      | Quality System Management                     | 176              |
| 33     | AU1705      | Vehicle Dynamics & Stability Control          | 181              |
| 34     | AU1707      | Electric and Hybrid Vehicle                   | 190              |
| 35     | AU1760      | Earth Moving Equipment                        | 196              |
| 36     | AU1761      | Manufacturing Quality Management              | 201              |
| 37     | AU1762      | Computational Fluid Dynamics                  | 206              |
| 38     | AU1763      | Autotronics and Automotive Safety Systems     | 212              |

| 39 | AU1765 | Vehicle Ergonomics and Styling                                  | 219 |
|----|--------|-----------------------------------------------------------------|-----|
| 40 | AU1767 | Statistical Process Control and Statistical Quality<br>Control  | 224 |
| 41 | AU1733 | Lean Six Sigma Green belt pre work for Internship               | 229 |
| 42 | AU1881 | Industrial Internship and Lean Six Sigma Green Belt<br>Training | 234 |

HOD Automobile Engg. DANJack Auto

# Automobile Engineering Manipal University Jaipur

(Directors Som M)

(Directors Academic)

# **PROGRAM ARTICULATION MATRIX**

| SEMESTER | COURSE PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |
|----------|-------------------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|
|          |                                                       | PO | PSO | PSO | PSO |
|          | CODE                                                  | Ι  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | I   | 2   | 3   |
|          | BB0025                                                | 0  | 0  | 3  | 0  | 0  | 2  | 2  | 3  | 3  | 2  |    | 2  | 0   | 0   | 0   |
|          | MA2102                                                | 3  | 3  | 3  | 2  | 2  | 0  | 0  | 0  | 0  | 0  | 0  | 3  | 2   | 3   | 2   |
|          | AU2101                                                | 3  | 2  | 2  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1   | 1   | 0   |
|          | AU2102                                                | 3  | 2  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0   | 1   | 0   |
|          | AU2103                                                | 3  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 3  | 3  | 3  | 0   | 3   | 0   |
| - 111    | AU2104                                                | 3  | 2  | 3  | 2  | 1  | 0  | 0  | 1  | 1  | 0  | 2  | 1  | 0   | 0   | 0   |
|          | AU2130                                                | 3  | 2  | 3  | 2  | 0  | 0  | 0  | I  | 2  | 0  | 0  | 0  | I   | 0   | 0   |
|          | AU2131                                                | 3  | 3  | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 2   | 2   | 0   |
|          | AU2170                                                | 2  | 3  | 3  | 0  | 0  | 0  | 0  | 3  | 3  | 0  | 3  | 2  | 2   | 2   | 0   |
|          | EO2001                                                | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 2  | 0  | 2  | 3  | 0   | 0   | 0   |
|          | MA2203                                                | 3  | 3  | 3  | 2  | 0  | 2  | 0  | 0  | 0  | 0  | 0  | 3  | 2   | 0   | 3   |
|          | AU2201                                                | 3  | 2  | 0  | 2  | 0  | 0  | 0  | 0  | 2  | 1  | 0  | 1  | 1   | 0   | 0   |
| IV       | AU2202                                                | 3  | 2  | 0  | 2  | 0  | 2  | 2  | 2  | 2  | 0  | 3  | 0  | 2   | 2   | 0   |
|          | AU2203                                                | 3  | 2  | 2  | 2  | 0  | 0  | 0  | 1  | 2  | 0  | 0  | 0  | 2   | 1   | 0   |
|          | AU2230                                                | 3  | 1  | 1  | 0  | 1  | 1  | 0  | 0  | 1  | 0  | 1  | 1  | 1   | 1   | 0   |
|          | AU2231                                                | 3  | 2  | 3  | 2  | 0  | 0  | 0  | 1  | 2  | 0  | 0  | 0  | 2   | 1   | 0   |
|          | AU2270                                                | 3  | 2  | 2  | 3  | 2  | 0  | 0  | 0  | 2  | 1  | 1  | 1  | 1   | 0   | 1   |
|          | BB1540                                                | 2  | 2  | 2  | 1  | 2  | 1  | 1  | 3  | 1  | 1  | 0  | 2  | 2   | 1   | 2   |
|          | AU1512                                                | 2  | 3  | 2  | 0  | 0  | 2  | 2  | 2  | 2  | 0  | 3  | 0  | 1   | 3   | 1   |
|          | AU1513                                                | 3  | 2  | 3  | 2  | 0  | 0  | 0  | 1  | 3  | 0  | 0  | 0  | 0   | 0   | 0   |
| v        | AU1514                                                | 3  | 3  | 3  | 2  | 2  | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 0   | 2   | 0   |
|          | AU1553                                                | 3  | 2  | 2  | 2  | 2  | 2  | 1  | 1  | 1  | 3  | 2  | 1  | 1   | 3   | 0   |
|          | AU1554                                                | 3  | 2  | 0  | 3  | 1  | 0  | 1  | 0  | 2  | 1  | 2  | 2  | 0   | 3   | 0   |
|          | AU1602                                                | 1  | 0  | 0  | 0  | 3  | 2  | 1  | 1  | 3  | 2  | 0  | 3  | 3   | 2   | 0   |
|          | AU1606                                                | 3  | 1  | 3  | 3  | 3  | 1  | 1  | 1  | 2  | 0  | 0  | 0  | 3   | 2   | 0   |
|          | AU1607                                                | 3  | 1  | 0  | 3  | 3  | 0  | 1  | 0  | 2  | 3  | 0  | 1  | 2   | 2   | 3   |
|          | AU1630                                                | 3  | 2  | 2  | 0  | 1  | 0  | 0  | 0  | 0  | 2  | 0  | 2  | 2   | 0   | 0   |
|          | AU1657                                                | 3  | 3  | 3  | 0  | 2  | 1  | 0  | 1  | 2  | 2  | 1  | 1  | 1   | 0   | 2   |
| VI       | AU1658                                                | 1  | 2  | 1  | 2  | 3  | 1  | 2  | 2  | 1  | 0  | 0  | 3  | 3   | 0   | 0   |
|          | AU1660                                                | 3  | 2  | 2  | 0  | 2  | 1  | 1  | 0  | 1  | 1  | 0  | 2  | 3   | 0   | 0   |
|          | AUI661                                                | 3  | 2  | 3  | 2  | 1  | 2  | 2  | 0  | 3  | 1  | 0  | 2  | 3   | 0   | 0   |
|          | AU1662                                                | 0  | 0  | 3  | 3  | 3  | 2  | 3  | 1  | 3  | 0  | 2  | 0  | 0   | 0   | 3   |
|          | AU1705                                                | 2  | 3  | 2  | 3  | 2  | 3  | 1  | 0  | 1  | 3  | 0  | 2  | 2   | 2   | 1   |
|          | AU1707                                                | 3  | 2  | 3  | 2  | 0  | 0  | 0  | 2  | 2  | 0  | 0  | 0  | 2   | 1   | 1   |
|          | AU1760                                                | 0  | 3  | 3  | 3  | 0  | 0  | 1  | 2  | 2  | 0  | 1  | 0  | 0   | 0   | 0   |
|          | AU1761                                                | 3  | 3  | 3  | 1  | 2  | 0  | 0  | 2  | 2  | 0  | 2  | 0  | 0   | 3   | 2   |
|          | AU1762                                                | 3  | 2  | 3  | 2  | 3  | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 2   | 1   | 0   |
|          | AU1763                                                | 3  | 2  | 2  | 2  | 2  | 2  | 0  | 2  | 3  | 0  | 2  | 0  | 0   | 2   | 0   |
| VII      | AU1765                                                | 3  | 3  | 3  | 2  | 3  | 2  | 0  | 0  | 3  | 0  | 1  | 3  | 0   | 2   | 0   |
|          | AU1767                                                | 3  | 3  | 1  | 3  | 2  | 0  | 0  | 0  | 2  | 1  | 2  | 2  | 0   | 1   | 3   |
|          | AU1733                                                | 0  | 0  | 1  | 1  | 1  | 2  | 2  | 0  | 3  | 3  | 3  | 0  | 0   | 3   | 3   |
| VIII     | AU1881                                                | 0  | 3  | 3  | 3  | 2  | 2  | 2  | 0  | 3  | 0  | 3  | 3  | 0   | 0   | 3   |

#### MANIPAL UNIVERSITY JAIPUR



School of Business & Commerce

**Department of Business Administration** 

Course Hand-out

Value, Ethics & Governance BB0025 [2 Credits] [2 0 0 2]

Session: Aug-Dec 2020 | Faculty: Dr Anjalee Narayan | Class: B Tech III Semester

**Introduction:** The course is offered to understand Moral Values and Ethics in personal as well as professional life. It is basic requirement of every human to be a good human being and a good citizen. It further imparts him basics of corporate governance so as to empower him to work technically and professionally in any organization with confidence and conviction and at the same time with honesty & integrity.

A. Course Objectives: At the end of the course, students will be able to

| BB0025.1 | Define the meaning and relevance of Value and Ethics and apply in personal & professional       |
|----------|-------------------------------------------------------------------------------------------------|
|          | life.                                                                                           |
| BB0025.2 | Describe the importance of three Gunas for self-development, lifelong learning & growth.        |
| BB0025.3 | Find issues and identify solutions related to Public & Private Governance systems.              |
| BB0025.4 | Explain the relevance of Company's Act 2013 with reference to corporate world.                  |
| BB0025.5 | Explain the role and key objectives of organizational governance in relation to ethics and law. |
| BB0025.6 | Demonstrate the social & environmental responsibilities of corporate for sustainability,        |
|          | harmony and growth.                                                                             |

#### **B.** Program Outcomes and Program Specific Outcomes

- **[PO.1]. Critical Thinking:** Take informed actions after identifying the assumptions that frame our thinking and actions, checking out the degree to which these assumptions are accurate and valid, and looking at our ideas and decisions (intellectual, organizational, and personal) from different perspectives.
- **[PO.2]. Effective Communication:** Speak, read, write and listen clearly in person and through electronic media in English and in one Indian language, and make meaning of the world by connecting people, ideas, books, media and technology.
- **[PO.3]. Social Interaction**: Elicit views of others, mediate disagreements and help reach conclusions in group settings.
- **[PO.4]. Effective Citizenship:** Demonstrate empathetic social concern and equity centered national development, and the ability to act with an informed awareness of issues and participate in civic life through volunteering.
- **[PO.5]. Ethics:** Recognize different value systems including your own, understand the moral dimensions of your decisions, and accept responsibility for them.
- **[PO.6]. Environment and Sustainability:** Understand the issues of environmental contexts and sustainable development.

- **[PO.7]. Self-directed and Life-long Learning:** Acquire the ability to engage in independent and life-long learning in the broadest context socio-technological changes.
- **[PSO.1]. Understanding Traditional and Contemporary Managerial Concepts and Models**: Understanding in detail, the contents of various functional areas of Business & Management and the implications of psychological and behavioral aspects on the organizations.
- **[PSO.2].** Analyzing Business Environment: Identifying opportunities existing in the domestic and global business and economic environment and initiating systematic approach towards rational decision making.
- **[PSO.3].** Application of Business Concepts and Managerial Skills: Implementing conceptual knowledge in real business situations for ensuring business sustainability and growth.

| Criteria            | Description                                                        | Maximum Marks                    |  |  |  |  |
|---------------------|--------------------------------------------------------------------|----------------------------------|--|--|--|--|
|                     | Mid Sem Exam I                                                     | 20                               |  |  |  |  |
| Internal Assessment | Mid Sem Exam II                                                    | 20                               |  |  |  |  |
| (Summative)         | In class Quizzes/ Assignments/                                     | 20                               |  |  |  |  |
|                     | Students' Presentations                                            |                                  |  |  |  |  |
| End Term Exam       | End Term Exam                                                      | 40                               |  |  |  |  |
| (Summative)         |                                                                    |                                  |  |  |  |  |
|                     | Total                                                              | 100                              |  |  |  |  |
| Attendance          | A minimum of 75% Attendance is                                     | s required to be maintained by a |  |  |  |  |
| (Formative)         | student to be qualified for taking up the End Semester examination |                                  |  |  |  |  |
|                     | The allowance of 25% includes all types of leaves including med    |                                  |  |  |  |  |
|                     | leaves.                                                            |                                  |  |  |  |  |

#### C. Assessment Plan:

#### D: Syllabus:

**Values**: Relevance of Value Education in day-to-day life. Mantra for success - Value, Moral and Ethics. Determinants of human nature (Three Gunas) and its impact on human life.

**Relevance of traits** like Personality, Attitude, Behaviour, Ego, Character, introspection, Motivation, Leadership and 4 Qs with relevant Case Studies\*.

**Governance:** Understanding of Public and Private sector Governance systems; Courts & CAG. Public Sector Governance: Need, relevance, stakeholders.

Private Sector Governance: Proprietary, Partnership, Company (Pvt Ltd & Ltd), Company' Act 2013, Board of Directors; its Roles and Responsivities. Regulatory bodies; its role in ethical governance. Projects on PPP mode-relevance & prospects.

**CSR**: Relationship with Society, Philanthropy and Business strategy, CSR Policy, Triple Bottom Line

#### Text / Reference Books:

- 1. Professional Module of ICSI.
- 2. Ghosh B.N., Business Ethics & Corporate Governance, McGraw Hill.

- 3. Mandal S.K., Ethics in Business & Corporate Governance, McGraw Hill .
- 4. Ray C.K., Corporate Governance, Value & Ethics, Vaya Education of India
- 5. Chatterjee Abha, Professional Ethics, Oxford Publications.

#### D. Lecture Plan:

| Lec No | Topics                            | Session Outcome                   | Mode of          | Correspo       | Mode of        |
|--------|-----------------------------------|-----------------------------------|------------------|----------------|----------------|
|        |                                   |                                   | Delivery         | nding CO       | Assessing the  |
|        |                                   |                                   |                  |                | Outcome        |
| 1      | Introduction: Values: Meaning     | To acquaint and clear             | Lecture          | BB0025.1       | In class Quiz  |
|        | & Relevance of value education    | teacher's expectations and        |                  |                | Mid Term I     |
|        |                                   | understand student                |                  |                | End Term Exam  |
|        |                                   | expectations. Basics of Value     |                  |                |                |
|        |                                   | Education                         |                  |                |                |
| 2      | Success: Meaning in perspective   | To understand the concept of      | Lecture,         | BB0025.1       | In class Quiz  |
|        | of morals & ethics                | success achieved with or          | case             |                | Mid Term I     |
|        |                                   | without morals / ethics/          | study            |                | End Term Exam  |
| 3 /    | Professional Ethics & ethical     | To understand the role of         | Lecture          | BB0025 1       | In class Quiz  |
| 5,4    | dilemmas                          | professional ethics in the life   | Lecture          | 000023.1       | assignment     |
|        | unenning                          | & deal with dilemmas              |                  |                | Mid Term I     |
|        |                                   |                                   |                  |                | End Term Exam  |
| 5      | Three Gunas and their             | Understand basic traits in        | Lecture          | BB0025.2       | In Class Quiz, |
|        | relevance, Nature and kinds of    | one's personality, its causes     |                  |                | Mid Term I     |
|        | value with examples               | and relevance with value          |                  |                | End Term       |
|        |                                   | based living.                     |                  |                |                |
| 6,7    | Relevance of traits of individual | To acquaint & develop             | Short            | BB0025.2       | Class Quiz     |
|        | like Personality, Attitude,       | positive traits of personality in | stories,         |                | assignment     |
|        | Behaviour                         | oneself                           | Lecture          |                | Mid Term I     |
|        |                                   |                                   |                  |                | End Term       |
| 8.0    |                                   | To conversit & develop positive   | Looturo          |                |                |
| 8.9    | Ego, Character, Introspection,    | To acquaint & develop positive    | Lecture<br>Short | BB0022.2       |                |
|        | Motivation                        | and understand negative           | short            |                | Find Term      |
|        |                                   | traits                            | stones           |                |                |
| 10,11  | Leadership traits & 4Qs (PQ, IQ,  | To realize importance of          | Lecture          | BB0025.2       | In Class Quiz  |
|        | EQ, SQ)                           | leadership and to imbibe in       | Short            |                | assignment     |
|        |                                   | life                              | stories          |                | Mid Term I     |
|        |                                   |                                   |                  |                | End Term       |
| 12,13  | Governance & its relevance        | To acquaint with the concept      | Lecture          | BB0025.3       | In Class Quiz  |
|        |                                   | of Governance                     |                  |                | Mid Term II    |
|        |                                   |                                   |                  |                | End Term       |
| 14     | Public Sector Governance: Need,   | Understand various aspects of     | Lecture          | BB0025.3       | Class Quiz,    |
|        | relevance, stakeholders           | public sector governance          |                  |                | Mid Term II    |
| 4.5    |                                   |                                   |                  |                | End Term       |
| 15     | Public Finance, Audit & Control   | Understand basics of Public       | Lecture          | BB0025.3       | Class Quiz,    |
|        |                                   | Finance, Check & balance          | Case             |                | assignment     |
|        |                                   |                                   | study            |                | IVIID Form II  |
| 16 17  | Drivata Sactor Coversance         | Inderstand massing of             |                  |                |                |
| 10,17  | propriotony & portnorship firms   | propriotory & portporchin in a    | Lecture          | 0.<br>BBUU25.3 |                |
|        | and corporate DPD mode            | firm / company and                | stories          |                | Find torm      |
|        | and corporate, FPP mode           | inin / company and                | stones           | 000020.4       |                |

|        | projects                        | perspective in PPP mode        |          |          |             |
|--------|---------------------------------|--------------------------------|----------|----------|-------------|
| 18, 19 | Company' Act 2013: Roles &      | Explain various Regulations    | Lecture  | BB0025.4 | Class Quiz  |
|        | Responsibilities of Directors & | and practices of Corporate     |          |          | Mid Term II |
|        | regulatory authorities          | Governance internationally &   |          |          | End Term    |
|        |                                 | understand key role of         |          |          |             |
|        |                                 | directors                      |          |          |             |
| 20,21  | Role of Ethics in Governance    | Recognize the necessity of     | Movie:   | BB0025.5 | Class Quiz, |
|        |                                 | ethics & transparency in       | Gandhi   |          | assignment  |
|        |                                 | Governance                     |          |          | Mid Term II |
|        |                                 |                                |          |          | End Term    |
| 22,23  | CSR: Relationship with Society, | To understand the relevance    | Lecture, | BB0025.6 | Class Quiz, |
|        | Philanthropy and Business       | of giving back to society by a | case     |          | End Term    |
|        | strategy                        | corporate & its importance in  | study    |          |             |
|        |                                 | society                        |          |          |             |
| 24     | CSR Policy, Triple Bottom Line  | Understand the concept of      | Lecture  | BB0025.6 | Class Quiz  |
|        |                                 | TBL in organizational          | case     |          | assignment  |
|        |                                 | frameworks                     | study    |          | End Term    |
| 25,26  | Students' Presentation          | Recall contents and their      | Flipped  | ALL      | Class Quiz  |
|        |                                 | importance through case        | Class    |          | End Term    |
|        |                                 | studies.                       |          |          |             |

# Course Articulation Matrix: (Mapping of COs with POs)

| со       | STATEMENT                                                                                                   |         | CORRELATION<br>WITH<br>PROGRAM<br>OUTCOMES |         |         |         |         |         | CORRELATION<br>WITH PROGRAM<br>SPECIFIC<br>OUTCOMES |          |          |
|----------|-------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------|---------|---------|---------|---------|---------|-----------------------------------------------------|----------|----------|
|          |                                                                                                             | PO<br>1 | PO<br>2                                    | РО<br>3 | РО<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PSO<br>1                                            | PSO<br>2 | PSO<br>3 |
| BB0025.1 | Define the meaning and<br>relevance of Value and<br>Ethics and apply in<br>personal & professional<br>life. | 1       |                                            |         |         | 3       |         |         | 1                                                   |          |          |
| BB0025.2 | Describe the importance<br>of three Gunas for self-<br>development, lifelong<br>learning & growth.          |         |                                            | 2       |         |         |         | 3       | 1                                                   |          |          |
| BB0025.3 | Find issues and identify<br>solutions related to Public<br>& Private Governance<br>systems.                 |         |                                            |         | 2       |         | 2       |         |                                                     | 1        |          |
| BB0025.4 | Explain the relevance of<br>Company's Act 2013 with<br>reference to corporate<br>world.                     |         |                                            |         |         | 1       | 2       |         |                                                     | 1        |          |
| BB0025.5 | Explain the role and key<br>objectives of<br>organizational governance<br>in relation to ethics and<br>law. |         |                                            | 1       | 1       | 3       |         |         |                                                     |          | 1        |
| BB0025.6 | Demonstrate the social &                                                                                    | 1       |                                            |         |         |         | 2       | 2       |                                                     |          | 1        |

| environmental<br>responsibilities of<br>corporate for |  |  |  |  |  |
|-------------------------------------------------------|--|--|--|--|--|
| sustainability, harmony and growth.                   |  |  |  |  |  |

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



#### MANIPAL UNIVERSITY JAIPUR

School of Basic Sciences

Department of Mathematics and Statistics

Course Hand-out

Engineering Mathematics III | MA2102 | 3 Credits | 3 0 0 3

Session: Jul 20 - Dec 20 | Faculty: Dr. Bhoopendra Pachauri| Class: Compulsory

- A. Introduction: In the first part the student will be acquainted with some Partial differential equation like Basic concepts, solutions of heat, wave equations by separation of variables and numerical solutions of boundary valued problems, Laplace and Poisson equations and heat and wave equations by explicit method which are suitable for modelling various problems of practice. The other part of the subject yields fundamental knowledge from the vector calculus, Fourier series and Fourier transformation which is necessary for engineering problem solution.
- **B. Course Outcomes:** At the end of the course, students will be able to the student is able to think logically. [2102.1]. Learn about vector calculus and their applications in engineering
  - [2102.2]. Understand the periodic function and solve the problems using Fourier series and Fourier transform
  - [2102.3]. Ability to solve the problems using Laplace, heat and wave equations
  - [2102.4]. To Learn Numerical based solution of partial differential equations
  - [2102.5]. Learn real life engineering problem solution skill.

## PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices

- [PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
- [PSO.1]. To solve complex practical problems related to electrical & electronics engineering applications by applying and correlating the knowledge gained from mathematics, basic sciences and other fundamental courses.
- [PSO.2]. To design, develop and analyse the prevalent domains of electrical systems for sustainable, reliable, environmental friendly and feasible solutions.

[PSO.3]. Develop, investigate and solve different models of electrical networks using modern engineering tools for variety of real time, industrial and research problems.

C. Assessment Plan:

| Criteria                   | Description                                                               | Maximum Marks                             |  |  |  |
|----------------------------|---------------------------------------------------------------------------|-------------------------------------------|--|--|--|
|                            | Sessional Exam I (Closed Book)                                            | 20                                        |  |  |  |
| Internal Assessment        | Sessional Exam II (Closed Book)                                           | 20                                        |  |  |  |
| (Summative)                | In class Quizzes and Assignments ,                                        | 20                                        |  |  |  |
|                            | Activity feedbacks (Accumulated and                                       |                                           |  |  |  |
|                            | Averaged)                                                                 |                                           |  |  |  |
| End Term Exam              | End Term Exam (Closed Book)                                               | 40                                        |  |  |  |
| (Summative)                |                                                                           |                                           |  |  |  |
|                            | Total                                                                     | 100                                       |  |  |  |
| Attendance                 | A minimum of 75% Attendance is requir                                     | red to be maintained by a student to be   |  |  |  |
| (Formative)                | qualified for taking up the End Semest                                    | er examination. The allowance of 25%      |  |  |  |
|                            | includes all types of leaves including medi                               | cal leaves.                               |  |  |  |
| Make up Assignments        | Students who misses a class will have to                                  | report to the teacher about the absence.  |  |  |  |
| (Formative)                | A makeup assignment on the topic taug                                     | ght on the day of absence will be given   |  |  |  |
|                            | which has to be submitted within a                                        | week from the date of absence. No         |  |  |  |
|                            | extensions will be given on this. The atte                                | ndance for that particular day of absence |  |  |  |
|                            | will be marked blank, so that the stude                                   | nt is not accounted for absence. These    |  |  |  |
|                            | assignments are limited to a maximum of                                   | 5 throughout the entire semester.         |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student                                      | may have to work in home, especially      |  |  |  |
| Activity Assignment        | before a flipped classroom. Although these works are not graded with ma   |                                           |  |  |  |
| (Formative)                | However, a student is expected to participate and perform these assignmer |                                           |  |  |  |
|                            | with full zeal since the activity/ flipped cla                            | ssroom participation by a student will be |  |  |  |
|                            | assessed and marks will be awarded.                                       |                                           |  |  |  |

#### D. SYLLABUS

Gradient, divergence and curl, Line, surface and volume integrals. Green's, divergence and Stoke's theorems.

Fourier series of periodic functions. Half range expansions. Harmonic analysis. Fourier integrals. Sine and cosine integrals, Fourier transform, Sine and cosine transforms.

Partial differential equation-Basic concepts, solutions of equations involving derivatives with respect to one variable only. Solutions by indicated transformations and separation of variables. One dimensional wave equation, one dimensional heat equation and their solutions.

Numerical solutions of boundary valued problems, Laplace and Poisson equations and heat and wave equations by explicit methods.

#### **References:**

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 7(e), John Wiley & Sons, Inc., 2015.
- 2. S.S. Sastry, Introductory methods for Numerical Analysis, (5e), PHI Learning Private Limited, 2012.
- 3. B.S. Grewal, Higher Engineering Mathematics, 43(e), Khanna Publishers, 2014.
- 4. R. Spiegel Murray, Vector Analysis, Schaum Publishing Co., 1959.

#### E. TEXT BOOKS

T1 Erwin Kreyszig, Advanced Engineering Mathematics, 7(e), John Wiley & Sons, Inc., 2015.

T2 S.S. Sastry, Introductory methods for Numerical Analysis, (5e), PHI Learning Private Limited, 2012.

#### F. REFERENCE BOOKS

R1. B.S. Grewal, Higher Engineering Mathematics, 43(e), Khanna Publishers, 2014.

R2. R. Spiegel Murray, Vector Analysis, Schaum Publishing Co., 1959.

| Lec No | Topics                         | Session Outcome                            | Mode of  | Corresponding | Mode of Assessing the       |
|--------|--------------------------------|--------------------------------------------|----------|---------------|-----------------------------|
|        |                                |                                            | Delivery | СО            | Outcome                     |
| Ι      | Vector Calculus: Introduction, | To acquaint students basic Vectors         | Lecture  | NA            | NA                          |
| 2      | Basics, review                 | Recall and learn vectors property          | Lecture  | MA2102.1      | In Class Quiz               |
| 3      | Gradient                       | Understand the concept Gradient            | Lecture  | MA2102.1      | Home assignment             |
| 4, 5   | Divergence, Curl               | Understand the concept<br>Divergence, Curl | Lecture  | MA2102.1      | Home Assignment<br>End Term |

| 6, 7       | Line Integral                        | Understand the concept vector Line     | Lecture | MA2102.1 | In Class Quiz   |
|------------|--------------------------------------|----------------------------------------|---------|----------|-----------------|
|            |                                      | Integral                               |         |          | End Term        |
| 8,9        | Surface Integral                     | Understand the concept vector          | Lecture | MA2102.1 | Class Quiz      |
|            |                                      | Surface Integral                       |         |          | Mid Term I      |
|            |                                      |                                        |         |          | End Term        |
| 10         | Volume Integral                      | Understand the concept vector          | Lecture | MA2102.1 | Class Quiz      |
|            |                                      | Volume Integral                        |         |          | Mid Term I      |
|            |                                      |                                        |         |          | End term        |
| 11         | Green's theorem and its Examples     | Understand the concept of Green's      | Lecture | MA2102.1 | Home Assignment |
|            |                                      | theorem and apply to problems          |         | MA2102.5 | Class Quiz      |
|            |                                      |                                        |         |          | Mid Term I      |
|            |                                      |                                        |         |          |                 |
| 12         | divergence theorem and its Examples  | Understand the concept of              | Lecture | MA2102.1 | Class Quiz      |
|            |                                      | divergence theorem and apply to        |         | MA2102.5 | Mid Term I      |
|            |                                      | problems                               |         |          | End Term        |
| 13         | Stoke's theorem and its Examples     | Understand the concept of Stoke's      | Lecture | MA2102.1 | Class Quiz      |
|            |                                      | theorem and apply to problems          |         | MA2102.5 | Mid Term I      |
|            |                                      |                                        |         |          | End Term        |
| 14         | Fourier series of periodic functions | Understand the concept of              | Lecture | MA2102.2 | Class Quiz      |
|            |                                      | periodic functions and their           |         |          | End Term        |
|            |                                      | Fourier series                         |         |          |                 |
| 15         | Change of interval                   | Able to find the Fourier series for    | Lecture | MA2102.2 | Class Quiz      |
|            |                                      | different interval                     |         |          | Mid Term II     |
|            |                                      |                                        |         |          | End Term        |
| 17         | Half range expansions                | Able to find the Fourier series in for | Lecture | MA2102.2 | Class Quiz      |
|            |                                      | the half interval                      |         |          | Mid Term II     |
|            |                                      |                                        |         |          | End Term        |
| 18         | Harmonic analysis                    | Able to do Harmonic analysis           | Lecture | MA2102.2 | Class Quiz      |
|            |                                      |                                        |         | MA2102.5 | Mid Term II     |
|            |                                      |                                        |         |          | End Term        |
| 19         | Fourier integrals                    | Understand the concept Fourier         | Lecture | MA2102.2 | Class Quiz      |
|            |                                      | integrals                              |         |          | Mid Term II     |
|            |                                      |                                        |         |          | End Term        |
| 20         | Sine and cosine integrals            | Understand the concept Sine and        | Lecture | MA2102.2 | Class Quiz      |
|            |                                      | cosine integrals                       |         |          | End Term        |
| 21, 22, 23 | Fourier transform                    | Able to find the Fourier transform     | Lecture | MA2102.2 | Class Quiz      |
|            |                                      | of functions                           |         | MA2102.5 | End Term        |
| 24, 25     | Sine and cosine transforms           | Able to find the Sine and cosine       | Lecture | MA2102.2 | Class Quiz      |
|            |                                      | transforms of functions                |         | MA2102.5 | End Term        |
| 26         | Partial Differential Equation: Basic | Understand the Basic concepts of       | Lecture | MA2102.3 | Class Quiz      |
|            | concepts                             | PDE                                    |         |          | End Term        |
| 27         | solutions of equations involving     | Able to solve PDE                      | Lecture | MA2102.3 | Class Quiz      |

|        | derivatives with respect to one variable only                      |                                                          |         |                      | End Term                              |
|--------|--------------------------------------------------------------------|----------------------------------------------------------|---------|----------------------|---------------------------------------|
| 28     | Solutions by indicated transformations and separation of variables | Able to solve PDE                                        | Lecture | MA2102.3             | Class Quiz<br>End term                |
| 29     | One dimensional wave equation their solutions                      | Able to solve wave equations                             | Lecture | MA2102.3             | Class Quiz                            |
| 30     | one dimensional heat equation and their solutions                  | Able to solve heat equations                             | Lecture | MA2102.3             | Class Quiz<br>Mid Term II<br>End Term |
| 31     | Numerical Methods: Numerical solutions of boundary valued problems | Able to solve PDE numerically                            | Lecture | MA2102.4             | Class Quiz<br>End Term                |
| 32, 33 | Laplace equations by explicit method                               | Able of find the numerical solution of Laplace equations | Lecture | MA2102.4<br>MA2102.5 | Class Quiz<br>End Term                |
| 34     | Poisson equations by explicit method                               | Able of find the numerical solution of Poisson equations | Lecture | MA2102.4<br>MA2102.5 | End Term                              |
| 35     | heat equations by explicit method                                  | Able of find the numerical solution of heat equations    | Lecture | MA2102.4<br>MA2102.5 | End Term                              |
| 36     | wave equations by explicit method                                  | Able of find the numerical solution of wave equations    | Lecture | MA2102.4<br>MA2102.5 | End Term                              |
| 37     | Conclusion and Course Summarization                                | Value and analysis                                       | Lecture |                      | Class Quiz<br>End Term                |

# G. Course Articulation Matrix: (Mapping of COs with POs)

| со     | STATEMENT                                             |    | CORRELATION WITH PROGRAM OUTCOMES |    |    |    |    |    |    |    | CORRELATION WITH<br>PROGRAM SPECIFIC<br>OUTCOMES |    |    |       |       |       |
|--------|-------------------------------------------------------|----|-----------------------------------|----|----|----|----|----|----|----|--------------------------------------------------|----|----|-------|-------|-------|
|        |                                                       | PO | PO                                | PO | PO | PO | PO | PO | PO | PO | PO                                               | PO | PO | PSO 1 | PSO 2 | PSO 3 |
|        |                                                       | 1  | 2                                 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10                                               | 11 | 12 |       |       |       |
| MA     | Learn about vector calculus and their applications in | 3  | 2                                 | 2  | 2  |    |    |    |    |    |                                                  |    | 2  | 2     | 3     |       |
| 2102.1 | engineering                                           |    |                                   |    |    |    |    |    |    |    |                                                  |    |    |       |       |       |
| MA     | Understand the periodic function and solve the        | 3  | 2                                 | 2  | 2  |    |    |    |    |    |                                                  |    | 3  |       | 2     |       |
| 2102.2 | problems using Fourier series and Fourier transform   |    |                                   |    |    |    |    |    |    |    |                                                  |    |    |       |       |       |
| MA     | Ability to solve the problems using Laplace, heat and | 3  | 3                                 | 3  | 2  |    | 2  |    |    |    |                                                  |    | 2  | 2     | 2     |       |
| 2102.3 | wave equations                                        |    |                                   |    |    |    |    |    |    |    |                                                  |    |    |       |       |       |
| MA     | To Learn Numerical based solution of partial          | 3  | 3                                 | 3  | 2  |    | 2  |    |    |    |                                                  |    | 3  | 2     | 2     |       |
| 2102.4 | differential equations                                |    |                                   |    |    |    |    |    |    |    |                                                  |    |    |       |       |       |
| MA     | Learn real life engineering problem solution skill    | 3  | 2                                 | 2  | 2  | 2  |    |    |    |    |                                                  |    | 3  | 2     | 2     | 2     |
| 2102.5 |                                                       |    |                                   |    |    |    |    |    |    |    |                                                  |    |    |       |       |       |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

## MANIPAL UNIVERSITY JAIPUR



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Material Science and Metallurgy | AU 2101 | 3 Credits | 3 0 0 3

Session: Aug'20 – Dec'20 | Course Coordinator: Dr. Vinod Yadav | Class: 2<sup>nd</sup> Year / 3<sup>rd</sup> Semester

A. Introduction: This course is offered by Department of Automobile Engineering as a core course to provide a better understanding of different engineering materials. This course is one of the basic course for any branch of engineering students to understand behaviour of materials and transformation of microstructure in different temperature zone. This course provide an automobile engineering student to get proper idea of different material properties which is make use during fabricating vehicle. This course also helps our students during participation of different levels of car team competition such as SAE-BAJA, SAE-SUPRA, SAE-EFFICYCLE etc.

#### **B.** Course Outcomes: At the end of the course, students will be able to

- [2101.1]. Understand various crystal structure of materials and analyse different mechanism of plastic deformation of metal and alloys.
- [2101.2]. Analyse the mechanisms of strengthening engineering materials.
- [2101.3]. Construct various phase diagrams for metal alloys.
- [2101.4]. Understand different heat treatment process and recommend suitable process based on the material properties required to improve skills.
- [2101.5]. Explain the features and applications of engineering materials including traditional and newer materials like composite and smart materials.

#### C. Program Outcomes and Program Specific Outcomes

- **[PO.I].** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- **[PO.2]. Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3].** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4].** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- **[PO.5].** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- **[PO.6].** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7].** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8].** Ethics: Apply ethical principles and commit to professional ethics\_and responsibilities and norms of the engineering practices
- **[PO.9].** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

- **[PO.10].** Communication: Communicate effectively\_on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II].** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
- **[PSO.I].** Autotronics and Electric Vehicle Technology: Apply\_knowledge of electrical and electronics engineering for providing automobile engineering solutions
- **[PSO.2].** Alignment to Super Qualification packs of ASDC: Demonstrate knowledge and performance criteria as defined by ASDC super qualification packs for R&D or Quality or Service Engineering
- **[PSO.3].** Application of Lean Six Sigma Methodology: Demonstrate through an internship project, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

#### **D.** Assessment Rubrics:

| Criteria                   | Description                                    | Maximum Marks                             |
|----------------------------|------------------------------------------------|-------------------------------------------|
|                            | Sessional Exam I (Close Book)                  | 20                                        |
| Internal Assessment        | Sessional Exam II (Close Book)                 | 20                                        |
| (Summative)                | In class Quizzes and Assignments ,             | 20                                        |
|                            | Activity feedbacks (Accumulated and            |                                           |
|                            | Averaged)                                      |                                           |
| End Term Exam              | End Term Exam (Close Book)                     | 40                                        |
| (Summative)                |                                                |                                           |
|                            | Total                                          | 100                                       |
| Attendance                 | A minimum of 75% Attendance is requir          | red to be maintained by a student to be   |
| (Formative)                | qualified for taking up the End Semest         | er examination. The allowance of 25%      |
|                            | includes all types of leaves including medi    | cal leaves.                               |
| Make up Assignments        | Students who misses a class will have to       | report to the teacher about the absence.  |
| (Formative)                | A makeup assignment on the topic taug          | ght on the day of absence will be given   |
|                            | which has to be submitted within a             | week from the date of absence. No         |
|                            | extensions will be given on this. The atte     | ndance for that particular day of absence |
|                            | will be marked blank, so that the stude        | nt is not accounted for absence. These    |
|                            | assignments are limited to a maximum of        | 5 throughout the entire semester.         |
| Homework/ Home Assignment/ | There are situations where a student           | may have to work in home, especially      |
| Activity Assignment        | before a flipped classroom. Although th        | nese works are not graded with marks.     |
| (Formative)                | However, a student is expected to par          | ticipate and perform these assignments    |
|                            | with full zeal since the activity/ flipped cla | ssroom participation by a student will be |
|                            | assessed and marks will be awarded.            |                                           |

#### E. Syllabus

**Introduction:** Materials classification, Crystallography, Miller indices: Miller Bravais indices, Crystal structure determination, **Imperfections in Crystals:** Point defects, Line defects, Surface defects, **Plastic Deformation**: Metals and Alloys, Dislocation, Slip and twinning, Schmids law, **Strengthening mechanisms**: Solid solution strengthening, Work hardening, Recovery recrystallization and grain growth, **Diffusion**: Steady state and non-steady state diffusion, **Solidification of Metals and Alloys**: Solid solution, Hume Rothery's rules, **Phase diagrams** Phase and Lever Rules relationship of micro Structure and properties, Isomorphs systems, Eutectic system, Eutectoid peritectoid reactions, **Iron- Carbon equilibrium diagram**, Development of microstructure in Iron Carbon alloys, Phase transformation in steel, **Heat Treatment**, TTT diagram, **Steel:** Low, medium, and high carbon steels, Stainless steels-ferritic, Austenitic, Martensitic, Duplex steels, Tool steels, Aluminium and its alloys, Magnesium and alloys, Titanium and its alloys, **Ceramics and other materials:** Super alloys, ceramics, Refractories, Composites and glasses, Nano-materials.

#### F. Text Books

- TI. V. Raghavan, Material Science and Engineering, Prentice Hall of India Ltd., 4th Edition, 1994.
- T2. William D. Callister, "Materials Science and Engineering", John Wiley & Sons Inc. 2010
- T3. R. K. Rajput, Material Science and Engineering, S. K. Kataria & Sons, Re Print 2009 Edition.

#### G. REFERENCE BOOKS

- **R1.** Er. Amandeep Singh Wadhwa and Er. Harvinder Singh Dhaliwal, A Text book of Engineering Material and Metallurgy, University Science Press, Reprint 2011 Edition.
- R2. O. P. Khanna, A Text book of Material Science and Metallurgy, Dhanpat Rai Publications, Reprint 2011 Edition.
- R3. V. D. Kodgire and S. V. Kodgire, Material Science and Metallurgy for Engineers, Everest Publishing House, 31st Edition, 2012.
- R4. E. Dieter, Mechanical Metallurgy, Metric Editions, McGraw Hill Book Company.
- R5. S. P. Nayak, Engineering Metallurgy and Material Science, Charoter Publishing House, 6th Edition, 1995.

#### H. Lecture Plan:

| Lecture | Topics                                       | Session Outcome                                                                                                                                         | Mode of<br>Delivery             | Corresponding<br>CO | Mode of<br>Assessing the<br>Outcome                              |
|---------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------|------------------------------------------------------------------|
| Ι       | Introduction                                 | To create an understanding between students and teacher                                                                                                 | Flipped<br>Classroom            | 2101.1              | NA                                                               |
| 2       | Course objective and outcomes                | To acquaint and clear teachers expectations and<br>understand student expectations                                                                      | Lecture                         | NA                  | NA                                                               |
| 3       | Introduction: Material                       | Describe the concept of material used in history.                                                                                                       | Lecture                         | 2101.1              | Class Quiz                                                       |
| 4       | Material Classification                      | Distinguee engineering material and how these materials are used in automobile industry?                                                                | Flipped<br>Classroom<br>Lecture | 2101.1              | Sessional Exam<br>End Term Exam                                  |
| 5       | Crystallography                              | Describe the difference in atomic/molecular structure between crystalline and non-crystalline materials.                                                | Flipped<br>Classroom<br>Lecture | 2101.1              | Class Quiz<br>Sessional Exam<br>End Term Exam<br>Home Assignment |
| 6-7     | Miller indices                               | Specify miller indices for a plane that has been<br>drawn within a unit cell<br>Sketch direction corresponding to miller indices<br>within a unit cell. | Lecture<br>Flipped<br>Classroom | 2101.1              | Class Quiz<br>Sessional Exam<br>End Term Exam                    |
| 8       | Miller Bravais indices                       | Determination of miller bravais indices for a plane within a different unit cell.                                                                       | Lecture                         | 2101.1              | Sessional Exam<br>End Term Exam<br>Class Quiz                    |
| 9       | Crystal structure determination              | Analysis atomic and molecular arrangement in solid crystal structure.                                                                                   | Lecture                         | 2101.1              | Sessional Exam<br>End Term Exam                                  |
| 10      | Imperfections in Crystals: Introduction      | Describe effect of imperfection on crystal structure.                                                                                                   | Lecture                         | 2101.1              | Class Quiz<br>Sessional Exam<br>End Term Exam                    |
| 11      | Point defects, Line defects, Surface defects | Differentiate among different types of defects.                                                                                                         | Lecture<br>Flipped<br>Classroom | 2101.1              | Sessional Exam<br>End Term Exam                                  |
| 12      | Plastic Deformation, Metals and Alloys       | Analysis plastic deformation of metal as well as alloys.                                                                                                | Lecture<br>Flipped<br>Classroom | 2101.1              | Home Assignment<br>Class Quiz<br>Sessional Exam<br>End Term Exam |

| 13                                     | Dislocation, Slip and twinning                                                                                                                                                                                                                                                                                                                            | <ul> <li>Examine each of edge, screw and mixed dislocation by</li> <li>Describing and make a drawing of dislocation</li> <li>Note the location of the dislocation line</li> <li>Indicate the direction along which dislocation line extended.</li> </ul>                                                                                                                                                                                                                                                                                                               | Lecture<br>Flipped<br>Classroom                                                                       | 2101.2                                                   | Home Assignment<br>Sessional Exam<br>End Term Exam<br>Class Quiz                                                                                                                                                                                                   |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14                                     | Schmids law                                                                                                                                                                                                                                                                                                                                               | Describe the effect of slip plane and slip direction<br>on crystal structure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lecture                                                                                               | 2101.2                                                   | Sessional Exam<br>End Term Exam                                                                                                                                                                                                                                    |
| 15-17                                  | Strengthening mechanisms: Solid solution<br>strengthening, Work hardening, Recovery<br>recrystallization and grain growth                                                                                                                                                                                                                                 | Examine different method of strengthening<br>mechanism.<br>Analysis variation of recovery recrystallization<br>and grain growth with respect to mechanical<br>properties.                                                                                                                                                                                                                                                                                                                                                                                              | Lecture<br>Flipped<br>Classroom                                                                       | 2101.2                                                   | Home Assignment<br>Sessional Exam<br>End Term Exam<br>Class Quiz                                                                                                                                                                                                   |
| 18-19                                  | <b>Diffusion:</b> Steady state and non-steady state diffusion                                                                                                                                                                                                                                                                                             | Describe the atomic mechanism of diffusion in<br>metallic, ionic and polymer materials.<br>Compute diffusion coefficient for some material at<br>a specified temperature, given the appropriate<br>diffusion constants.                                                                                                                                                                                                                                                                                                                                                | Flipped<br>Classroom<br>Lecture                                                                       | 2101.2                                                   | Sessional Exam<br>End Term Exam<br>Class Quiz<br>Home Assignment                                                                                                                                                                                                   |
|                                        |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                       |                                                          |                                                                                                                                                                                                                                                                    |
| 20                                     | <b>Solidification of Metals and Alloys:</b><br>Introduction                                                                                                                                                                                                                                                                                               | Express solidification effect on metal and alloys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lecture                                                                                               | 2101.3                                                   | Sessional Exam<br>End Term Exam                                                                                                                                                                                                                                    |
| 20<br>21                               | SolidificationofMetalsandAlloys:IntroductionSolid solution, Hume Rothery's rules                                                                                                                                                                                                                                                                          | Express solidification effect on metal and alloys.<br>Describe the conditions under which an element<br>could dissolve in a metal, forming a solid solution.                                                                                                                                                                                                                                                                                                                                                                                                           | Lecture                                                                                               | 2101.3                                                   | Sessional Exam<br>End Term Exam<br>Class Quiz<br>Sessional Exam<br>End Term Exam                                                                                                                                                                                   |
| 20<br>21<br>22-23                      | SolidificationofMetalsandAlloys:IntroductionSolid solution, Hume Rothery's rulesPhase diagramsPhase and Lever Rulesrelationship of micro Structure and properties                                                                                                                                                                                         | Express solidification effect on metal and alloys. Describe the conditions under which an element could dissolve in a metal, forming a solid solution. Analysis the effect on microstructure on varying temperature and alloy composition                                                                                                                                                                                                                                                                                                                              | Lecture<br>Lecture<br>Flipped<br>Classroom                                                            | 2101.3<br>2101.3<br>2101.3                               | Sessional Exam<br>End Term Exam<br>Class Quiz<br>Sessional Exam<br>End Term Exam<br>End Term Exam<br>Class Quiz                                                                                                                                                    |
| 20<br>21<br>22-23<br>24                | SolidificationofMetalsandAlloys:IntroductionSolid solution, Hume Rothery's rulesPhase diagramsPhase and Lever RulesPhase diagramsPhase and Lever RulesIsomorphs systems, Eutectic system, Eutectoidperitectoid reactions                                                                                                                                  | Express solidification effect on metal and alloys.<br>Describe the conditions under which an element<br>could dissolve in a metal, forming a solid solution.<br>Analysis the effect on microstructure on varying<br>temperature and alloy composition<br>Differentiate among eutectic system, eutectoid<br>system and peritectoid system.                                                                                                                                                                                                                              | Lecture<br>Lecture<br>Flipped<br>Classroom<br>Lecture<br>Flipped<br>Classroom                         | 2101.3<br>2101.3<br>2101.3<br>2101.3                     | Sessional Exam<br>End Term Exam<br>Class Quiz<br>Sessional Exam<br>End Term Exam<br>Class Quiz<br>Sessional Exam<br>Class Quiz<br>Sessional Exam<br>End Term Exam<br>Class Quiz                                                                                    |
| 20<br>21<br>22-23<br>24<br>25-26       | SolidificationofMetalsandAlloys:IntroductionSolid solution, Hume Rothery's rulesPhase diagramsPhase and Lever Rulesrelationship of microStructure and propertiesIsomorphs systems, Eutectic system, Eutectoidperitectoid reactionsIron- Carbon equilibrium diagram                                                                                        | Express solidification effect on metal and alloys.<br>Describe the conditions under which an element<br>could dissolve in a metal, forming a solid solution.<br>Analysis the effect on microstructure on varying<br>temperature and alloy composition<br>Differentiate among eutectic system, eutectoid<br>system and peritectoid system.<br>Sketch Iron - Carbon equilibrium diagram and<br>describe each part of sketch.                                                                                                                                             | Lecture<br>Lecture<br>Flipped<br>Classroom<br>Lecture<br>Flipped<br>Classroom<br>Flipped<br>Classroom | 2101.3<br>2101.3<br>2101.3<br>2101.3<br>2101.3           | Sessional Exam<br>End Term Exam<br>Class Quiz<br>Sessional Exam<br>End Term Exam<br>Class Quiz<br>Sessional Exam<br>End Term Exam<br>Class Quiz<br>Class Quiz<br>Sessional Exam<br>Class Quiz<br>Sessional Exam<br>End Term Exam                                   |
| 20<br>21<br>22-23<br>24<br>25-26<br>27 | SolidificationofMetalsandAlloys:IntroductionSolid solution, Hume Rothery's rulesSolid solution, Hume Rothery's rulesPhase diagramsPhase and Lever Rulesrelationship of micro Structure and propertiesIsomorphs systems, Eutectic system, Eutectoidperitectoid reactionsIron- Carbon equilibrium diagramDevelopment of microstructure in Iron Carbonalloys | <ul> <li>Express solidification effect on metal and alloys.</li> <li>Describe the conditions under which an element could dissolve in a metal, forming a solid solution.</li> <li>Analysis the effect on microstructure on varying temperature and alloy composition</li> <li>Differentiate among eutectic system, eutectoid system and peritectoid system.</li> <li>Sketch Iron - Carbon equilibrium diagram and describe each part of sketch.</li> <li>Analysis the effect on mechanical behaviour in development of microstructure in Iron Carbon alloys</li> </ul> | Lecture<br>Lecture<br>Flipped<br>Classroom<br>Lecture<br>Flipped<br>Classroom<br>Flipped<br>Classroom | 2101.3<br>2101.3<br>2101.3<br>2101.3<br>2101.3<br>2101.3 | Sessional Exam<br>End Term Exam<br>Class Quiz<br>Sessional Exam<br>End Term Exam<br>Class Quiz<br>Sessional Exam<br>End Term Exam<br>Class Quiz<br>Class Quiz<br>Sessional Exam<br>End Term Exam<br>Class Quiz<br>Sessional Exam<br>End Term Exam<br>End Term Exam |

| 29-32 | Heat Treatment                                                 | Explain different types of heat treatment<br>processes.<br>Analysis the effect of heat treatment processes in<br>automotive components. | Lecture<br>Flipped<br>Classroom | 2101.4 | Class Quiz<br>Sessional Exam<br>End Term Exam                    |
|-------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------|------------------------------------------------------------------|
| 33-34 | TTT diagram                                                    | Compare the effect of temperature and time in changing microstructure of alpha iron.                                                    | Lecture<br>Flipped<br>Classroom | 2101.4 | Class Quiz<br>Sessional Exam<br>End Term Exam                    |
| 35    | Steel: Low, medium, and high carbon steels                     | Categories different types of steel on the basic of % composition of carbon.                                                            | Lecture<br>Flipped<br>Classroom | 2101.5 | Class Quiz<br>Sessional Exam<br>End Term Exam                    |
| 36    | Stainless steels-ferritic, Austenitic, Martensitic             | Compare stainless steel and normal steel in terms of composition and application.                                                       | Lecture<br>Flipped<br>Classroom | 2101.5 | Sessional Exam<br>End Term Exam<br>Class Quiz                    |
|       | Duplex steels, Tool steels                                     | Investigate special type of characteristics of tool steel.                                                                              | Lecture<br>Flipped<br>Classroom | 2101.5 | Class Quiz<br>Sessional Exam<br>End Term Exam<br>Home Assignment |
| 37    | Aluminium and its alloys                                       | Explain use of aluminium and its alloys in automobile industry.                                                                         | Lecture<br>Flipped<br>Classroom | 2101.5 | Class Quiz<br>Sessional Exam<br>End Term Exam<br>Home Assignment |
|       | Magnesium and alloys                                           | Explain use of magnesium and its alloys in automobile industry.                                                                         | Lecture<br>Flipped<br>Classroom | 2101.5 | Class Quiz<br>Sessional Exam<br>End Term Exam<br>Home Assignment |
| 38    | Titanium and its alloys                                        | Explain use of titanium and its alloys in automobile industry.                                                                          | Lecture<br>Flipped<br>Classroom | 2101.5 | Class Quiz<br>Sessional Exam<br>End Term Exam<br>Home Assignment |
| 39    | <b>Ceramics and other materials:</b> ceramics,<br>Refractories | Express ceramics and refractories material in automobile industry.                                                                      | Lecture                         | 2101.5 | Sessional Exam<br>End Term Exam<br>Home Assignment               |
| 40    | Super alloys                                                   | Express different super alloys used in automobiles.                                                                                     | Lecture                         | 2101.5 | Sessional Exam<br>End Term Exam<br>Home Assignment               |
| 41    | Composites and glasses                                         | Compare composite material and glasses in terms of composition and application.                                                         | Lecture<br>Flipped<br>Classroom | 2101.5 | Sessional Exam<br>End Term Exam<br>Home Assignment               |
| 42    | Nano-materials                                                 | Differentiate different types of non-material used in automobiles.                                                                      | Lecture<br>Flipped<br>Classroom | 2101.5 | Sessional Exam<br>End Term Exam<br>Home Assignment               |

# I. Course Articulation Matrix: (Mapping of COs with POs)

| со           | STATEMENT                                                                                                                                    |         | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |         |         | CORRELATION WITH<br>PROGRAM SPECIFIC<br>OUTCOMES |          |          |          |       |       |       |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|---------|---------|---------|---------|---------|---------|--------------------------------------------------|----------|----------|----------|-------|-------|-------|
|              |                                                                                                                                              | PO<br>1 | РО<br>2                           | РО<br>3 | РО<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | РО<br>9                                          | PO<br>10 | PO<br>11 | PO<br>12 | PSO 1 | PSO 2 | PSO 3 |
| AU<br>2101.1 | Understand various crystal structure of materials and<br>analyse different mechanism of plastic deformation of<br>metal and alloys.          | 3       | 1                                 | 0       | 0       | 0       | 0       | 0       | 0       | 0                                                | 0        | 0        | 0        | 0     | 1     | 0     |
| AU<br>2101.2 | Analyse the mechanisms of strengthening engineering materials.                                                                               | 3       | 1                                 | 0       | 0       | 0       | 0       | 0       | 0       | 0                                                | 0        | 0        | 0        | 0     | 1     | 0     |
| AU<br>2101.3 | Construct various phase diagrams for metal alloys.                                                                                           | 3       | 1                                 | 1       | 0       | 0       | 0       | 0       | 0       | 0                                                | 0        | 0        | 0        | 0     | 1     | 0     |
| AU<br>2101.4 | Understand different heat treatment process and recommend suitable process based on the material properties required to improve skills.      | 3       | 1                                 | 1       | 0       | 0       | 0       | 0       | 0       | 0                                                | 0        | 0        | 0        | 1     | 1     | 0     |
| AU<br>2101.5 | Explain the features and applications of engineering materials including traditional and newer materials like composite and smart materials. | 3       | 1                                 | 1       | 0       | 0       | 1       | 0       | 0       | 0                                                | 0        | 0        | 0        | 1     | 1     | 0     |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

#### J. Course Outcome Attainment Level Matrix:

| СО           | STATEMENT                                                                                                                                             |         | ATTAINMENT OF PROGRAM OUTCOMES<br>THRESHOLD VALUE: 40% |         |         |         |         |         |         |         |          | ATTAINMENT OF<br>PROGRAM SPECIFIC<br>OUTCOMES |          |       |       |       |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|----------|-----------------------------------------------|----------|-------|-------|-------|
|              |                                                                                                                                                       | PO<br>1 | PO<br>2                                                | PO<br>3 | РО<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11                                      | PO<br>12 | PSO 1 | PSO 2 | PSO 3 |
| AU<br>2101.1 | Understand various crystal structure of materials<br>and analyse different mechanism of plastic<br>deformation of metal and alloys.                   |         |                                                        |         |         |         |         |         |         |         |          |                                               |          |       |       |       |
| AU<br>2101.2 | Analyse the mechanisms of strengthening engineering materials.                                                                                        |         |                                                        |         |         |         |         |         |         |         |          |                                               |          |       |       |       |
| AU<br>2101.3 | Construct various phase diagrams for metal alloys.                                                                                                    |         |                                                        |         |         |         |         |         |         |         |          |                                               |          |       |       |       |
| AU<br>2101.4 | Understand different heat treatment process and<br>recommend suitable process based on the<br>material properties required to improve skills.         |         |                                                        |         |         |         |         |         |         |         |          |                                               |          |       |       |       |
| AU<br>2101.5 | Explain the features and applications of<br>engineering materials including traditional and<br>newer materials like composite and smart<br>materials. |         |                                                        |         |         |         |         |         |         |         |          |                                               |          |       |       |       |

0-No Attainment; 1- Low Attainment; 2- Moderate Attainment; 3- Substantial Attainment

## MANIPAL UNIVERSITY JAIPUR



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Strength of Materials | AU 2102 | 4 Credits | 3 | 0 4

Session: Aug 20 – Dec 20 | Faculty: Ashu Yadav | Class: II Year III Semester

**A. Introduction:** This course is offered as a core course to the students of II Year B. Tech Automobile Engineering. Offers in-depth knowledge on various parameters like stress, strain, Shear force, bending moment etc. which are directly associated with material strength, that a student will utilize for designing and testing of automobile structures in the future. This course is supplemented with automobile design in the future semester.

#### B. Course Objectives: At the end of the course, students will be able to

- [2102.1]. Analyse and design structural members subjected to tension, compression, torsion, bending and combined stresses using the fundamental concept of stress, strain and elastic behaviour of materials to improve employability skills.
- [2102.2]. Estimate principal stresses & strains under different loading conditions.
- [2102.3]. Compute SFD & BMD, slope & deflection for different type of beams under given constraints.
- [2102.4]. Estimate bending stress and shear stress distribution in different cross sections.
- [2102.5]. Determine failure of column and strut by analysing different end conditions.

#### C. Program Outcomes and Program Specific Outcomes

**[PO.I]. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems

**[PO.2]. Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

**[PO.3]. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

**[PO.4]. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions

**[PO.5]. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations

**[PO.6]. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice

**[PO.7]. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

**[PO.8]. Ethics**: Apply ethical principles and commit to professional ethics\_and responsibilities and norms of the engineering practices

**[PO.9]. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

- **[PO.10].Communication**: Communicate effectively\_on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II].Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12]. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

**[PSO.I].** Autotronics and Electric Vehicle Technology: Apply\_knowledge of electrical and electronics engineering for providing automobile engineering solutions

**[PSO.2]. Alignment to Super Qualification packs of ASDC:** Demonstrate knowledge and performance criteria as defined by ASDC super qualification packs for R&D or Quality or Service Engineering

**[PSO.3].** Application of Lean Six Sigma Methodology: Demonstrate through an internship project, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

#### **D.** Assessment Rubrics:

| Criteria                   | Description                                    | Maximum Marks                             |
|----------------------------|------------------------------------------------|-------------------------------------------|
|                            | Sessional Exam I                               | 20                                        |
| Internal Assessment        | Sessional Exam II                              | 20                                        |
| (Summative)                | In class Quizzes and Assignments ,             | 20                                        |
|                            | Activity feedbacks (Accumulated and            |                                           |
|                            | Averaged)                                      |                                           |
| End Term Exam              | End Term Exam                                  | 40                                        |
| (Summative)                |                                                |                                           |
|                            | Total                                          | 100                                       |
| Attendance                 | A minimum of 75% Attendance is requir          | red to be maintained by a student to be   |
| (Formative)                | qualified for taking up the End Semest         | er examination. The allowance of 25%      |
|                            | includes all types of leaves including medi    | cal leaves.                               |
| Make up Assignments        | Students who misses a class will have to       | report to the teacher about the absence.  |
| (Formative)                | A makeup assignment on the topic taug          | ght on the day of absence will be given   |
|                            | which has to be submitted within a             | week from the date of absence. No         |
|                            | extensions will be given on this. The atte     | ndance for that particular day of absence |
|                            | will be marked blank, so that the stude        | nt is not accounted for absence. These    |
|                            | assignments are limited to a maximum of        | 5 throughout the entire semester.         |
| Homework/ Home Assignment/ | There are situations where a student           | may have to work in home, especially      |
| Activity Assignment        | before a flipped classroom. Although th        | lese works are not graded with marks.     |
| (Formative)                | However, a student is expected to par          | ticipate and perform these assignments    |
|                            | with full zeal since the activity/ flipped cla | ssroom participation by a student will be |
|                            | assessed and marks will be awarded.            |                                           |

#### E. Syllabus

**Stresses and Strains:** Overview of simple stresses and strains, Principal stresses and strains, Mohr's circle. **Shear Force and Bending Moment:** Bending moment and shear force diagrams for different types of static loading and support conditions on beams. **Strain Energy:** Strain energy stored in the member due to various types of loading. **Pure bending and Shear stress in beam:** Theory of simple bending, bending stresses, section modulus and transverse shear stress distribution in circular, hollow circular, I, Box, T, angle sections etc. **Torsion:** Torsion of circular shafts – solid and hollow, stresses in shaft when transmitting power, shafts in series and parallel. **Column and strut:** Buckling load, Types of end conditions for column, Euler's column theory and its limitations, Rankine formula and other empirical relations. **Deflection of Beam:** Deflection of beam for different types of loadings. **Thick and Thin cylindrical shells and spherical shells.** 

#### F. References

- R1. S Timoshenko, Strength of materials, Vols. I (3e), CBS publications, 2014.
- R2. A Pytel, F L Singer, Strength of Materials, (4e), Harper & Collons, 2011.
- R3. F P Beer, E R Johnston, Vector for Mechanics of Engineers, (9e), Tata McGraw Hill, 2010.
- R4. S S Ratan, Strength of Materials, (3e), Tata McGraw-Hill, 2016.

#### G. Lecture Plan:

| Lecture | Topics                                       | Session Objective                               | Mode of         | Corresponding | Mode of Assessing |
|---------|----------------------------------------------|-------------------------------------------------|-----------------|---------------|-------------------|
|         | -                                            |                                                 | Delivery        | ĊO            | the Outcome       |
| I       | Introduction                                 | To acquaint and clear teachers expectations and | Lecture         | NA            | NA                |
|         |                                              | understand student expectations                 |                 |               |                   |
| 2       | Assumption consider in Strength of materials | Recalling stresses and strains                  | Lecture         | l             | In class quiz     |
| 3       | Overview of simple stresses and strains      | Recalling stresses and strains                  | Lecture/Flipped | I             | In class quiz     |
|         |                                              |                                                 | Classroom       |               | Mid Term          |
|         |                                              |                                                 |                 |               | End Term          |
| 4,5     | Overview of simple stresses and strains      | Recalling different relationship between stress | Lecture/Flipped |               | In class quiz     |
|         |                                              | and strain                                      | Classroom       |               | Mid Term          |
|         |                                              |                                                 |                 |               | End Term          |
| 6       | Overview of simple stresses and strains      | Recalling different relationship between stress | Lecture/Flipped |               | Home Assignment   |
|         |                                              | and strain                                      | Classroom       |               | Mid Term          |
|         |                                              |                                                 |                 |               | End Term          |
| 7,8     | Introduction shear force and Bending Moment, | Explain shear force and Bending Moment, types   | Lecture         | 3             | In class quiz     |
|         | types of support, types of load              | of support, types of load.                      |                 |               | Mid Term          |
|         |                                              |                                                 |                 |               | End Term          |
| 9,10    | Shear force and bending moment diagram for   | Draw Shear force and bending moment diagram     | Lecture/Flipped | 3             | In class quiz     |
|         | Simply supported beam                        | for Simply supported beam by analysing loading  | Classroom       |               | Home Assignment   |
|         |                                              | conditions.                                     |                 |               | Mid Term          |
|         |                                              |                                                 |                 |               | End Term          |
| 11,12   | Shear force and bending moment diagram for   | Draw Shear force and bending moment diagram     | Lecture/Flipped | 3             | In class quiz     |
|         | cantilever beam                              | for cantilever beam by analysing loading        | Classroom       |               | Home Assignment   |
|         |                                              | conditions.                                     |                 |               | Mid Term          |
|         |                                              |                                                 |                 |               | End Term          |
| 13,14   | Shear force and bending moment diagram for   | Draw Shear force and bending moment diagram     | Lecture/Flipped | 3             | Home Assignment   |
|         | overhanging beam                             | for overhanging beam by analysing loading       | Classroom       |               | Mid Term          |
|         |                                              | conditions.                                     |                 |               | End Term          |
| 15      | Strain energy                                | Estimate Strain energy due to various types of  | Lecture         | I             | In class quiz     |
|         |                                              | loading, Strain energy due to self-weight       |                 |               | Mid Term          |
|         |                                              |                                                 |                 |               | End Term          |
| 16      | Strain energy                                | Estimate Strain energy due to various types of  | Lecture         | I             | In class quiz     |
|         |                                              | loading, Strain energy due to self-weight       |                 |               | Mid Term          |
|         |                                              |                                                 |                 |               | End Term          |
| 17,18   | Strain energy                                | Estimate Strain energy due to shear force       | Lecture/Flipped | I             | In class quiz     |
|         |                                              |                                                 | Classroom       |               | Mid Term          |
|         |                                              |                                                 |                 |               | End Term          |
| 19,20   | Theory of simple bending, bending stresses,  | Explain theory of simple bending, bending       | Lecture         | 4             | In class quiz     |
|         | section modulus                              | stresses, section modulus                       |                 |               | Mid Term          |
|         |                                              |                                                 |                 |               | End Term          |

| 21,22 | Theory of simple bending, bending stresses,       | Explain theory of simple bending, bending           | Lecture/Flipped                       | 4 | Home Assignment |
|-------|---------------------------------------------------|-----------------------------------------------------|---------------------------------------|---|-----------------|
|       | section modulus                                   | stresses, section modulus                           | Classroom                             |   | Mid Term        |
|       |                                                   |                                                     |                                       |   | End Term        |
| 23,24 | Transverse shear stress                           | Estimate transverse shear stress distribution in    | Lecture                               | 4 | In class quiz   |
|       |                                                   | circular, hollow circular                           |                                       |   | Mid Term        |
|       |                                                   |                                                     |                                       |   | End Term        |
| 25,26 | Transverse shear stress                           | Estimate transverse shear stress distribution in I, | Lecture/Flipped                       | 4 | Home Assignment |
|       |                                                   | Box, T, angle sections                              | Classroom                             |   | Mid Term        |
|       |                                                   |                                                     |                                       |   | End Term        |
| 27    | Combined, Direct and Bending Stress               | Estimate Combined, Direct and Bending Stress        | Lecture                               | 4 | In class quiz   |
|       |                                                   |                                                     |                                       |   | Mid Term        |
|       |                                                   |                                                     |                                       |   | End Term        |
| 28,29 | Torsional shear stress                            | Estimate Torsional shear stress in solid, hollow    | Lecture                               |   | In class quiz   |
|       |                                                   | and stepped circular shafts                         |                                       |   | Mid Term        |
|       |                                                   |                                                     |                                       |   | End Term        |
| 30    | Torsional shear stress                            | Estimate Angular deflection and power               | Lecture/Flipped                       |   | In class quiz   |
|       |                                                   | transmission capacity                               | Classroom                             |   | Mid Term        |
|       |                                                   |                                                     |                                       |   | End Term        |
| 31    | Torsional shear stress                            | Estimate Strain energy in torsion                   | Lecture/Flipped                       | I | In class quiz   |
|       |                                                   |                                                     | Classroom                             |   | Mid Term        |
|       |                                                   |                                                     |                                       |   | End Term        |
| 32    | Principal Stresses and Strains                    | Describe Principal Planes, Stresses and Strains     | Lecture                               | 2 | In class quiz   |
|       |                                                   | Estimate principal stresses and strains in          |                                       |   | Mid Term        |
|       |                                                   | members subjected to combined axial, bending        |                                       |   | End Term        |
|       |                                                   | and torsional loads                                 |                                       |   |                 |
| 33    | Principal Stresses and Strains                    | Graphically estimate Principal Stresses and         | Lecture                               | 2 | In class quiz   |
|       |                                                   | Strains Mohr's circle of stress and strain          |                                       |   | Mid Term        |
|       |                                                   |                                                     |                                       | _ | End Term        |
| 34    | Principal Stresses and Strains                    | Graphically estimate Principal Stresses and         | Lecture/Flipped                       | 2 | Home Assignment |
|       |                                                   | Strains Mohr's circle of stress and strain          | Classroom                             |   | Mid Term        |
|       |                                                   |                                                     |                                       |   | End Term        |
| 35    | Introduction of column                            | Distinguish between column and strut.               | Lecture                               | 5 | In class quiz   |
|       |                                                   |                                                     |                                       |   | Mid Term        |
|       |                                                   |                                                     |                                       | _ | End Term        |
| 36    | Instability and elastic stability, long and short | Analysis effect of different column on varying end  | Lecture                               | 5 | In class quiz   |
|       | columns, ideal strut                              | condition.                                          |                                       |   | Mid Term        |
| •     |                                                   |                                                     |                                       | - | End Term        |
| 37    | Instability and elastic stability, long and short | Analysis effect of different column on varying end  | Lecture/Flipped                       | 5 | In class quiz   |
|       | columns, ideal strut                              | condition.                                          | Classroom                             |   | Mid Term        |
|       |                                                   |                                                     | · · · · · · · · · · · · · · · · · · · |   | End Term        |
| 38    | Euler's formula for crippling load for columns of | Establish Euler's formula for crippling load in     | Lecture/Flipped                       | 5 | In class quiz   |
|       | different ends                                    | different condition.                                | Classroom                             |   | Mid Ierm        |
|       |                                                   |                                                     |                                       |   | End Ferm        |

| 39    | Concept of equivalent length, eccentric loading | Reveal importance of equivalent length over         | Lecture         | 5 | In class quiz   |
|-------|-------------------------------------------------|-----------------------------------------------------|-----------------|---|-----------------|
|       |                                                 | actual length.                                      |                 |   | Mid Term        |
|       |                                                 | -                                                   |                 |   | End Term        |
| 40    | Rankine formulae and other empirical relations  | Differentiate crippling load calculation of Rankine | Lecture/Flipped | 5 | Home Assignment |
|       |                                                 | formula & other formula.                            | Classroom       |   | Mid Term        |
|       |                                                 |                                                     |                 |   | End Term        |
| 41    | Relation between deflection, bending moment,    | Analyse Relation between deflection, bending        | Lecture         | 3 | In class quiz   |
|       | shear force and load                            | moment, shear force and load                        |                 |   | Mid Term        |
|       |                                                 |                                                     |                 |   | End Term        |
| 42,43 | Transverse deflection of beams and shaft under  | Estimate Transverse deflection of beams and shaft   | Lecture         | 3 | In class quiz   |
|       | static loading                                  | under static loading                                |                 |   | Mid Term        |
|       |                                                 |                                                     |                 |   | End Term        |
| 44    | Transverse deflection of beams and shaft under  | Estimate Transverse deflection of beams and shaft   | Lecture/Flipped | 3 | In class quiz   |
|       | static loading                                  | under static loading                                | Classroom       |   | Mid Term        |
|       |                                                 |                                                     |                 |   | End Term        |
| 45    | Transverse deflection of beams and shaft under  | Estimate Transverse deflection of beams and shaft   | Lecture/Flipped | 3 | Home Assignment |
|       | static loading                                  | under static loading                                | Classroom       |   | Mid Term        |
|       |                                                 |                                                     |                 |   | End Term        |
| 46    | Thick and Thin cylindrical shells and spherical | Thick and Thin cylindrical shells and spherical     | Lecture/Flipped | I | Home Assignment |
|       | shells                                          | shells                                              | Classroom       |   | Mid Term        |
|       |                                                 |                                                     |                 |   | End Term        |
| 47,48 | Thick and Thin cylindrical shells and spherical | Numericals                                          | Lecture/Flipped | I | Home Assignment |
|       | shells                                          |                                                     | Classroom       |   | Mid Term        |
|       |                                                 |                                                     |                 |   | End Term        |

# H. Course Articulation Matrix: (Mapping of COs with POs)

| СО           | STATEMENT                                                                                                                                                                                                    | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |         |         | CORRELATION WITH<br>PROGRAM SPECIFIC<br>OUTCOMES |         |          |          |          |       |       |       |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------|---------|---------|---------|---------|---------|--------------------------------------------------|---------|----------|----------|----------|-------|-------|-------|
|              |                                                                                                                                                                                                              | PO<br>1                           | РО<br>2 | PO<br>3 | РО<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8                                          | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO 1 | PSO 2 | PSO 3 |
| AU<br>2102.1 | Analyse and design structural members subjected to<br>tension, compression, torsion, bending and<br>combined stresses using the fundamental concept of<br>stress, strain and elastic behaviour of materials. | 3                                 | 2       | 3       |         |         |         |         |                                                  |         |          |          | 1        |       | 1     |       |
| AU<br>2102.2 | Estimate principal stresses & strains under different loading conditions.                                                                                                                                    | 3                                 | 2       | 3       |         |         |         |         |                                                  |         |          |          | 1        |       | 1     |       |

| AU     | Compute SFD & BMD, slope & deflection for             |   |   |   |  |  |  |  |   |   |  |
|--------|-------------------------------------------------------|---|---|---|--|--|--|--|---|---|--|
| 2102.3 | different type of beams under given constraints.      | 3 | 2 | 3 |  |  |  |  | 1 | 1 |  |
| AU     | Estimate bending stress and shear stress distribution |   |   |   |  |  |  |  |   |   |  |
| 2102.4 | in different cross sections.                          | 3 | 2 | 3 |  |  |  |  | 1 | 1 |  |
| AU     | Determine failure of column and strut by analysing    |   |   |   |  |  |  |  |   |   |  |
| 2102.5 | different end conditions.                             | 3 | 2 | 3 |  |  |  |  | 1 | 1 |  |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



# MANIPAL UNIVERSITY JAIPUR

School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Theory of Automotive Engines | AU 2103 | 3 Credits | 3 0 2 3

Session: Aug 20 – Dec 20 | Faculty: Upendra Kulshrestha | Class: III Semester

- A. Introduction: This course is offered by Dept. of Automobile Engineering as core course, to the III semester B. Tech Automobile Engineering program. Offers in depth knowledge IC Engine theory by covering SI, CI Engine introduction, subsystems and combustion. The course also gives an introductory level knowledge on newer techniques that are developed or in development in the field of IC engines. This course also serves as a prerequisite to other courses in higher semesters.
- B. Course Outcomes: At the end of the course, students will be able to
- [2103.1] Understand and Explain different types of engine and their working
- [2103.2] Analyse fuel induction system requirements and explain how fuel induction systems works in engine
- [2103.3] Explain the need for lubrication, ignition and cooling systems and their working to enhance skills.
- [2103.4] Explain combustion and differentiate between normal and abnormal combustion in engines
- [2103.5] Identify the need and explain the working of forced induction systems like superchargers and turbochargers in engines.
- C. Program Outcomes and Program SpecificOutcomes

[PO.1]. Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and an engineering specialization to the solution of complex engineering problems

[PO.2]. Problemanalysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

[PO.3]. Design/development of solutions: Design solutions for complex engineering problems and <u>design</u> system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

[PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions

[PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources,

and <u>modern</u> <u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations

[PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess</u> societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice

 [PO.7]. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
 [PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices

[PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader in</u> diverse teams, and in multidisciplinary settings

**[PO.10].** Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

**[PO.11]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

**[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

PSO-1: Analyse, design and diagnose automotive systems to improve performance, safety, service and maintenance.PSO-2: Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.

**PSO-3**: Demonstrate the use of quality tools for internship projects to solve industrial problems.

#### D. Assessment Plan:

| Criteria                        | Description                                                                       | Maximum Marks                              |  |  |  |  |  |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|--|--|
|                                 | Sessional Exam I (Closed Book)                                                    | 15                                         |  |  |  |  |  |  |  |  |
| Internal Assessment             | Sessional Exam II (Closed Book)                                                   | 15                                         |  |  |  |  |  |  |  |  |
| (Summative)                     | In class Quizzes and Assignments,                                                 | 10                                         |  |  |  |  |  |  |  |  |
|                                 | Activity feedbacks (Accumulated and                                               |                                            |  |  |  |  |  |  |  |  |
|                                 | Averaged)                                                                         |                                            |  |  |  |  |  |  |  |  |
|                                 | Laboratory Sessions                                                               | 20                                         |  |  |  |  |  |  |  |  |
| End Term Exam                   | End Term Exam (Closed Book)                                                       | 40                                         |  |  |  |  |  |  |  |  |
| (Summative)                     |                                                                                   |                                            |  |  |  |  |  |  |  |  |
|                                 | Total                                                                             | 100                                        |  |  |  |  |  |  |  |  |
| Attendance                      | A minimum of 75% Attendance is required to be maintained by a student to be       |                                            |  |  |  |  |  |  |  |  |
| (Formative)                     | qualified for taking up the End Semester examination. The allowance of 25%        |                                            |  |  |  |  |  |  |  |  |
|                                 | includes all types of leaves including medical leaves.                            |                                            |  |  |  |  |  |  |  |  |
| Make up Assignments             | Students who misses a class will have to report to the teacher about the absence. |                                            |  |  |  |  |  |  |  |  |
| (Formative)                     | A makeup assignment on the topic taught on the day of absence will be given which |                                            |  |  |  |  |  |  |  |  |
|                                 | has to be submitted within a week from the date of absence. No extensions will be |                                            |  |  |  |  |  |  |  |  |
|                                 | given on this. The attendance for that particular day of absence will be marked   |                                            |  |  |  |  |  |  |  |  |
|                                 | blank, so that the student is not accounted for absence. These assignments are    |                                            |  |  |  |  |  |  |  |  |
|                                 | limited to a maximum of 5 throughout the entire semester.                         |                                            |  |  |  |  |  |  |  |  |
| Homework/ Home Assignment/      | There are situations where a student may                                          | have to work in home, especially before    |  |  |  |  |  |  |  |  |
| Activity Assignment (Formative) | a flipped classroom. Although these work                                          | s are not graded with marks. However, a    |  |  |  |  |  |  |  |  |
|                                 | student is expected to participate and perf                                       | orm these assignments with full zeal since |  |  |  |  |  |  |  |  |
|                                 | the activity/ flipped classroom participation                                     | on by a student will be assessed and marks |  |  |  |  |  |  |  |  |
|                                 | will be awarded.                                                                  |                                            |  |  |  |  |  |  |  |  |

#### E. Syllabus

Engine Construction and Working- Classifications, Constructional details, working principle, 4 stroke engine, otto cycle, diesel cycle, dual cycle, indicator diagram, actual fuel and air cycles, cylinder layout and configurations, engine balancing Fuel, Cooling and Lubrication Systems - Carburetor, petrol injection in SI engines, firing order, flammability limits, AF requirement at different engine loads, GDI concept, Diesel fuel injection - conventional and CRDi, fuel pumps- jerk and distributor type, Injector, types of nozzles, electronic fuel injection. Spray characteristics, split and multiple injection, cooling systems- need, types- air, forced

circulation, pressure cooling and evaporative cooling systems, Lubrication systems - need, Types Mist, wet and dry sump lubrication, lubricants - properties, Coolant - Properties, Recent Technologies, Octane rating and cetane rating. Two stroke Engines - Types, terminologies, theoretical scavenging process, scavenging efficiency, scavenging pumps, rotary valve engine. Air motion, combustion and combustion chambers - Air intake systems, air motions- squish, swirl and tumble, swirl ratio, fuel air mixing, Stages of combustion in SI and Cl engine, Delay period, Knocking in SI and Cl engine, factors affecting combustion & knocking, Combustion chambers for SI and Cl engine Supercharging and turbocharging, intercooler, matching of supercharger, engine modifications, variable geometry, variable nozzle turbocharger, e-turbocharger, Modern Vehicle Technologies – DTSi, DTS-Si, VVT, Camless engine, Jetronic concepts

Lab: Engine overhaul and testing: Automotive petrol and diesel engine- dismantling, assembly, inspection for wear and tear, Workshop tools: types, functions, usage, workshop safety practice, tool arrangement, Automotive stationary petrol and diesel engine - performance tests for power and efficiency, variables affecting engine performance, engine performance tests, study on dynamometers, FIP calibration

- F. Text Books
- T1. IC Engines 4th Edition, Ganesan V, Tata McGraw Hill
- T2. Internal Combustion Engines, 3rd Edition, Ramalingam KK, Scitech Publications
  - G. Reference Books
- R1. IC Engine Fundamentals, John Heywood, McGrawHill R2. IC Engines, Mathur, Sharma, Dhanpat Rai Publications

## A. Lecture Plan:

| Lec No     | Topics                                                                           | Session Outcome                                                                                                 | Mode of Delivery               | Corresponding<br>CO | Mode of Assessing the<br>Outcome                         |
|------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|----------------------------------------------------------|
| 1          | Introduction and Course Hand-out briefing                                        | To acquaint and clear teachers<br>expectations and understand<br>student expectations                           | Lecture                        | NA                  | NA                                                       |
| 2          | Engines - Introduction                                                           | Explain heat engine and its types                                                                               | Lecture                        | 2103.1              | In Class Quiz (Not Accounted)                            |
| 3          | Engines - Classification                                                         | Classify types of engine based on given parameters                                                              | Lecture                        | 2103.1              | In Class Quiz<br>End Term                                |
| 4          | Cycles – Otto, Diesel and Dual cycles                                            | Recall thermodynamic cycle and relate how these cycles contribute in operation of engines                       | Guided Self-Study              | 2103.1              | Home Assignment<br>End Term                              |
| 5          | Engines – 4 Stroke SI, CI engine                                                 | Explain how 4S SI and CI engine works                                                                           | Lecture                        | 2103.1              | In Class Quiz<br>Mid Term I<br>End Term                  |
| 6,7,8      | Carburettor - Introduction, Simple Carburetor construction and modifications     | Understand and explain how<br>carburettor works and analyse the<br>engine's fuel needs based on<br>requirements | Lecture, Think Pair<br>Share   | 2103.2              | Class Quiz<br>Mid Term I<br>End Term                     |
| 9,10,11,12 | Fuel Injection Systems in SI engine - Port,<br>Manifold and Electronic Injection | Understand and explain how fuel<br>injection system works in SI engines                                         | Lecture, Jigsaw,<br>Live demos | 2103.2              | Class Quiz<br>Mid Term 1<br>End term                     |
| 13,14,15   | Ignition Systems -Battery Coil, Magneto and Electronic Ignition systems          | Understand and explain how different types of ignition systems works in engine                                  | Lecture                        | 2103.3              | Home Assignment<br>Class Quiz<br>Mid Term II<br>End Term |
| 16,17,18   | Lubrication Systems - Petroil, Mehanical and<br>Pressure feed systems            | Understand and explain how<br>lubricaton systems works in engine<br>and explain their necessity                 | Lecture, Jigsaw                | 2103.3              | Class Quiz<br>Mid Term II<br>End Term                    |
| 19,20      | Cooling Systems - Air, Water Cooling                                             | Explain the necessity and working of different cooling systems                                                  | Lecture                        | 2103.3              | Class Quiz<br>Mid Term II<br>End Term                    |
| 21,22      | Fuel Injection – CI engines, Fuel Pump                                           | Explain how fuel injection systems works in CI engine                                                           | Lecture, Live<br>Demo          | 2103.2              | Class Quiz<br>End Term                                   |
| 23         | Combustion - Introduction                                                        | Understand and Explain combustion<br>in engines                                                                 | Lecture                        | 2103.4              | Class Quiz<br>Mid Term II<br>End Term                    |
| 24 | Combustion - SI engine | Explain combustion in SI engines and differentiate normal vs abnormal | Lecture | 2103.4 | Class Quiz<br>Mid Term II |
|----|------------------------|-----------------------------------------------------------------------|---------|--------|---------------------------|
|    |                        | combustion                                                            |         |        | End Term                  |

| 25              | Combustion - Factors affecting combustion in SI engine                | Analyse how different operating<br>parameters affects combustion in SI<br>engine         | Lecture, Activity | 2103.4 | Class Quiz<br>Mid Term II<br>End Term                      |
|-----------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------|--------|------------------------------------------------------------|
| 26              | Combustion - CI engine                                                | Understand and explain combustion<br>in CI engines                                       | Lecture           | 2103.4 | Class Quiz<br>Mid Term II<br>End Term                      |
| 27              | Combustion - Delay period and factors affecting delay period          | Explain the significance of delay period and how delay period affects combustion         | Lecture           | 2103.4 | Class Quiz<br>End Term                                     |
| 28              | Air Motion - Squish, Swirl and Tumble                                 | Describe different types of air<br>motion and their significance in<br>engine combustion | Lecture           | 2103.4 | Class Quiz<br>End Term                                     |
| 29              | Two Stroke Engines - Introduction                                     | Explain how two stroke engine works                                                      | Flipped Class     | 2103.1 | Class Quiz<br>End Term                                     |
| 30              | Scavenging                                                            | Describe scavenging and its necessity                                                    | Flipped Class     | 2103.1 | Class Quiz<br>End Term                                     |
| 31              | Superchargers                                                         | Explain how superchargers works and its types                                            | Lecture           | 2103.5 | Class Quiz<br>End Term                                     |
| 32              | Turbochargers                                                         | Explain how turbochargers works<br>and differentiate between super and<br>turbochargers  | Flipped Class     | 1306.5 | Class Quiz<br>End term                                     |
| 33              | Supercharging & Turboharging - Matching                               | Understand and explain how<br>super/turbochargers are mapped<br>with engines             | Lecture           | 2103.5 | Class Quiz                                                 |
| 34-40           | Modern Technologies - DTSi, VVT, Jetronic concepts                    | Analyze and explain how DTSi VVT systems work in automobiles                             | Jigsaw            | 2103.1 | Class Quiz<br>Mid Term II<br>End Term                      |
| 41              | Wankel Rotary Engine                                                  | Explain how wankel engine works<br>and why it failed                                     | Flipped Classroom | NA     | NA                                                         |
| 42              | Camless Engine                                                        | Explainhow camless engines works                                                         | Flipped Classroom | NA     | NA                                                         |
| LAB<br>SESSIONS | Lab sessions based on Engine Assy and Dismanting, Performance testing | Experiment on engines to qualify for<br>ASDC Super QP certification                      | Lab Sessions      | 2103.6 | Experimental results 14 lab sessions<br>End Term Practical |

# B. Course Articulation Matrix: (Mapping of COs with POs)

| СО           | STATEME<br>NT                                                                                                          |         | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |         |         |         |          |          | CORRELATION<br>WITH PROGRAM<br>SPECIFIC<br>OUTCOMES |       |       |       |
|--------------|------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|---------|---------|---------|---------|---------|---------|---------|----------|----------|-----------------------------------------------------|-------|-------|-------|
|              |                                                                                                                        | PO<br>1 | PO<br>2                           | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12                                            | PSO 1 | PSO 2 | PSO 3 |
| AU<br>2103.1 | Understand and Explain different types of engine and their working                                                     | 3       |                                   |         |         |         |         |         |         |         |          |          | 1                                                   |       | 2     |       |
| AU<br>2103.2 | Analyse fuel induction system requirements and explain how fuel induction systems works in engine                      | 3       |                                   |         |         |         |         |         |         |         |          |          | 1                                                   |       | 2     |       |
| AU<br>2103.3 | Explain the need for lubrication, ignition and cooling systems and their working                                       | 3       |                                   |         |         |         |         |         |         |         |          |          | 1                                                   |       | 2     |       |
| AU<br>2103.4 | Explain combustion and differentiate between normal and abnormal combustion in engines                                 | 3       |                                   |         |         |         |         |         |         |         |          |          | 1                                                   |       | 2     |       |
| AU<br>2103.5 | Identify the need and explain the working of forced induction systems like superchargers and turbochargers in engines. | 3       |                                   |         |         |         |         |         |         |         |          |          | 1                                                   |       | 2     |       |

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

### Department of Automobile Engineering Course Hand-out

Engineering Thermodynamics | AU 2104 | 4 Credits | 3 1 0 4

Session: Aug 20– Dec 20 | Faculty: Dr Rakesh Kumar | Class: II Year III Semester

A. Introduction: This course is offered as a core course to the students of II Year B Tech Automobile Engineering. This course offers in depth knowledge including basic concept of thermodynamics, laws of thermodynamics, entropy and refrigeration cycles. Students are expected to have background knowledge on Engineering Mathematics, Physics for better learning.

# **B. Course Outcomes:** At the end of the course, students will be able to

- [2104.1] Describes various concepts of thermodynamics in the context of engineering applications.
- [2104.2] Apply first law of thermodynamics on flow and non-flow processes.
- [2104.3] Analyse the concept of second law and entropy in the context of thermal applications.

[2104.4] Design and analyse the concept of components with the use of thermodynamic law to enhance the skills for industrial applications.

# C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. **Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to</u> <u>assess societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the <u>impact of the professional engineering</u> <u>solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader</u> in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive clear instructions

- [PO.11]. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change
- [PSO.1]. Autotronics and Electric Vehicle Technology: <u>Apply</u> knowledge of electrical and electronics engineering for providing automobile engineering solutions
- [PSO.2]. Alignment to Super Qualification packs of ASDC: <u>Demonstrate knowledge and</u> <u>performance criteria</u> as defined by ASDC super qualification packs for R&D or Quality or Service Engineering
- [PSO.3]. Application of Lean Six Sigma Methodology: Demonstrate through an internship project, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

| Criteria                   | Description                                                                             | Maximum Marks                             |  |  |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|
|                            | Sessional Exam I                                                                        | 15                                        |  |  |  |  |  |  |  |
| Internal Assessment        | Sessional Exam II                                                                       | 15                                        |  |  |  |  |  |  |  |
| (Summative)                | In class Quizzes and Assignments                                                        | 30                                        |  |  |  |  |  |  |  |
|                            | (Accumulated and Averaged)                                                              |                                           |  |  |  |  |  |  |  |
| End Term Exam              | End Term Exam                                                                           | 40                                        |  |  |  |  |  |  |  |
| (Summative)                |                                                                                         |                                           |  |  |  |  |  |  |  |
|                            | Total                                                                                   | 100                                       |  |  |  |  |  |  |  |
| Attendance                 | A minimum of 75% Attendance is required to be maintained by a student                   |                                           |  |  |  |  |  |  |  |
| (Formative)                | qualified for taking up the End Semest                                                  | er examination. The allowance of 25%      |  |  |  |  |  |  |  |
|                            | includes all types of leaves including medi                                             | cal leaves.                               |  |  |  |  |  |  |  |
| Make up Assignments        | Students who misses a class will have to                                                | report to the teacher about the absence.  |  |  |  |  |  |  |  |
| (Formative)                | A makeup assignment on the topic tau                                                    | ght on the day of absence will be given   |  |  |  |  |  |  |  |
|                            | which has to be submitted within a                                                      | week from the date of absence. No         |  |  |  |  |  |  |  |
|                            | extensions will be given on this. The atte                                              | ndance for that particular day of absence |  |  |  |  |  |  |  |
|                            | will be marked blank, so that the stude                                                 | ent is not accounted for absence. These   |  |  |  |  |  |  |  |
|                            | assignments are limited to a maximum of                                                 | 5 throughout the entire semester.         |  |  |  |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student                                                    | may have to work in home, especially      |  |  |  |  |  |  |  |
| Activity Assignment        | before a flipped classroom. Although these works are not graded with marks.             |                                           |  |  |  |  |  |  |  |
| (Formative)                | However, a student is expected to participate and perform these assignments             |                                           |  |  |  |  |  |  |  |
|                            | with full zeal since the activity/ flipped classroom participation by a student will be |                                           |  |  |  |  |  |  |  |
|                            | assessed and marks will be awarded.                                                     |                                           |  |  |  |  |  |  |  |

#### D. Assessment Plan:

### E. SYLLABUS

**Basic Concepts:** Systems, Control Volume, Surrounding, Universe, Macroscopic and microscopic viewpoints, Concept of continuum, Thermodynamic equilibrium, State, Properties, Processes, Cycle, Reversibility, Causes of irreversibility, Energy in state and in transition, Work and heat, Point and path function. **Laws of Thermodynamics:** Zeroth Law of Thermodynamics, First Law of Thermodynamics for flow and non-flow processes, Second Law of Thermodynamics, Elementary Treatment of the Third Law of Thermodynamics. **Entropy:** Pure Substances, P-V-T- surfaces, T-S and h-s diagrams, Mollier Charts, Phase Transformations – Triple point at critical state properties during change of phase. **Refrigeration Cycles:** Brayton and Rankine cycles – Performance evaluation, combined cycles, Bell Coleman cycle, Vapour compression cycle, Performance evaluation.

### F. References:

RI. C Borgnakke, R E Sonntag, Fundamentals of Thermodynamics, (7e), John Wiley Pub, 2009.

- R2. Cengel, Boles, Thermodynamics An Engineering Approach, (7e), TMH, 2000.
- R3. P K Nag, Engineering Thermodynamics, (6e), Tata McGraw Hill, 2017.

| Lecture<br>No. | Topics                                                                                                                | Session Outcomes                                                                                        | Mode of<br>Delivery             | Corresponding<br>CO | Mode of<br>Assessing the<br>Outcome          |
|----------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------|---------------------|----------------------------------------------|
| 1              | Introduction                                                                                                          | To acquaint and clear<br>teachers expectations and<br>understand student<br>expectations                | Lecture                         | NA                  |                                              |
| 2,3            | Basic Concepts:Systems,ControlVolume,Surrounding,Universe,Macroscopicandmicroscopicviewpoints,Concept of continuum,   | Describe various concepts<br>of thermodynamics and<br>their physical importance                         | Lecture                         | [2104.1]            |                                              |
| 4,5            | Thermodynamic<br>equilibrium, State,<br>Properties, Processes,<br>Cycle, Reversibility, Causes<br>of irreversibility. | Describe various concepts<br>of thermodynamics and<br>their physical importance                         | Lecture                         | [2104.1]            | Home                                         |
| 6,7            | Energy in state and in<br>transition, Work and heat,<br>Point and path function.                                      | Describe concept of work<br>and heat & their<br>significance                                            | Lecture                         | [2104.1]            | Assignment<br>Class Quiz                     |
| 9,10           | Quiz ILawsofThermodynamics:ZerothLawThermodynamics                                                                    | Describe Zeroth Law of<br>Thermodynamics                                                                | Lecture                         | [2104.2]            | Mid term<br>End term                         |
| 11-17          | First Law of<br>Thermodynamics for non-<br>flow processes,                                                            | Describe first Law of<br>Thermodynamics for non-<br>flow processes and its<br>importance in automobiles | Lecture                         | [2104.2]            |                                              |
| 18-23          | First Law of<br>Thermodynamics for flow<br>processes,                                                                 | Describe first Law of<br>Thermodynamics for flow<br>processes and its<br>importance in automobiles      | Lecture                         |                     |                                              |
| 24             | Assignment I                                                                                                          |                                                                                                         | •                               |                     |                                              |
| 25-30          | Second Law of<br>Thermodynamics,                                                                                      | Describe second Law of<br>Thermodynamics for flow<br>processes and its<br>importance in automobiles     | Lecture                         | [2104.2]            |                                              |
| 31,32          | Elementary Treatment of<br>the Third Law of<br>Thermodynamics.                                                        | Describe third Law of<br>Thermodynamics for flow<br>processes and its<br>importance in automobiles      | Lecture<br>Flipped<br>Classroom | [2104.2]            |                                              |
| 33             | Quiz II                                                                                                               |                                                                                                         |                                 | F2 + 0 4 27         |                                              |
| 34,35,36       | Entropy: Pure Substances,<br>P-V-T- surfaces, T-S and h-s<br>diagrams,                                                | Describe pure substance<br>and various diagrams                                                         | Lecture                         | [2104.3]            |                                              |
| 37-40          | Mollier Charts, Phase<br>Transformations – Triple<br>point at critical state<br>properties during change of<br>phase  | Describe Mollier Charts,<br>Phase Transformations &<br>Triple point                                     | Lecture                         | [2104.3]            | Home<br>Assignment<br>Class Quiz<br>Mid term |
| 41,42,43       | Refrigeration Cycles:                                                                                                 | Describe Brayton and                                                                                    | Lecture                         | [2104.4]            |                                              |

|          | Brayton and Rankine cycles<br>– Performance evaluation,<br>combined cycles, | Rankine cycle                        | Flipped<br>Classroom            |          | End term                           |
|----------|-----------------------------------------------------------------------------|--------------------------------------|---------------------------------|----------|------------------------------------|
| 44,45    | Bell Coleman cycle                                                          | Describe Bell Coleman<br>cycle       | Lecture                         | [2104.4] | Home<br>Assignment                 |
| 46       | Assignment II                                                               |                                      |                                 |          |                                    |
| 47,48,49 | Vapour compression cycle,<br>Performance evaluation                         | Describe Vapour<br>compression cycle | Lecture                         | [2104.4] | Class Quiz<br>Mid term<br>End term |
| 50,51    | Summary of complete<br>course                                               | Recall complete course               | Lecture<br>Flipped<br>Classroom |          |                                    |

# H. Course articulation matrix ;- (Mapping of COs and POs)

| со           | STATEMENT                                                                                                                                     |   | CORRELATION WITH PROGRAM OUTCOMES |   |   |   |   |   |   |   |    |    | CORRELATION<br>WITH PROGRAM<br>SPECIFIC<br>OUTCOMES |    |    |    |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------|---|---|---|---|---|---|---|----|----|-----------------------------------------------------|----|----|----|
|              |                                                                                                                                               | Р | Р                                 | Р | Р | Р | Р | Р | Р | Р | Р  | Р  | Р                                                   | PS | PS | PS |
|              |                                                                                                                                               | 0 | 0                                 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0                                                   | 01 | 02 | 03 |
|              |                                                                                                                                               | 1 | 2                                 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12                                                  |    |    |    |
| AU<br>2104.1 | Describes various concepts of<br>thermodynamics in the context<br>of engineering applications.                                                | 3 |                                   |   |   |   |   |   |   |   |    |    | 1                                                   |    |    |    |
| AU<br>2104.2 | Apply first law of thermodynamics on flow and non-flow processes.                                                                             | 2 | 2                                 |   |   |   |   |   |   |   |    | 1  | 1                                                   |    |    |    |
| AU<br>2104.3 | Analyse the concept of second<br>law and entropy in the context<br>of thermal applications.                                                   | 2 | 2                                 |   |   |   |   |   |   |   |    | 1  | 2                                                   |    |    |    |
| AU<br>2104.4 | Design and analyse the concept<br>of components with the use of<br>thermodynamic law to enhance<br>the skills for industrial<br>applications. | 2 | 2                                 | 3 | 2 | 1 |   |   | 2 | 2 |    | 2  |                                                     |    |    |    |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

#### Department of Automobile Engineering Course Hand-out

#### Auto Engine Lab | AU2130 | 3 Credits | 3 0 0 3

Session: Aug. 21 – Dec. 21 | Faculty: Dr Upendra Kulshrestha | Class: II Year III Semester

**Introduction:** An Internal Combustion Engine converts chemical energy into mechanical work to run different systems of vehicle. Aim behind this laboratory work is to teach student about basic laws of thermodynamics, heat transfer between various systems and conversion of heat to one form to another form. Students can enhance their knowledge by applying theoretical principle to practical skills. A range of different engines and fuels make students eager to brush their knowledge. After learning, students can understand difference between working of SI and CI engines, evaluate parameters of emissions and understand performance parameters of different engines.

### A. Course Outcomes: At the end of the course, students will be able to

[2130.1] Understanding of I C engine parts and sub system through Assembling and Dismantling process.

[2130.2] Analyze the performance of multi cylinder engines with the variation of various performances like load and speed.

[2130.3] Fuel Injection pump test and calibration through diesel test bench to enhance calibration skills.

# B. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments</u>, <u>analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to</u> <u>assess societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the <u>impact of the professional engineering</u> <u>solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices

- [PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader</u> in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change
- [PSO.1]. Analyse, design and diagnose automotive systems to improve performance, safety, service and maintenance.
- [PSO.2]. Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.
- [PSO.3]. Demonstrate the use of quality tools for internship projects to solve industrial problems.

#### C. Assessment Plan:

| Criteria                   | Description                                                                    | Maximum Marks                             |  |  |  |  |  |  |  |
|----------------------------|--------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|
|                            | Practical performance (internal)                                               | 60                                        |  |  |  |  |  |  |  |
| End Term Exam              | End Term Exam                                                                  | 40                                        |  |  |  |  |  |  |  |
|                            | Total                                                                          | 100                                       |  |  |  |  |  |  |  |
| Attendance                 | A minimum of 75% Attendance is required to be maintained by a studen           |                                           |  |  |  |  |  |  |  |
| (Formative)                | qualified for taking up the End Semester examination. The allowance of         |                                           |  |  |  |  |  |  |  |
|                            | includes all types of leaves including medical leaves.                         |                                           |  |  |  |  |  |  |  |
| Make up Assignments        | Students who misses a class will have to report to the teacher about the absen |                                           |  |  |  |  |  |  |  |
| (Formative)                | A makeup assignment on the topic taught on the day of absence will be give     |                                           |  |  |  |  |  |  |  |
|                            | which has to be submitted within a                                             | week from the date of absence. No         |  |  |  |  |  |  |  |
|                            | extensions will be given on this. The atte                                     | ndance for that particular day of absence |  |  |  |  |  |  |  |
|                            | will be marked blank, so that the stude                                        | ent is not accounted for absence. These   |  |  |  |  |  |  |  |
|                            | assignments are limited to a maximum of                                        | 5 throughout the entire semester.         |  |  |  |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student                                           | may have to work in home, especially      |  |  |  |  |  |  |  |
| Activity Assignment        | before a flipped classroom. Although th                                        | nese works are not graded with marks.     |  |  |  |  |  |  |  |
| (Formative)                | However, a student is expected to par                                          | ticipate and perform these assignments    |  |  |  |  |  |  |  |
|                            | with full zeal since the activity/ flipped cla                                 | ssroom participation by a student will be |  |  |  |  |  |  |  |
|                            | assessed and marks will be awarded.                                            |                                           |  |  |  |  |  |  |  |

### D. SYLLABUS

Study of Special engine tools, equipment and safety, Assembling and Dismantling of single cylinder, multi cylinder engines, 2 stroke engine, valve & port timing. Performance testing on single cylinder, multi cylinder petrol & diesel engines, heat balancing, VCR engine performance test, FIP calibration test Engine tuning and overhauling. References:

John B Heywood, Internal Combustion Engine Fundamentals, (India Edition), McGraw Hill Publishers, 2011 Ganesan V., Internal Combustion Engines, (4e), McGraw Hill, 2011

#### E. Lecture Plan:

| Lab Module |                                                                   |          |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------|----------|--|--|--|--|--|--|
| Sr No      | Description                                                       | CO       |  |  |  |  |  |  |
| 1          | Study of hand, power and measuring tools used in IC engines       | [2130.1] |  |  |  |  |  |  |
| 2          | Dismantling the components of a 4 stroke 4 cylinder diesel engine | [2130.1] |  |  |  |  |  |  |
| 3          | Assembling the components of a 4 stroke 4 cylinder diesel engine  | [2130.2] |  |  |  |  |  |  |
| 4          | Dismantling the components of a 4 stroke 4 cylinder petrol        | [2130.2] |  |  |  |  |  |  |
|            | engine                                                            |          |  |  |  |  |  |  |

| 5  | Assembling the components of a 4 stroke 4 cylinder petrol engine  | [2130.2] |
|----|-------------------------------------------------------------------|----------|
| 6  | Dismantling and Assembling the components of a single cylinder    | [2130.2] |
|    | 2 stroke engine                                                   |          |
| 7  | Performance test on a four stroke single cylinder diesel engine   | [2130.3] |
|    | with a brake drum dynamometer                                     |          |
| 8  | Performance test on a four stroke single cylinder diesel engine   | [2130.3] |
|    | with a hydraulic dynamometer                                      |          |
| 9  | Performance test and heat balance sheet for a four stroke single  | [2130.3] |
|    | cylinder diesel engine with DC generator with heat balance sheet  |          |
| 10 | Performance test and heat balance sheet for a four stroke four    | [2130.3] |
|    | cylinder diesel engine with Electrical dynamometer                |          |
| 11 | Performance test on a four stroke 3 cylinder petrol engine with   | [2130.3] |
|    | AC dynamometer                                                    |          |
| 12 | Morse test on a four stroke four cylinder petrol engine with      | [2130.3] |
|    | hydraulic dynamometer                                             |          |
|    | Performance test on a 2 stroke single cylinder petrol engine with | [2130.3] |
|    | AC generator                                                      |          |
| 14 | Performance test on a four stroke single cylinder VCR enabled     | [2130.3] |
|    | diesel engine for compression ratios 11 and 15                    |          |
| 15 | Performance test and combustion analysis of a single cylinder     | [2130.3] |
|    | four stroke multi fuel engine with eddy current dynamometer       |          |

# F. Course articulation matrix ;- (Mapping of COs and POs)

| со           | STATEMENT                                                                                                                        |    | CORRELATION WITH PROGRAM OUTCOMES |         |          |         |         |         |         |         |          | CORRELATION<br>WITH<br>PROGRAM<br>SPECIFIC<br>OUTCOMES |    |     |          |          |
|--------------|----------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------|---------|----------|---------|---------|---------|---------|---------|----------|--------------------------------------------------------|----|-----|----------|----------|
|              |                                                                                                                                  | PO | PO<br>2                           | PO<br>ז | PO<br>₄  | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11                                               | PO | PSO | PSO<br>2 | PSO<br>3 |
| AU<br>2130.1 | Understanding of I C<br>engine parts and sub<br>system through<br>Assembling and<br>Dismantling process.                         | 3  | 2                                 | ,       | <b>T</b> | ,       | 0       | ,       | -       | 2       | 10       |                                                        | 12 | 1   | L        | <u> </u> |
| AU<br>2130.2 | Analyze the<br>performance of multi<br>cylinder engines with<br>the variation of<br>various performances<br>like load and speed. | 3  | 2                                 |         |          |         |         |         | I       | 2       |          |                                                        |    | I   |          |          |
| AU<br>2130.3 | Fuel Injection pump<br>test and calibration<br>through diesel test<br>bench to enhance<br>calibration skills.                    | 3  | 2                                 | 3       | 2        |         |         |         |         | 2       |          |                                                        |    | -   |          |          |



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Strength of Materials Lab| AU 2131 | 1 Credits | 0 0 2 1

Session: Aug 20 – Dec 20 | Faculty: Ashu Yadav | Class: II Year III Semester

**A.** Introduction: This course is offered as a core course to the students of II Year B. Tech Automobile Engineering. Offers in-depth practical knowledge on various parameters like strength, hardness, bending stress, modulus of rigidity etc. which are directly associated with material strength, that a student will utilize for designing and testing of automobile structures in the future. This course is supplemented with automobile design in the future semester.

#### B. Course Objectives: At the end of the course, students will be able to

**[2131.1].** Analyse the tensile strength, compressive strength, shear strength, impact strength of the given specimen using different testing methods to enhance the employability skills.

- [2131.2]. Determine hardness of the given specimen using different testing methods.
- [2131.3]. Predict the bending stress, modulus of rigidity of the given specimen using different testing methods.
- [2131.4]. Illustrate concepts of fatigue, hardness and stiffness.

### C. Program Outcomes and Program Specific Outcomes

**[PO.I]. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems

**[PO.2]. Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

**[PO.3]. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

**[PO.4]. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions

**[PO.5]. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations

**[PO.6]. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice

**[PO.7]. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

**[PO.8]. Ethics**: Apply ethical principles and commit to professional ethics\_and responsibilities and norms of the engineering practices

**[PO.9]. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

- **[PO.10].Communication**: Communicate effectively\_on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II].Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12]. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
- **[PSO.I].** Autotronics and Electric Vehicle Technology: Apply\_knowledge of electrical and electronics engineering for providing automobile engineering solutions

**[PSO.2]. Alignment to Super Qualification packs of ASDC:** Demonstrate knowledge and performance criteria as defined by ASDC super qualification packs for R&D or Quality or Service Engineering

**[PSO.3]. Application of Lean Six Sigma Methodology:** Demonstrate through an internship project, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

#### **D.** Assessment Rubrics:

| Criteria                        | Description                                                                      | Maximum Marks                             |  |  |  |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|
| Internal Assessment (Summative) | Practical performance (internal)                                                 | 60                                        |  |  |  |  |  |  |
| End Term Exam                   | End Term Exam                                                                    | 40                                        |  |  |  |  |  |  |
|                                 | Total                                                                            | 100                                       |  |  |  |  |  |  |
| Attendance                      | A minimum of 75% Attendance is required to be maintained by a student            |                                           |  |  |  |  |  |  |
| (Formative)                     | qualified for taking up the End Semester examination. The allowance of 2         |                                           |  |  |  |  |  |  |
|                                 | includes all types of leaves including medical leaves.                           |                                           |  |  |  |  |  |  |
| Make up Assignments             | Students who misses a class will have to report to the teacher about the absence |                                           |  |  |  |  |  |  |
| (Formative)                     | A makeup assignment on the topic taught on the day of absence will be give       |                                           |  |  |  |  |  |  |
|                                 | which has to be submitted within a                                               | week from the date of absence. No         |  |  |  |  |  |  |
|                                 | extensions will be given on this. The atte                                       | ndance for that particular day of absence |  |  |  |  |  |  |
|                                 | will be marked blank, so that the stude                                          | nt is not accounted for absence. These    |  |  |  |  |  |  |
|                                 | assignments are limited to a maximum of                                          | 5 throughout the entire semester.         |  |  |  |  |  |  |
| Homework/ Home Assignment/      | There are situations where a student                                             | may have to work in home, especially      |  |  |  |  |  |  |
| Activity Assignment             | before a flipped classroom. Although th                                          | nese works are not graded with marks.     |  |  |  |  |  |  |
| (Formative)                     | However, a student is expected to par                                            | ticipate and perform these assignments    |  |  |  |  |  |  |
|                                 | with full zeal since the activity/ flipped cla                                   | ssroom participation by a student will be |  |  |  |  |  |  |
|                                 | assessed and marks will be awarded.                                              |                                           |  |  |  |  |  |  |

#### E. Syllabus

Introduction-Tensile test using UTM, load displacement and Stress Strain curves, Torsion Test, Compression Test, Bending Test, Impact test: Izod and Charpy Test, Hardness Test: Brinell and Rockwell test, Fatigue and Shear Test, Test on Helical Spring.

### F. References

**R1.** E P Popov, Engineering Mechanics of Solids, PHI, 2004.

R2. N E. Dowling, Mechanical Behaviour of Materials, Pearson Education, 2010.

# G. Lecture Plan:

| Lecture | Topics                                                                                                                                                                                                      | Session Objective                                                                                                                                                    | Mode of   | Corresponding | Mode of Assessing                 |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|-----------------------------------|
|         | -                                                                                                                                                                                                           |                                                                                                                                                                      | Delivery  | co            | the Outcome                       |
| Ι       | To determine the Impact strength of a V-notched<br>Mild Steel Specimen using Izod Impact Testing<br>Machine.                                                                                                | Analyse impact strength of a V-notched Mild Steel<br>Specimen using Izod Impact Testing Machine.                                                                     | Practical | I             | Lab Assessment<br>/Final Lab Exam |
| 2       | To determine the Impact strength of U-notched<br>Mild Steel specimen using Charpy Impact Testing<br>Machine.                                                                                                | Analyse impact strength of U-notched Mild Steel specimen using Charpy Impact Testing Machine.                                                                        | Practical | I             | Lab Assessment<br>/Final Lab Exam |
| 3       | To obtain the Brinell hardness number (BHN) of<br>a given specimen using Brinell Hardness Testing<br>Machine.                                                                                               | Analyse hardness using Brinell Hardness Testing Machine.                                                                                                             | Practical | 2             | Lab Assessment<br>/Final Lab Exam |
| 4       | To obtain the hardness value of a given specimen by using Rockwell Hardness Testing Machine                                                                                                                 | Analyse hardness using Rockwell Hardness<br>Testing Machine.                                                                                                         | Practical | 2             | Lab Assessment<br>/Final Lab Exam |
| 5       | Study of Vicker's Hardness Testing Machine to determine the hardness value.                                                                                                                                 | Analyse hardness using Vicker's Hardness Testing Machine.                                                                                                            | Practical | 4             | Lab Assessment<br>/Final Lab Exam |
| 6       | To determine the modulus of rigidity of a solid circular rod by conducting Torsion Test.                                                                                                                    | Analyse modulus of rigidity of a solid circular rod by conducting Torsion Test.                                                                                      | Practical | 3             | Lab Assessment<br>/Final Lab Exam |
| 7       | To study the behavior of mild steel specimen<br>under the action of gradually increasing load and<br>determine yield stress, ultimate tensile strength,<br>modulus of elasticity and Poisson's ratio of it. | Analyse yield stress, ultimate tensile strength,<br>modulus of elasticity and Poisson's ratio of it.                                                                 | Practical | I             | Lab Assessment<br>/Final Lab Exam |
| 8       | To find the Compressive Strength of a wooden<br>specimen parallel to the grains by conducting<br>Compression Test on CTM.                                                                                   | Analyse the Compressive Strength of a wooden specimen parallel to the grains by conducting Compression Test on CTM.                                                  | Practical | I             | Lab Assessment<br>/Final Lab Exam |
| 9       | To determine the Single shear strength of a mild steel specimen by Shear Test on UTM.                                                                                                                       | Analyse single shear strength of a mild steel specimen by Shear Test on UTM.                                                                                         | Practical | I             | Lab Assessment<br>/Final Lab Exam |
| 10      | To determine the Bending stress and Young's<br>Modulus of elasticity of a material of beam simply<br>supported at ends and carrying a concentrated<br>load at the centre.                                   | Analyse the Bending stress and Young's Modulus<br>of elasticity of a material of beam simply<br>supported at ends and carrying a concentrated<br>load at the centre. | Practical | 3             | Lab Assessment<br>/Final Lab Exam |
| 11      | To study about the fatigue testing machine, endurance limit of a specimen and S-N curve.                                                                                                                    | Analyse the fatigue testing machine, endurance limit of a specimen and S-N curve.                                                                                    | Practical | 4             | Lab Assessment<br>/Final Lab Exam |
| 12      | To determine the Double Shear strength of a<br>Mild Steel specimen using Universal Testing<br>Machine.                                                                                                      | Analyse the double Shear strength of a Mild Steel specimen using Universal Testing Machine.                                                                          | Practical | I             | Lab Assessment<br>/Final Lab Exam |
| 13      | Study of an Open Coiled Helical Spring Testing<br>Machine to determine the stiffness of a spring by<br>conducting Compression Test.                                                                         | Analyse the stiffness of a spring by conducting Compression Test.                                                                                                    | Practical | 4             | Lab Assessment<br>/Final Lab Exam |
| 14      | To determine the Compressive strength a wooden specimen Perpendicular to the grains                                                                                                                         | Analyse the Compressive strength a wooden specimen Perpendicular to the grains using                                                                                 | Practical | I             | Lab Assessment<br>/Final Lab Exam |

| using Compression Testing Machine. | Compression Testing Machine. |  |  |
|------------------------------------|------------------------------|--|--|

# H. Course Articulation Matrix: (Mapping of COs with POs)

| со           | STATEMENT                                                                                                                                        |         | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |         | CORRELATION WITH<br>PROGRAM SPECIFIC<br>OUTCOMES |         |          |          |          |       |       |       |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|---------|---------|---------|---------|---------|--------------------------------------------------|---------|----------|----------|----------|-------|-------|-------|
|              |                                                                                                                                                  | PO<br>1 | PO<br>2                           | РО<br>3 | РО<br>4 | PO<br>5 | РО<br>6 | PO<br>7 | РО<br>8                                          | РО<br>9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO 1 | PSO 2 | PSO 3 |
| AU<br>2131.1 | Analyse the tensile strength, compressive<br>strength, shear strength, impact strength of the<br>given specimen using different testing methods. | 3       | 3                                 | 1       |         |         | 1       |         |                                                  |         |          |          |          | 2     | 2     |       |
| AU<br>2131.2 | Determine hardness of the given specimen using different testing methods.                                                                        | 2       | 2                                 | 1       |         |         | 1       |         |                                                  |         |          |          |          | 2     | 2     |       |
| AU<br>2131.3 | Predict the bending stress, modulus of rigidity of<br>the given specimen using different testing<br>methods.                                     | 2       | 2                                 | 1       |         |         | 1       |         |                                                  |         |          |          |          | 1     | 2     |       |
| AU<br>2131.4 | Illustrate concepts of fatigue, hardness and stiffness.                                                                                          | 1       | 2                                 | 1       |         |         | 1       |         |                                                  |         |          |          |          | 1     | 1     |       |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Seminar | AU 2170 | 1 Credits | 0 0 2 1

Session: Aug 20 - Dec 20 | Faculty: Dr Rakesh Kumar & Mr Satish Namdev| Class: II Year III Semester

**Introduction:** This course is offered as a core course to develop professional skills through presentation and experiential learning. Also this will help the students to understand the industrial needs and make them industry ready.

Course Outcomes: At the end of the course, students will be able to

- [2170.1]. Identify the topic for presentation.
- **[2170.2].** Review the topic in detail.

[2170.3]. Deliver a presentation on a technical topics to enhance presentation skills.

### A. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. **Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments</u>, <u>analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to</u> <u>assess societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the <u>impact of the professional engineering</u> <u>solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader</u> in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

- [PO.11]. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change
- [PSO.1]. Analyse, design and diagnose automotive systems to improve performance, safety, service and maintenance.
- [PSO.2]. Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.
- [PSO.3]. Demonstrate the use of quality tools for internship projects to solve industrial problems.

### B. Assessment Plan:

| Criteria                   | Description                                                                       | Maximum Marks                             |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|
|                            | Project performance (internal)                                                    | 60                                        |  |  |  |  |
| End Term Exam              | End Term Presentation and Viva Voce                                               | 40                                        |  |  |  |  |
|                            | Total                                                                             | 100                                       |  |  |  |  |
| Attendance                 | A minimum of 75% Attendance is requi                                              | red to be maintained by a student to be   |  |  |  |  |
| (Formative)                | qualified for taking up the End Semest                                            | er examination. The allowance of 25%      |  |  |  |  |
|                            | includes all types of leaves including medi                                       | cal leaves.                               |  |  |  |  |
| Make up Assignments        | Students who misses a class will have to report to the teacher about the absence. |                                           |  |  |  |  |
| (Formative)                | A makeup assignment on the topic taught on the day of absence will be given       |                                           |  |  |  |  |
|                            | which has to be submitted within a                                                | week from the date of absence. No         |  |  |  |  |
|                            | extensions will be given on this. The atte                                        | ndance for that particular day of absence |  |  |  |  |
|                            | will be marked blank, so that the stude                                           | ent is not accounted for absence. These   |  |  |  |  |
|                            | assignments are limited to a maximum of                                           | 5 throughout the entire semester.         |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student                                              | may have to work in home, especially      |  |  |  |  |
| Activity Assignment        | before a flipped classroom. Although th                                           | nese works are not graded with marks.     |  |  |  |  |
| (Formative)                | However, a student is expected to par                                             | ticipate and perform these assignments    |  |  |  |  |
|                            | with full zeal since the activity/ flipped cla                                    | ssroom participation by a student will be |  |  |  |  |
|                            | assessed and marks will be awarded.                                               |                                           |  |  |  |  |

# C. SYLLABUS

Each student has to present a seminar on any technical topic. The presentation time is a minimum of 30 minutes followed by a 10 minutes session for discussion/ question & answers; The seminar topic selected by the student must be approved by the authorized faculty of the department at least two weeks in advance; Each student has to submit a seminar report to the department at least three days before the day of seminar; Each student has to make the power point presentation (PPT).

#### D. Lecture Plan:

| Lab Module |                                 |                              |  |  |  |  |
|------------|---------------------------------|------------------------------|--|--|--|--|
| Sr No      | Description                     | СО                           |  |  |  |  |
| 1          | Introduction about the seminar  | [2170.1]; [2170.2]; [2170.3] |  |  |  |  |
| 2          | Identify the topic              | [2270.1]                     |  |  |  |  |
| 3          | Review of topic                 | [2170.2]                     |  |  |  |  |
| 4          | Review of topic                 | [2170.2]                     |  |  |  |  |
| 5          | Review of topic                 | [2170.2]                     |  |  |  |  |
| 6          | Review of topic                 | [2170.2]                     |  |  |  |  |
| 7          | Review of topic                 | [2170.2]                     |  |  |  |  |
| 8          | Review of topic                 | [2170.2]                     |  |  |  |  |
| 9          | Review of topic                 | [2170.2]                     |  |  |  |  |
| 10         | Presentation on technical topic | [2170.3]                     |  |  |  |  |
| 11         | Presentation on technical topic | [2170.3]                     |  |  |  |  |
| 12         | Presentation on technical topic | [2170.3]                     |  |  |  |  |
| 13         | Presentation on technical topic | [2170.3]                     |  |  |  |  |

| 14 | Presentation of Project Progress | [2270.2]; [2270.3] |
|----|----------------------------------|--------------------|

# E. Course articulation matrix ;- (Mapping of COs and POs)

| со           | STATEMENT                                                                             |         | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |         |         |         |          | CORRELATION<br>WITH<br>PROGRAM<br>SPECIFIC<br>OUTCOMES |          | ION<br>S |          |          |
|--------------|---------------------------------------------------------------------------------------|---------|-----------------------------------|---------|---------|---------|---------|---------|---------|---------|----------|--------------------------------------------------------|----------|----------|----------|----------|
|              |                                                                                       | PO<br>I | PO<br>2                           | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11                                               | PO<br>12 | PSO<br>I | PSO<br>2 | PSO<br>3 |
| AU<br>2170.1 | Identify the topic for presentation.                                                  | 2       |                                   | 5       | •       | 5       | •       |         | 3       | 2       | 10       | 3                                                      | 2        | 1        | 1        | 5        |
| AU<br>2170.2 | Review the topic in detail.                                                           | 2       | 2                                 |         |         |         |         |         | 3       | 3       |          | 3                                                      | 2        | 2        | 2        |          |
| AU<br>2170.3 | Deliver a presentation<br>on a technical topics<br>to enhance<br>presentation skills. | 2       | 3                                 | 3       |         |         |         |         | 3       | 3       |          | 3                                                      | 3        | 2        | 2        |          |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Humanities and Social Sciences Department of Economics Course Handout

#### Economics | EO 2001 | 3 Credits | 3003

Session: July 20 – Dec 20 | Faculty: Dr Manas Roy | Class: B. Tech, IT | Semester III

**A. Introduction:** This course is offered by Dept. of Economics to the Engineering departments, targeting students to give basic understanding in the concept of economics. It mainly deals with economic issues related to consumer behaviour, firms, industries and business organizations to make aware the students regarding economic environment. This course also discusses the preliminary concepts associated with macroeconomic variable like GDP inflation, balance of payments etc. It explores various possibilities emerging in an economy and the role of economic policy in this context

#### **B.** Course Outcomes: At the end of the course, students will be able to

**[2001.1]** Describe the basic principles of micro and macroeconomic analysis to relate with real world

**[2001.2]** Interpret and illustrate decision making process in practical life and hence enhance employability

[2001.3] Aware of the tools and techniques of economics for real world to prepare the budget

[2001.4] Recognize the problems and give solutions which in turn will create employability

[2001.5] Recall the assumptions that underpin the Micro/Macro model

# C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

**[POI]**. **Engineering knowledge**: Apply the knowledge of mathematics, computer science, and communication engineering fundamentals to the solution of complex engineering problems.

**[PO2]. Problem analysis:** The sophisticated curriculum would enable a graduate to identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using basic principles of mathematics, computing techniques and communication engineering principles.

**[PO3]**. **Design/development of solutions**: Upon analysing, the B Tech CCE graduate should be able to devise solutions for complex engineering problems and design system components or processes that meet the specified requirements with appropriate consideration for law, safety, cultural & societal obligations with environmental considerations.

**[PO4]. Conduct investigations of complex problems**: To imbibe the inquisitive practices to have thrust for innovation and excellence that leads to use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

**[PO5]**. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

**[PO6]**. The engineer and society: The engineers are called society builders and transformers. B. Tech CCE graduate should be able to apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

**[PO7]**. **Environment and sustainability**: The zero effect and zero defect is not just a slogan, it is to be practised in each action. Thus, a B Tech CCE should understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

**[PO8]. Ethics**: Protection of IPR, staying away from plagiarism are important. Student should be able to apply ethical principles and commit to professional ethics, responsibilities and norms of the engineering practice.

**[PO9]**. **Individual and team - work**: United we grow, divided we fall is a culture at MUJ. Thus, an outgoing student should be able to function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

**[PO**10]. **Communication**: Communicate effectively for all engineering processes & activities with the peer engineering team, community and with society at large. Clarity of thoughts, being able to comprehend and formulate effective reports and design documentation, make effective presentations, and give and receive clear instructions.

**[POII]**. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in varied environments.

**[PO12]. Life-long learning**: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

#### **PROGRAM SPECIFIC OUTCOMES (PSOs)**

At the end of the B Tech program, the student:

**[PSOI]**. Should be able to clearly understand the basic principles, concepts and applications in the field of computer -based Communication/networking, information sharing, signal processing, web - based systems, smart devices and communication technology

[PSO2]. Should be able to nail down the issues prevalent in the field of computer -based Engineering.

**[PSO3]**. Should be able to identify the existing open problems in the field of computing and propose the best possible solutions.

**[PSO4]**. Should be able to apply the contextual knowledge in the field of computer -based Communication Engineering to assess social, health, safety and cultural issues and endure the consequent responsibilities relevant to the professional engineering practice.

### D. ASSESSMENT PLAN:

| Criteria            | Description                                            | Maximum Marks                    |  |  |  |  |
|---------------------|--------------------------------------------------------|----------------------------------|--|--|--|--|
|                     | Sessional Exam I                                       | 15                               |  |  |  |  |
| Internal Assessment | Sessional Exam II                                      | 15                               |  |  |  |  |
| (Summative)         | Assignments , Activity, etc.                           | 30                               |  |  |  |  |
| End Term Exam       | End Term Exam                                          | 40                               |  |  |  |  |
| (Summative)         |                                                        |                                  |  |  |  |  |
|                     | Total                                                  | 100                              |  |  |  |  |
| Attendance          | A minimum of 75% Attendance i                          | s required to be maintained by a |  |  |  |  |
| (Formative)         | student to be qualified for taking up the End Semester |                                  |  |  |  |  |
|                     | examination. The allowance of 2                        | 25% includes all types of leaves |  |  |  |  |
|                     | including medical leaves.                              |                                  |  |  |  |  |

# E. SYLLABUS

**Introduction:** Definition, nature and scope of economics, introduction to micro and macroeconomics ; **Microeconomics:** Consumer behaviour, cardinal and ordinal approaches of utility, law of diminishing marginal utility, theory of demand and supply, law of demand, exceptions to the law of demand, change in demand and change in quantity demanded, elasticity of demand and supply, Indifference curve, properties, consumer equilibrium, Price and income effect; Production: Law of production, production function, SR and LR production function, law of returns, Isoquant curve, characteristics, Iso-cost, producer's equilibrium; Cost and revenue analysis: Cost concepts, short run and long- run cost curves, TR,AR,MR; Various market situations: Characteristics and types, Break-even analysis; **Macro Economics:** National Income, Monetary and Fiscal Policies, Inflation, demand and supply of money, consumption function and business cycle.

# F. TEXT- BOOKS

- I. H.L Ahuja, Macroeconomics Theory and Policy, (20e) S. Chand Publication.
- 2. Peterson H C et.al., Managerial Economics, (9e), Pearson, 2012
- 3. P L Mehta, Managerial Economics, Sultan Chand & Sons, New Delhi, 2012.
- 4. G J Tuesen & H G Tuesen, Engineering Economics, PHI, New Delhi, 2008.
- 5. James L Riggs, David D Bedworth, Sabah U Randhawa, *Engineering Economics*, Tata McGraw Hill, 2018.

# G. LECTURE PLAN:

| Lec. No   | Topics                                  | Session<br>Outcome               | Mode of<br>Delivery | Corresponding | Mode of<br>Assessing the  |
|-----------|-----------------------------------------|----------------------------------|---------------------|---------------|---------------------------|
|           |                                         | Outcome                          | Delivery            |               | Outcome                   |
| I         | Overview of the                         | To acquaint and                  | Lecture             | NA            | NA                        |
|           |                                         | of the course                    |                     |               |                           |
| 2         | Objective of the                        | Discussion of the                | Lecture             | NA            | NA                        |
|           | course                                  | objective of the                 |                     |               |                           |
|           |                                         | course for the engineers         |                     |               |                           |
| 3,4       | Definition, nature                      | Describe the                     | Lecture             | 2001.1        | Class Test                |
|           | and scope of                            | concept given by                 |                     |               | Mid Term I                |
|           | introduction to                         | different<br>economists, its     |                     |               |                           |
|           | micro and                               | scope, differences               |                     |               |                           |
|           | macroeconomics                          | between micro                    |                     |               |                           |
|           |                                         | and macro                        |                     |               |                           |
| 5,6,7,    | Cardinal                                | Describe the                     | Lecture             | 2001.1        | Class Test                |
|           | approaches of                           | concept of                       |                     |               | Mid Term I                |
|           | utility                                 | cardinal approach                |                     |               |                           |
|           |                                         | DMU and equi                     |                     |               |                           |
|           |                                         | marginal utility                 |                     |               |                           |
| 8,9,10,11 | Law of demand and                       | Describe the                     | Lecture             | 2001.1        | Class Test                |
|           | supply, elasticity of demand and supply | concept of                       |                     |               | Mid Term I                |
|           |                                         | elasticity of                    |                     |               |                           |
|           |                                         | demand and                       |                     |               |                           |
|           |                                         | supply with                      |                     |               |                           |
|           |                                         | examples,<br>conceptual          |                     |               |                           |
|           |                                         | questions                        |                     |               |                           |
| 12        | Revision of                             | Recall all the                   | Lecture             | 2001.5        | Class Test                |
|           | previous lectures                       | concepts discussed               |                     |               | Mid Term I<br>End Term    |
| 13        | Discussion of the                       | Discussion about                 | Lecture,            |               | Home                      |
|           | topics related to                       | the assignment                   | Activity            |               | Assignment                |
|           | assignment                              | topics                           |                     |               | Mid Term I<br>End torm    |
| 4, 5, 6   | Ordinal approaches                      | Recall of the                    | Lecture             | 2001.5        | Class Test                |
| ,,        | of utility                              | differences                      |                     |               | Mid Term I                |
|           |                                         | between the                      |                     |               | End Term                  |
|           |                                         | concept of the cardinal approach |                     |               |                           |
|           |                                         | and ordinal                      |                     |               |                           |
|           |                                         | approach of utility              |                     |               |                           |
|           |                                         | , IC analysis,<br>Consumers      |                     |               |                           |
|           |                                         | equilibrium,                     |                     |               |                           |
|           |                                         | IE,SE,PE                         |                     |               |                           |
| 17,18,19  | Production, laws of                     | Discussion of the                | Lecture             | 2001.4        | Class Test<br>Mid Term II |
|           | production                              | production,                      |                     |               | End Term                  |
|           |                                         | recognize                        |                     |               |                           |

|          |                     | production          |              |              |             |
|----------|---------------------|---------------------|--------------|--------------|-------------|
|          |                     | function,           |              |              |             |
|          |                     | producers           |              |              |             |
|          |                     | equilibrium, RTS    |              |              |             |
| 20,21    | Cost and revenue    | Discussion of the   | Lecture      | 2001.4       | Class Test  |
|          | analysis            | concept of cost     |              |              | Mid Term II |
|          |                     | and cost function,  |              |              | End Term    |
|          |                     | recognize SR and    |              |              |             |
|          |                     | LR cost curves,     |              |              |             |
|          |                     | revenues            |              |              |             |
| 22,23    | Various market      | Aware of market     | Lecture      | 2001.3       | Class Test  |
|          | situations; Break   | morphology with     |              |              | Mid Term II |
|          | even analysis       | examples,           |              |              | End Term    |
|          |                     | Interpret and       |              |              |             |
|          |                     | illustrate BEA      |              |              |             |
| 24       | Revision of         | Recall all the      | Lecture      | 2001.5       | Class Test  |
|          | previous lectures   | concepts discussed  |              |              | Mid Term II |
|          |                     | in previous classes |              |              | End Term    |
| 25       | Discussion of the   | Recall the          | Lecture,     | 2001.5       | Home        |
|          | topics related to   | discussion about    | Activity     |              | Assignment  |
|          | assignment          | the assignment      |              |              | Mid Term II |
|          |                     | topics              |              |              | End term    |
| 26       | Macro Economics:    | Interpret and       | Lecture      | 2001.2       | Home        |
|          | National income     | illustrate the      |              |              | Assignment  |
|          | and its concepts    | concept of CB and   |              |              | Class Test  |
|          |                     | various tools       |              |              | End Term    |
| 27,28,29 | Monetary and fiscal | Interpret and       | Lecture      | 2001.2       | Home        |
|          | policies            | illustrate the      |              |              | Assignment  |
|          |                     | concept of          |              |              | Class Test  |
|          |                     | NI,GDP,GNI,PI       |              |              | End Term    |
|          |                     | etc., circular flow | -            |              |             |
| 30,3 I   | Inflation           | Concept of          | Lecture      | 2001.3       | Home        |
|          |                     | monetary and        |              |              | Assignment  |
|          |                     | tiscal policies,    |              |              | Class I est |
|          |                     | Aware of its        |              |              | End Term    |
|          |                     | instruments,        |              |              |             |
|          |                     | importance and      |              |              |             |
|          |                     | limitations         |              | 2001.2       |             |
| 32,33    | Demand and          | Concept of          | Lecture      | 2001.3       | Home        |
|          | Supply of money     | inflation, Aware of |              |              | Assignment  |
|          |                     | demand pull and     |              |              | Class I est |
|          | <b>•</b> • • •      | cost push inflation |              |              | End I erm   |
| 34,35    | Consumption         | Aware of the        | Lecture      | 2001.3       | Home        |
|          | Function            | concept of BOP,     |              |              | Assignment  |
|          |                     | Business cycles     |              |              | Class Test  |
|          |                     | <b>D</b>            |              | 00015        | End I erm   |
| 36       | Business Cycle      | Recall the          | Lecture      | 2001.5       | End lerm    |
|          |                     | discussion about    |              |              |             |
|          |                     | the assignment      |              |              |             |
| 27       |                     |                     | 1            | 2001 5       | L L L T     |
| 3/       | Conclusion and      | Recall all the      | Lecture      | 2001.5       | End lerm    |
|          | Course              | concepts discussed  |              |              |             |
|          | Summarization       | In previous classes | <u> </u>     | <b>N 1 A</b> |             |
| 38       | Quiz-I              |                     | Quiz         | NA           | Internal    |
| 20       |                     | Maanaa              | <b>0</b> and | N I A        | Assessment  |
| 39       | Quiz-II             | I*lacroeconomics    | Quiz         | NA           | Internal    |
|          |                     |                     |              |              | Assessment  |

#### co **STATEME** WITH PROGRAM NT SPECIFIC OUTCOMES PS PS PS Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ PS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 5 7 8 9 10 11 2 3 4 2 6 12 Т Т EO Describe the 2 2 Ι 2001. basic Т principles of micro and macroecono mic analysis EO Interpret Ι 2 2 2001. and illustrate 2 decision making process in practical life and hence enhance employability EO Aware of the 2 2 2 2001. tools and 3 techniques of economics for real world to prepare the budget EO Recognize 2 2 2 2001. the 4 problems and give solutions which in turn will create employability EO Recall the 2 3 2001. assumptions 5 that underpin the Micro/Macro model.

# H. Course Articulation Matrix: (Mapping of COs with POs and PSOs)

CORRELATION WITH PROGRAM OUTCOMES

CORRELATION



School of Basic Sciences

Department of Mathematics and Statistics

Course Hand-out

Engineering Mathematics IV | MA2203 | 3 Credits | 3 0 0 3

Session: Jan 21 - May 21 | Faculty: Dr. Bhoopendra Pachauri| Class: Compulsory

- A. Introduction: In the first part the student will be acquainted with some probability and statistics like measure of center tendency, dispersion, correlation, regression, distributions and basic of sampling theory. The other part of the subject yields fundamental knowledge from optimization techniques which is necessary for engineering problem solution.
- **B. Course Outcomes:** At the end of the course, students will be able to the student is able to think logically. [2203.1]. Learn about basic statistics i.e., measure of central tendency, dispersion, correlation and regression

[2203.2]. Understand the probability and probability function with one and two variables

[2203.3]. Ability to solve the problems using probability distributions and sampling.

[2203.4]. Develop skill to solve engineering problems using optimization techniques

# PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

- [PO.10]. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
- [PSO.1]. Analyse, design and diagnose automotive systems to improve performance, safety, service and maintenance.
- [PSO.2]. Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.
- [PSO.3]. Demonstrate the use of quality tools for internship projects to solve industrial problems.

#### C. Assessment Plan:

| Criteria                   | Description                                                                 | Maximum Marks                             |  |  |  |
|----------------------------|-----------------------------------------------------------------------------|-------------------------------------------|--|--|--|
|                            | Sessional Exam I (Closed Book)                                              | 20                                        |  |  |  |
| Internal Assessment        | Sessional Exam II (Closed Book)                                             | 20                                        |  |  |  |
| (Summative)                | In class Quizzes and Assignments ,                                          | 20                                        |  |  |  |
|                            | Activity feedbacks (Accumulated and                                         |                                           |  |  |  |
|                            | Averaged)                                                                   |                                           |  |  |  |
| End Term Exam              | End Term Exam (Closed Book)                                                 | 40                                        |  |  |  |
| (Summative)                |                                                                             |                                           |  |  |  |
|                            | Total                                                                       | 100                                       |  |  |  |
| Attendance                 | A minimum of 75% Attendance is requir                                       | red to be maintained by a student to be   |  |  |  |
| (Formative)                | qualified for taking up the End Semest                                      | er examination. The allowance of 25%      |  |  |  |
|                            | includes all types of leaves including medi                                 | cal leaves.                               |  |  |  |
| Make up Assignments        | Students who misses a class will have to                                    | report to the teacher about the absence.  |  |  |  |
| (Formative)                | A makeup assignment on the topic taug                                       | ght on the day of absence will be given   |  |  |  |
|                            | which has to be submitted within a                                          | week from the date of absence. No         |  |  |  |
|                            | extensions will be given on this. The atte                                  | ndance for that particular day of absence |  |  |  |
|                            | will be marked blank, so that the stude                                     | ent is not accounted for absence. These   |  |  |  |
|                            | assignments are limited to a maximum of                                     | 5 throughout the entire semester.         |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student                                        | may have to work in home, especially      |  |  |  |
| Activity Assignment        | before a flipped classroom. Although th                                     | nese works are not graded with marks.     |  |  |  |
| (Formative)                | However, a student is expected to participate and perform these assignments |                                           |  |  |  |
|                            | with full zeal since the activity/ flipped cla                              | ssroom participation by a student will be |  |  |  |
|                            | assessed and marks will be awarded.                                         |                                           |  |  |  |

#### D. SYLLABUS

Statistics: Measures of central tendency, measures of dispersion, Correlation coefficient, regression, least squares principles of curve fitting. Probability: finite sample spaces, conditional probability and independence, Baye's theorem, one-dimensional random variable, mean, variance. Two and higher dimensional random variables: mean, variance, correlation coefficient. Distributions: Binomial, Poisson, uniform, normal, gamma, Chi-square and exponential distributions, simple problems. Moment generating function, Functions of one dimensional and two-dimensional random variables, Sampling theory, Central limit theorem and applications. Optimization: Basic concepts, Linear programming, Graphical and Simplex methods, penalty cost and two-phase methods. Transportation problems.

### E. TEXT BOOKS

T1 Erwin Kreyszig, Advanced Engineering Mathematics, 7(e), John Wiley & Sons, Inc., 2015.

T2 P. L. Meyer, Introduction to Probability and Statistical Applications, (2e), Oxford and IBH Publishing, Delhi, 1980.

#### F. REFERENCE BOOKS

R1. B.S. Grewal, Higher Engineering Mathematics, 43(e), Khanna Publishers, 2014.

R2. A Taha Hamdy, *Operation research*, (7e), Inc. Pearson Education, 2014.

| Lec No | Topics                                                    | Session Outcome                              | Mode of<br>Delivery | Corresponding<br>CO | Mode of Assessing the Outcome        |
|--------|-----------------------------------------------------------|----------------------------------------------|---------------------|---------------------|--------------------------------------|
| I      | Statistics: Introduction,                                 | To acquaint students' basics about the topic | Lecture             | NA                  | NA                                   |
| 2      | Measures of central tendency: Mean                        | Understand the meaning of average            | Lecture             | MA2203.1            | In Class Quiz                        |
| 3      | Measures of central tendency: Median, Mode                | Understand the meaning of mode and median    | Lecture             | MA2203.I            | Home assignment                      |
| 4      | Measures of central tendency: Harmonic and Geometric Mean | Understand the meaning of GM and HM          | Lecture             | MA2203.1            | Home Assignment<br>End Term          |
| 5      | measures of dispersion: Range, Mean deviation             | Understand the concept of dispersion         | Lecture             | MA2203.I            | In Class Quiz<br>End Term            |
| 6      | measures of dispersion: Variance and Standard deviation   | More about the concept of dispersion         | Lecture             | MA2203.I            | Class Quiz<br>Mid Term I<br>End Term |

| 7,8   | Correlation coefficient                  | Know about the Correlation          | Lecture | MA2203.I | Class Quiz      |
|-------|------------------------------------------|-------------------------------------|---------|----------|-----------------|
|       |                                          | coefficient                         |         |          | Mid Term I      |
|       |                                          |                                     |         |          | End term        |
| 9     | regression, least squares principles of  | Know about the regression line for  | Lecture | MA2203.1 | Home Assignment |
|       | curve fitting                            | pridiction                          |         |          | Class Quiz      |
|       | 3                                        |                                     |         |          | Mid Term I      |
|       |                                          |                                     |         |          |                 |
| 10    | Problem solving                          | Practice of the previous topics     | Lecture | MA2203.1 | Class Quiz      |
|       | 5                                        |                                     |         |          | Mid Term I      |
|       |                                          |                                     |         |          | End Term        |
| 11    | Probability:                             | Recall the basic concepts of        | Lecture | MA2203.2 | Class Quiz      |
|       | finite sample spaces                     | Probability                         |         |          | Mid Term I      |
|       | ······                                   | ,                                   |         |          | End Term        |
| 12    | conditional probability and independence | Know about the conditional          | Lecture | MA2203.2 | Class Quiz      |
|       | , , ,                                    | probability                         |         |          | End Term        |
| 13    | Baye's theorem                           | Learn use of Baye's theorem         | Lecture | MA2203.2 | Class Quiz      |
|       |                                          | Ş                                   |         |          | Mid Term II     |
|       |                                          |                                     |         |          | End Term        |
| 14    | one-dimensional random variable          | Know about the random variable      | Lecture | MA2203.2 | Class Quiz      |
|       |                                          |                                     |         |          | Mid Term II     |
|       |                                          |                                     |         |          | End Term        |
| 15    | Expected mean, variance                  | Able to calculate Expected mean     | Lecture | MA2203.2 | Class Quiz      |
|       |                                          | and variance                        |         |          | Mid Term II     |
|       |                                          |                                     |         |          | End Term        |
| 16    | Two and higher dimensional random        | Know about the 2D random            | Lecture | MA2203.2 | Class Quiz      |
|       | variables                                | variable                            |         |          | Mid Term II     |
|       |                                          |                                     |         |          | End Term        |
| 17    | Expected mean, variance for two variable | Able to calculate Expected mean     | Lecture | MA2203.2 | Class Quiz      |
|       |                                          | and variance of 2D variable         |         |          | End Term        |
| 18    | Problem solving                          | Practice and doubts of the previous | Lecture | MA2203.2 | Class Quiz      |
|       |                                          | topics                              |         |          | End Term        |
| 19,20 | Distribution: Binomial                   | Know about the Binomial             | Lecture | MA2203.3 | Class Quiz      |
|       |                                          | distribution                        |         |          | End Term        |
| 21,22 | Distribution: Poisson                    | Know about the Poisson              | Lecture | MA2203.3 | Class Quiz      |
|       |                                          | distribution                        |         |          | End Term        |
| 23    | Distribution: uniform                    | Know about the Uniform              | Lecture | MA2203.3 | Class Quiz      |
|       |                                          | distribution                        |         |          | End Term        |
| 24,25 | Distribution: normal                     | Know about the Normal               | Lecture | MA2203.3 | Class Quiz      |
|       |                                          | distribution                        |         |          | End term        |
| 26    | Distribution: gamma                      | Know about the Gamma                | Lecture | MA2203.3 | Class Quiz      |
|       |                                          | distribution                        |         |          |                 |
| 27    | Distribution: Chi-square                 | Know about the Chi-square           | Lecture | MA2203.3 | Class Quiz      |
|       |                                          | distribution                        |         |          | Mid Term II     |

|       |                                         |                                   |         |          | End Term   |
|-------|-----------------------------------------|-----------------------------------|---------|----------|------------|
| 28    | Distribution: exponential distributions | Know about the exponential        | Lecture | MA2203.3 | Class Quiz |
|       |                                         | distribution                      |         |          | End Term   |
| 29,30 | Moment generating function Functions of | Calculation of Moment generating  | Lecture | MA2203.3 | Class Quiz |
|       | one dimensional random variable         | function Functions of one         |         |          | End Term   |
|       |                                         | dimensional random variable       |         |          |            |
| 31    | Sampling theory                         | Know about the Basics of Sampling | Lecture | MA2203.3 | End Term   |
|       |                                         | theory                            |         |          |            |
| 32    | Central limit theorem and applications. | Able to use Central limit theorem | Lecture | MA2203.3 |            |
|       |                                         |                                   |         |          | End Term   |
| 33    | Problem solving                         | Practice and doubts of previous   | Lecture | MA2203.3 |            |
|       |                                         | topics                            |         |          | End Term   |
| 34    | Optimization: Basic Concept             | Know about the optimization       | Lecture | MA2203.4 | Class Quiz |
|       |                                         |                                   |         |          | End Term   |
| 35    | Linear programming: Graphical methods   | Able to solve LPP using Graphical | Lecture | MA2203.4 |            |
|       |                                         | methods                           |         |          | End Term   |
| 36,37 | Simplex methods                         | Able to solve LPP using Simplex   | Lecture | MA2203.4 | Class Quiz |
|       |                                         | methods                           |         |          | End Term   |
| 38    | penalty cost and two-phase methods      | Able to solve LPP using two-phase | Lecture | MA2203.4 |            |
|       |                                         | methods                           |         |          | End Term   |
| 39    | Transportation problems                 | Able to solve Transportation      | Lecture | MA2203.4 | Class Quiz |
|       |                                         | problems                          |         |          | End Term   |
| 40    | Problem solving                         | Revision                          | Lecture | MA2203.4 | End Term   |
|       | -                                       |                                   |         |          |            |

# G. Course Articulation Matrix: (Mapping of COs with POs)

| со           | STATEMENT                                                                                                                                                                          | CORRELATION WITH PROGRAM OUTCOMES |    |    |    |    |    |    | CORRELATION WITH<br>PROGRAM SPECIFIC<br>OUTCOMES |    |    |    |    |       |       |       |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----|----|----|----|----|----|--------------------------------------------------|----|----|----|----|-------|-------|-------|
|              |                                                                                                                                                                                    | PO                                | PO | PO | PO | PO | PO | PO | PO                                               | PO | PO | PO | PO | PSO 1 | PSO 2 | PSO 3 |
|              |                                                                                                                                                                                    | 1                                 | 2  | 3  | 4  | 5  | 6  | 7  | 8                                                | 9  | 10 | 11 | 12 |       |       |       |
| MA<br>2203.1 | Learn about vector calculus and their applications in<br>engine Learn about basic statistics i.e., measure of<br>central tendency, dispersion, correlation and<br>regression ering | 3                                 | 2  | 2  | 2  |    |    |    |                                                  |    |    |    | 2  | 2     | 3     |       |
| MA<br>2203.2 | Understand the probability and probability function with one and two variables                                                                                                     | 3                                 | 2  | 2  | 2  |    |    |    |                                                  |    |    |    | 3  |       | 2     |       |
| MA<br>2203.3 | Ability to solve the problems using probability distributions and sampling                                                                                                         | 3                                 | 3  | 3  | 2  |    | 2  |    |                                                  |    |    |    | 2  | 2     | 2     |       |
| MA<br>2203.4 | Develop skill to solve engineering problems using optimization techniques                                                                                                          | 3                                 | 3  | 3  | 2  |    | 2  |    |                                                  |    |    |    | 3  | 2     | 2     |       |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering Department of Automobile Engineering Course Hand-out Automotive Chassis System | AU 2201 | 4 Credits | 3 0 2 4 ssion: Jan 21 – May 21 | Faculty: Dr. Upendra Kulshrestha & Dharmesh Yadav | Class: 2<sup>nd</sup> Yr/4<sup>th</sup> sem

**Introduction:** This course is offered for students of Automobile Engineering 2nd year, as a core course that helps students who wish to pursue their career in sales & service automotive as well as assembly & testing sector or higher studies in field of Automotive Engineering. Offers introductory level knowledge of load distribution, Frame, Chassis Brake, Suspension, Axle, Steering system, wheels & Tyres. Being an introductory course no prerequisite is expected from students, however knowledge on strength of materials and engineering mechanics will help in better learning. This course will also help students those who want to pursue their career in research and development field.

A. Course Objectives: At the end of the course, students will be able to

- [2201.1] Describe the different types of load carrying structure and its application on automotive frames.
- [2201.2] Explain the different types of frames and test frame based on brake application of frame stresses and defects.
- [2201.3] Describe different type of chassis interpret, analyse the right type of chassis for the vehicle requirement.
- [2201.4] Explain braking system and its importance in automobiles.
- [2201.5] Analyse and solve practical problems of braking based on stopping distance, brake efficiency and weight transfer during braking to develop braking analytical skill.
- [2201.6] Analyse and solve practical problem of Axle and suspension system based on vehicle requirement.

# **B.** Program Outcomes and Program Specific Outcomes:

- [PO.1]. **Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess</u> <u>societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the <u>impact of the professional engineering</u> <u>solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- [PO.9]. **Individual and team work**: Function effectively as an individual, and as a <u>member or leader</u> in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive clear instructions

- [PO.11]. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

**[PSO-1]:** Analyse, design and diagnose automotive systems to improve performance, safety, service and maintenance.

[PSO-2]: Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.

**[PSO-3]:** Demonstrate the use of quality tools for internship projects to solve industrial problems.

#### C. Assessment Rubrics:

| Criteria                     | Description                                                        | Maximum<br>Marks                       |  |  |  |  |  |
|------------------------------|--------------------------------------------------------------------|----------------------------------------|--|--|--|--|--|
| Criteria                     | Sessional Exam I (Open Book)                                       | 20                                     |  |  |  |  |  |
| Internal Assessment          | Sessional Exam II (Open Book)                                      | 20                                     |  |  |  |  |  |
| (Summative)                  | In class Quizzes and Assignments                                   | 20                                     |  |  |  |  |  |
| (•••••••••)                  | Activity feedbacks (Accumulated and                                |                                        |  |  |  |  |  |
|                              | Averaged)                                                          |                                        |  |  |  |  |  |
| End Term Exam                | End Term Exam (Open Book)                                          | 40                                     |  |  |  |  |  |
| (Summative)                  |                                                                    |                                        |  |  |  |  |  |
|                              | Total                                                              | 100                                    |  |  |  |  |  |
|                              | A minimum of 75% Attendance is require                             | d to be maintained by a                |  |  |  |  |  |
| Attendance                   | student to be                                                      | · · · ·                                |  |  |  |  |  |
|                              | qualified for taking up the End Semester e                         | examination. The allowance             |  |  |  |  |  |
| (Formative)                  | OF 25%                                                             |                                        |  |  |  |  |  |
|                              | This 75% is required individually in both t                        | beary and practical                    |  |  |  |  |  |
|                              | component                                                          | neory and practical                    |  |  |  |  |  |
|                              | The Student will be detained if he / she fa                        | ils to achieve 75% in any one          |  |  |  |  |  |
|                              | or both.                                                           |                                        |  |  |  |  |  |
| Make up                      | Students who misses a class will have to i                         | report to the teacher about            |  |  |  |  |  |
| Assignments                  | the absence.                                                       |                                        |  |  |  |  |  |
| ( <b>-</b>                   | A makeup assignment on the topic taught on the day of absence will |                                        |  |  |  |  |  |
| (Formative)                  | be given                                                           |                                        |  |  |  |  |  |
|                              | No                                                                 | from the date of absence.              |  |  |  |  |  |
|                              | extensions will be given on this. The attenday of absence          | ndance for that particular             |  |  |  |  |  |
|                              | will be marked blank so that the student                           | is not accounted for                   |  |  |  |  |  |
|                              | absence. These                                                     |                                        |  |  |  |  |  |
|                              | assignments are limited to a maximum of                            | 5 throughout the entire                |  |  |  |  |  |
|                              | semester.                                                          | C C                                    |  |  |  |  |  |
| Homework/ Home               | There are situations where a student may                           | y have to work in home,                |  |  |  |  |  |
| Assignment/                  | especially                                                         |                                        |  |  |  |  |  |
|                              | before a flipped classroom. Although the                           | se works are not graded with           |  |  |  |  |  |
| Activity Assignment   marks. |                                                                    |                                        |  |  |  |  |  |
| (Formativo) assignments      |                                                                    |                                        |  |  |  |  |  |
|                              | with full zeal since the activity/ flipped cla                     | ssroom participation by a              |  |  |  |  |  |
|                              | student will be                                                    | ······································ |  |  |  |  |  |
|                              | assessed and marks will be awarded.                                |                                        |  |  |  |  |  |

#### D. SYLLABUS:

Load Distribution: Types of load carrying structures, closed, integral, open, flat types. Frames: Types of frames, general form and dimensions, materials, frame stresses, frame sections, cross members, proportions of channel sections, constructional details, loading points, sub frames, testing of frames, effect of brake application of frame stresses, defects, Numerical problems. Chassis layout, power location, types of automobiles, layout of an automobile with reference to power plant, weight distribution, stability, Numerical problems. Brake: Stopping distance and time, brake efficiency, weight transfer, brake shoe theory, determination of braking torque, classification of brakes, types, construction, function, operation, braking systems ,mechanical, hydraulic, disc, drum, Power brakes, Air brakes, vacuum brakes and electric brakes, Numerical problems. Axles and Steering Systems: Steering systems, Front Axles, Rear axles. Suspension: Types of suspension springs, construction, operation and materials, leaf springs, coil springs, torsion bar, rubber springs, air bellows, pneumatic suspension, hydraulic suspension, telescopic shock absorbers, independent suspension, front wheel independent suspension, rear wheel independent suspension, types, stabilizer, trouble shooting, Numerical problems. Wheels and Tyres.

**LAB:** Study of Light duty Vehicle Chassis Frame. Study and Construction of Front Axle and Rear Axle. Study, Construction, Dismantling and Assembling of Braking System (Disc Brake, Drum Brake, Hydraulic Brake and Compressed air Brake). Study and Construction of Steering linkage along with dismantling and assembling of steering gear box. Study and construction of suspension system (Rigid axle suspension system and Independent suspension system).

#### E. Text Books

TI. P.M. Heldt, Automotive Chassis, Chilton and Co, 1987.

#### F. Reference Books

- RI. G.B.S. Narang, Automobile engineering, Khanna Publications, New Delhi, 1982.
- R2. T.R. Banga and N. Singh, Automobile Engineering, Khanna Publications, 1993.
- R3. N.K. Giri, Automotive Mechanics, Khanna Publications, New Delhi, 2003.

# G. Lecture Plan:

| Lec No | Topics                                                          | Session Objective                                                                                             | Mode of Delivery          | Corrosponding<br>CO | Mode of Assessing the Outcome  |
|--------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|--------------------------------|
| 1      | Introduction and Course Hand-out briefing                       | To acquaint and clear teachers<br>expectations and understand student<br>expectations                         | Lecture                   | 2201.1              | NA                             |
| 2      | Frame – Introduction, Types & Materials                         | Describe function, necessity &<br>Materials of frame for different utility<br>vehicle                         | Lecture                   | 2201.1              | Class quiz                     |
| 3,4    | Chassis - Layout & Classification                               | Describe subsystem of chassis &<br>types of chassis using in different<br>commercial vehicle                  | Flipped Class             | 2201.1              | Class quiz                     |
| 5      | Load on Frame                                                   | Recall knowledge of mechanics & calculate shear force and bending moment for frame side member                | Activity                  | 2201.1              | Class quiz                     |
| 6,7    | Frame Analysis                                                  | Analyse stresses and effect of load<br>on Frame, Improve the frame cross<br>Section that reduce the stresses. | Lecture, Activity         | 2201.1              | Class quiz, Home<br>Assignment |
| 8      | Brake – Introduction, Function of Braking                       | Describe the braking and its necessity in automobiles                                                         | Lecture                   | 2201.2              | Home<br>Assignment             |
| 9,10   | Brake – Classification and Types of Brake                       | Explain principal, construction and working of various types of brakes used in automobiles.                   | Lecture, Flipped<br>class | 2201.2              | Class quiz                     |
| 10     | Hydraulic Brakes – Layout, working & construction of Components | Describe working of hydraulic<br>braking system used in <b>Maruti</b>                                         | Lecture                   | 2201.2              | Home<br>Assignment             |

|         |                                                                               | Suzuki 800.                                                                                                                                                                                                                                                 |                                      |        |                 |
|---------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-----------------|
| 11      | Vacuum Servo Brake – Layout, working & construction of Components             | Describe working of vacuum servo brake used in car.                                                                                                                                                                                                         | Flipped Class                        | 2201.2 | Home Assignment |
| 12      | Engine Exhaust Brake – Layout, working & construction of Components           | Describe working of Engine Exhaust brake used in few vehicles of TATA.                                                                                                                                                                                      | Flipped Class                        | 2201.2 | Home Assignment |
| 13      | Pneumatic Brake (Air Brake) – Layout, working<br>& construction of Components | Describe working of Engine Exhaust brake used in heavy vehicles.                                                                                                                                                                                            | Flipped Class                        | 2201.2 | Quiz            |
| 14      | Merits and Demerits of Air Brake over other braking systems                   | Compare and contrast between different braking                                                                                                                                                                                                              | Activity (Think Pair<br>Share)       | 2201.2 | Quiz            |
| 15 - 17 | Braking fundamental & dynamics                                                | Examine stopping distance, work<br>done in braking & brake efficiency<br>Analyse reverse effective force on<br>front and rear wheels on different<br>braking condition while vehicle<br>moving on gradient or on level road                                 | Lecture<br>Activity<br>Flipped Class | 2201.2 | Home Assignment |
|         |                                                                               | Examine the centrifugal force comes<br>on vehicle while moving on curved<br>Path.                                                                                                                                                                           |                                      |        |                 |
| 18      | Braking Performance                                                           | Examine equation of stopping<br>distance during constant<br>deceleration as well as deceleration<br>with wind resistance                                                                                                                                    | Lecture, Activity                    | 2201.2 | Home Assignment |
| 19 - 20 | Front (dead) Axle – function and design<br>Stub axle – types & function       | Describe function & necessity of<br>front axle as well as stub axle<br>Improve the axle cross section that<br>Sustain max. load                                                                                                                             | Lecture                              | 2201.3 | Quiz            |
| 21 - 22 | Steering system<br>Steering geometry<br>Steering linkage                      | Explain function and necessity of<br>steering system in automobiles<br>Roll of Castor, camber, king pin<br>inclination & toe-in, toe-out in<br>Vehicles and their effect on tyre life.<br>Describe various linkage in steering<br>system and their function | Lecture                              | 2201.4 | Quiz            |
| 23      | Steering mechanism – Devis & Ackerman                                         | Examine the equation of correct steering and result                                                                                                                                                                                                         | Activity                             | 2201.4 | Home Assignment |
| 24 - 25 | Steering Gear                                                                 | Explain various steering gear assist steering system used in automobiles                                                                                                                                                                                    | Lecture, Flipped<br>class            | 2201.4 | Home Assignment |
| 26      | Power steering                                                                | Describe working and layout of<br>hydraulic and electronic power<br>steering                                                                                                                                                                                | Flipped class                        | 2201.4 | Quiz            |

| 27      | Steering adjustment & trouble shooting                                                  | Identify the steps involved in<br>adjustment of steering geometry<br>Identify common faults occur in<br>steering system with reasons and<br>their remedy                                                                                                                                                                                          | Lecture                                   | 2201.4 | Quiz            |
|---------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------|-----------------|
| 28 - 30 | Suspension system – suspension springs,<br>Independent and rigid axle suspension system | Explain object, consideration,<br>requirement, characteristics and<br>function of suspension system<br>Describe elements of suspension<br>system and types of vibration get in<br>automobile<br>Explain all types of suspension<br>springs and how they function<br>Describe different type of<br>suspension system used in different<br>vehicles | Lecture                                   | 2201.5 | Quiz            |
| 31      | Air suspension & Hydrolastic suspension                                                 | Explain suspension system used in<br>modern automobiles to provide<br>smooth and constant ride quality                                                                                                                                                                                                                                            | Flipped class                             | 2201.5 | Home Assignment |
| 32      | Suspension system trouble shooting                                                      | Discuss all major defect that occur in suspension system and their remedy                                                                                                                                                                                                                                                                         | Flipped class                             | 2201.5 | Home Assignment |
| 33 - 34 | Mechanics of independent suspension system                                              | Examine the force on link and pivot<br>as well as springing force and angle<br>of tilt                                                                                                                                                                                                                                                            | Lecture                                   | 2201.5 | Home Assignment |
| 35 - 36 | Load on frame                                                                           | Explain types of load carrying<br>structure<br>Describe Load carrying by different<br>member of body<br>Discuss about strength of frame and<br>body                                                                                                                                                                                               | Lecture<br>Activity                       | 2201.6 | Home Assignment |
| 37 - 38 | Wheels                                                                                  | Explain objective, requirement and types of wheel used in automobiles as well as wheel dimensions                                                                                                                                                                                                                                                 | Lecture                                   | 2201.6 | Quiz            |
| 39 - 40 | Tyre                                                                                    | Explain desirable tyre properties and<br>types of tyre<br>Compare & contrast between radial<br>and cross ply tyre.<br>Discuss about selection of tyre                                                                                                                                                                                             | Lecture<br>Activity (Think Pair<br>Share) | 2201.6 | Quiz            |
| 41 - 42 | Tyre life & Tyre wear                                                                   | Explain factor affect tyre life and tyre performance                                                                                                                                                                                                                                                                                              | Lecture                                   | 2201.6 | Home Assignment |
| Week | LAB Module                                                                                             |
|------|--------------------------------------------------------------------------------------------------------|
| 1    | To take measurements of a given light duty automotive chassis.                                         |
| 2    | Performing dismantling & Assembling of a Disc Brake.                                                   |
| 3    | Performing dismantling & Assembling of a Drum Brake.                                                   |
| 4    | Study and working of Exhaust air braking system.                                                       |
| 5    | Study and working of anti-lock braking (ABS) system.                                                   |
| 6    | Performing dismantling and assembling of front and rear axle of vehicle.                               |
| 7    | Performing dismantling and assembling of manual rack and pinion type steering system.                  |
| 8    | Performing dismantling and assembling of hydraulic steering system                                     |
| 9    | Performing dismantling and assembling of steering gear box.                                            |
| 10   | Performing dismantling and assembling of McPherson strut type suspension system.                       |
| 11   | Performing dismantling and assembling of wishbone type independent suspension system                   |
| 12   | Performing dismantling and assembling of leaf spring type suspension system.                           |
| 13   | Find-out out toe-in, toe-out and camber angle of vehicle through computerized wheel alignment machine. |
| 14   | Performing wheel balancing process on computerized wheel balancing set-up.                             |
| 15   | To study of tyre construction and designation through four-wheeler tyre cut section.                   |

# H. Course Articulation Matrix: (Mapping of COs with POs)

| со           | STATEMENT                                                                                                                              |         | CORRELATION WITH PROGRAM OUTCOMES |    |    |    |    |         |    |    |          | CORRELATION WITH<br>PROGRAM SPECIFIC<br>OUTCOMES |    |       |       |       |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|----|----|----|----|---------|----|----|----------|--------------------------------------------------|----|-------|-------|-------|
|              |                                                                                                                                        | PO<br>1 | PO                                | PO | PO | PO | PO | PO<br>7 | PO | PO | PO<br>10 | PO                                               | PO | PSO 1 | PSO 2 | PSO 3 |
| AU<br>1407.1 | Describe the different types of load carrying structure and its application on automotive frames.                                      | 3       | 2                                 | 3  | 4  | 5  | 0  | /       | 0  | 9  | 10       | 11                                               | 12 | 1     |       |       |
| AU<br>1407.2 | Explain the different types of frames and test frame<br>based on brake application of frame stresses and<br>defects.                   | 1       | 2                                 |    |    |    |    |         |    |    |          |                                                  |    | 1     |       |       |
| AU<br>1407.3 | Describe different type of chassis interpret, analyse the right type of chassis for the vehicle requirement.                           | 1       |                                   |    | 2  |    |    |         |    |    |          |                                                  |    | 1     |       |       |
| AU<br>1407.4 | Explain braking system and its importance in automobiles.                                                                              | 1       |                                   |    |    |    |    |         |    |    |          |                                                  |    | 1     |       |       |
| AU<br>1407.5 | Analyse and solve practical problems of braking<br>based on stopping distance, brake efficiency and<br>weight transfer during braking. | 2       | 2                                 |    | 2  |    |    |         |    | 2  | 1        |                                                  | 1  | 1     |       |       |
| AU<br>1407.6 | Analyse and solve practical problem of Axle and suspension system based on vehicle requirement.                                        | 2       | 2                                 |    | 2  |    |    |         |    | 2  | 1        |                                                  | 1  | 2     |       |       |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



I of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

s and Dynamics of Automobiles | AU 2202 | 4 Credits | 3 10 4

sion: Jan 21 – Jun 21 | Faculty: Satish Namdev | Class: IV Sem

- A. Introduction: This course is offered by Dept. of Automobile Engineering for fourth semester students. This course offers a knowledge in different kind of mechanics and mechanisms for automotive. This course is a complete stuff of different types of mechanism and mechanics are using in various components of an automobiles, e.g. cam and follower, governor, gyroscope, balancing for reciprocating and rotary parts in IC engine, brake system. Students are expected to have background knowledge on basic mechanics like fundamental of forces etc.
- B. Course Objectives: At the end of the course, students will be able to
- [2202.1]. Describe importance of fundamentals of mechanics and mechanism used in an automobile.
- [2202.2]. Analyze and design profiles for a cam used in automotive Engine.
- [2202.3]. Analyze and solve problems related to centrifugal governor, gear design and their applications in an automobile to improve problem solving skill.
- [2202.4]. Describe and evaluate different types of forces and factors affect balancing of rotating and reciprocating parts of an automotive engines.
- [2202.5]. Describe, analyse and compute the factors those are involved with gyroscopic effect while turning a two wheeler as well as four wheeler.

### C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

[PO.1]. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and

an engineering specialization to the solution of complex engineering problems

- [PO.2]. Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. Design/development of solutions: Design solutions for complex engineering problems and <u>design</u> system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern engineering</u> and <u>IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal</u>, <u>health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice

- [PO.7]. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [**PO.8**]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader in diverse</u> <u>teams</u>, and in multidisciplinary settings
- **[PO.10].** Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.11].** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

#### **PROGRAM SPECIFIC OUTCOMES**

- [PSO.1]. Analyze, design, and diagnose automotive systems to improve performance, safety, service, and maintenance.
- [PSO.2]. Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.
- [PSO.3]. Demonstrate the use of quality tools for internship projects to solve industrial problems.

| <b>D.</b> Assessment | <b>Rubrics:</b> |
|----------------------|-----------------|
|----------------------|-----------------|

| Criteria                   | Description                                                                         | Maximum Marks                            |  |  |  |  |  |  |  |
|----------------------------|-------------------------------------------------------------------------------------|------------------------------------------|--|--|--|--|--|--|--|
|                            | Sessional Exam I (Open/Closed Book)                                                 | 20                                       |  |  |  |  |  |  |  |
| Internal Assessment        | Sessional Exam II (Open/Closed Book)                                                | 20                                       |  |  |  |  |  |  |  |
| (Summative)                | In class Quizzes and Assignments, Activity                                          | 20                                       |  |  |  |  |  |  |  |
|                            | feedbacks (Accumulated and Averaged)                                                |                                          |  |  |  |  |  |  |  |
| End Term Exam              | End Term Exam (Open/Closed Book)                                                    | 40                                       |  |  |  |  |  |  |  |
| (Summative)                |                                                                                     |                                          |  |  |  |  |  |  |  |
|                            | Total                                                                               | 100                                      |  |  |  |  |  |  |  |
| Attendance                 | A minimum of 75% Attendance is required to be maintained by a student to be         |                                          |  |  |  |  |  |  |  |
| (Formative)                | qualified for taking up the End Semester examination. The allowance of 25% includes |                                          |  |  |  |  |  |  |  |
|                            | all types of leaves including medical leaves.                                       |                                          |  |  |  |  |  |  |  |
| Make up Assignments        | Students who misses a class will have to re                                         | port to the teacher about the absence. A |  |  |  |  |  |  |  |
| (Formative)                | makeup assignment on the topic taught on the                                        | e day of absence will be given which has |  |  |  |  |  |  |  |
|                            | to be submitted within a week from the date                                         | of absence. No extensions will be given  |  |  |  |  |  |  |  |
|                            | on this. The attendance for that particular day                                     | of absence will be marked blank, so that |  |  |  |  |  |  |  |
|                            | the student is not accounted for absence. The                                       | se assignments are limited to a maximum  |  |  |  |  |  |  |  |
|                            | of 5 throughout the entire semester.                                                |                                          |  |  |  |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student may have                                       | we to work in home, especially before a  |  |  |  |  |  |  |  |
| Activity Assignment        | flipped classroom. Although these works a                                           | are not graded with marks. However, a    |  |  |  |  |  |  |  |
| (Formative)                | student is expected to participate and perfor                                       | m these assignments with full zeal since |  |  |  |  |  |  |  |
|                            | the activity/ flipped classroom participation                                       | by a student will be assessed and marks  |  |  |  |  |  |  |  |
|                            | will be awarded.                                                                    |                                          |  |  |  |  |  |  |  |

### E. SYLLABUS:

Mechanism and inversions. Degrees of freedom. Mathematical analysis of velocity and accelerations of simple mechanisms. Synthesis of cams and gears. Gear trains. Static and dynamic force analysis of linkages. Balancing of rotating and reciprocating masses. Governors and its characteristics. Gyroscope and gyroscopic effect on automobiles, Hooks joint.

#### F. References:

- 1. S.S. Rattan, *Theory of machines*, Tata Mc Graw Hill, 2008.
- 2. J J Uicker, G R Pennock, J E Shigley, Theory of Machines and Mechanisms, Oxford University Press, 2011.
- 3. A Gosh, A K Malik, Theory of Mechanisms and Machines, East West Publishers, 2006.
- 4. J S Rao, R V Dukkipati, Mechanisms and Machines Theory, New Age Int., 2007.

#### H. Lecture Plan:

| Lec<br>No | Topics                          | Session Objective                                      | Mode of<br>Delivery | Corresp<br>onding | ModeofAssessingthe               |
|-----------|---------------------------------|--------------------------------------------------------|---------------------|-------------------|----------------------------------|
|           |                                 |                                                        |                     | CO                | Outcome                          |
| 1         | Introduction and Course         | To acquaint and clear teachers                         | Lecture             | NA                | NA                               |
|           | Hand-out briefing               | expectations and understand                            |                     |                   |                                  |
|           |                                 | student expectations                                   | <b>X</b> 1          | 2202.1            |                                  |
| 2,3       | Mechanism and machine,          | Explain importance of                                  | Flipped             | 2202.1            | Class Quiz                       |
|           | kinematic pair, link, chain     | mechanism in an automobile                             | Classroom           |                   | (Not Accounted)                  |
|           | and inversions,                 |                                                        | -                   |                   | ~ ~ ~                            |
| 4,5       | Degree of Freedom, four         | Identify types of mechanisms                           | Lecture,            | 2202.1            | Class Quiz                       |
|           | bar mechanism and its           | are using in an automobile                             | Activity            |                   |                                  |
|           | inversion in automobile         |                                                        |                     |                   |                                  |
|           | and linkages used in earth      |                                                        |                     |                   |                                  |
|           | moving equipment,               |                                                        |                     |                   |                                  |
| 6,7       | Types of cams, Types of         | Explain various types of cam                           | Lecture             | 2202.2            | Home Assignment                  |
|           | followers, Follower             | and follower and importance                            |                     |                   |                                  |
|           | displacement                    | of displacement diagram                                |                     |                   |                                  |
| 0.10      | programming,                    |                                                        |                     |                   |                                  |
| 8-12      | Motions of followers like       | Draw a cam profile for                                 | Flipped             | 2202.2            | In Class Quiz                    |
|           | SHM, Uniform velocity           | different types of follower                            | Classroom           |                   | (Not Accounted)                  |
|           | and cycloidal motion,           | motion                                                 |                     |                   |                                  |
|           | Layout of Cam profile for       |                                                        |                     |                   |                                  |
| 10        | an IC Engine,                   |                                                        | <b>T</b> (          | 2202.2            | L Cl O I                         |
| 13        | Introduction of gears, Friction | Identify role of toothed gears                         | Lecture/            | 2202.3            | In Class Quiz<br>(Not Accounted) |
|           | toothed wheels (gears)          | in automobile engineering                              | Classroom           |                   | (Not Accounted)                  |
|           | Advantage and disadvantage      |                                                        | Classioolii         |                   |                                  |
|           | of gear drive                   |                                                        |                     |                   |                                  |
| 14,15     | Terminology used in gear,       | Explain the concept of gears                           | Lecture             | 2202.3            | In Class Quiz                    |
|           | gear materials, Law of          | and illustrate examples for                            |                     |                   |                                  |
|           | gearing, Derive the             | automotive applications                                |                     |                   |                                  |
|           | expression for path of contact, |                                                        |                     |                   |                                  |
| 16.10     | arc of contact, contact ratio,  |                                                        | T t                 | 2202.2            | TT                               |
| 10-18     | Involute teeth and cycloidal    | Explain different types of                             | Lecture             | 2202.3            | Home Assignment                  |
|           | gears Minimum no of teeth       | profile of toothed gear for<br>automotive applications |                     |                   |                                  |
|           | to avoid interference on        | automotive appreations                                 |                     |                   |                                  |
|           | pinion, Numerical problems      |                                                        |                     |                   |                                  |
| 19,20     | Introduction of Gear train,     | Identify gear trains for                               | Flipped             | 2202.3            | Home Assignment                  |
|           | Types of gear train, velocity   | automotive applications with                           | Classroom           |                   | Class Quiz                       |
|           | and gear ratio for different    | various input data                                     |                     |                   |                                  |
|           | types of gear train, Torque     |                                                        |                     |                   |                                  |
| 21.22     | Transmission                    |                                                        | Lastra              | 2202.2            | Class Ori-                       |
| 21-23     | ratio Compound epicyclic        | Application of epicyclic gear<br>train for automobile  | Lecture             | 2202.3            | Class Quiz                       |
|           | gear train (Differential gear   | application                                            |                     |                   |                                  |

|       | box), Numerical problems      |                                    |           |                   |                 |
|-------|-------------------------------|------------------------------------|-----------|-------------------|-----------------|
| 24,25 | Static Balancing and Dynamic  | Describe balancing of various      | Flipped   | 2202.4            | Class Quiz      |
|       | balancing of rotating masses  | types masses rotating in           | Classroom |                   |                 |
|       | in various Planes &           | different plane for automobile     |           |                   |                 |
|       | Numerical based on its        | application                        |           |                   |                 |
| 26,27 | Static and Dynamic balancing  | <b>Describe various parameters</b> | Lecture/  | 2202.4            | Class Quiz      |
|       | of rotating mass in Different | affect balancing of an             | Activity  |                   |                 |
|       | Plane (numerical)             | automobile                         |           |                   |                 |
| 28    |                               | Describe balancing of various      | Lecture   | 2202.4            | Class Quiz      |
|       | Primary and Secondary         | types masses reciprocating in      |           |                   |                 |
|       | unbalanced forces of          | different plane for automobile     |           |                   |                 |
|       | reciprocating masses          | application                        |           |                   |                 |
| 29-31 | Partially balancing of        | Describe various parameters        | Lecture   | 2202.4            | Class Quiz      |
|       | unbalanced primary force,     | affect balancing of an             |           |                   |                 |
|       | Variation of Tractive force,  | automobile                         |           |                   |                 |
|       | Swaying Couple, Hammer        |                                    |           |                   |                 |
| 22.22 | Blow                          |                                    | Tract     | 2202.4            | Class Q         |
| 32-33 | Balancing of V Engine &       | Balancing for multi cylinder       | Lecture   | 2202.4            | Class Quiz      |
|       | Numerical Problem             | engine in automobile               |           |                   | (Not Accounted) |
| 34    | Introduction of governor      | Identify the requirement of        | Lecture/  | 2202.3            | Class Quiz      |
| 0.    | Types of governor.            | governor for automobiles           | Flipped   |                   | (Not Accounted) |
|       | - JF 8- · ,                   |                                    | Classroom |                   | (               |
| 35-37 | Porter governor, Proell       | Analyse different types of         | Lecture/  | 2202.3            | Class Quiz      |
|       | Governor working and          | governor for automotive use        | Activity  |                   |                 |
|       | derivation, numerical         |                                    | -         |                   |                 |
| 38-39 | Hartnell's governor &         | Analyse different types of         | Lecture   | 2202.3            | Home Assignment |
|       | numerical                     | governor for automotive use        |           |                   |                 |
| 40-41 | Introduction of Gyroscope,    | Identify the requirement of        | Lecture/  | 2202.5            | Home Assignment |
|       | definition of gyroscopic      | gyroscope for automobiles          | Activity  |                   |                 |
|       | couple, Precessional angular  |                                    |           |                   |                 |
| 10.11 | motion                        |                                    | -         |                   |                 |
| 42-44 | Condition for stability of a  | Describe balancing of vehicle      | Lecture   | 2202.5            | Home Assignment |
|       | four wheeler, Condition for   | while negotiating a turn on        |           |                   |                 |
| 15 16 | Stability of two wheeler.     | plane and banked surface           | Lastura   | 2202.1            | Home Assignment |
| 43-40 | Tutorial Classes of Governors | problems based on                  | Lecture   | 2202.1,<br>2202.2 | Home Assignment |
|       |                               | applications in automobile         |           | 2202.3            |                 |
| 47-48 | Tutorial Classes of Gears and | Solving the numerical              | Lecture   | 2202.3            | Home Assignment |
|       | Gear Trains                   | problems based on                  |           |                   |                 |
|       |                               | applications in automobile         |           |                   |                 |
| 49-50 | Tutorial Classes of Cams and  | Solving the numerical              | Lecture   | 2202.2            | Home Assignment |
|       | Follower                      | problems based on                  |           |                   | -               |
|       |                               | applications in automobile         |           |                   |                 |
| 51-54 | Tutorial Classes of Governor  | Solving the numerical              | Lecture   | AU                | Home Assignment |
|       | and Balancing of masses       | problems based on                  |           | 2202.4,           |                 |
|       |                               | applications in automobile         |           | AU                |                 |
|       |                               |                                    |           | 2202.5            |                 |

# I. Course articulation matrix ;- (Mapping of COs and POs)

| СО | STATEMENT | CORRELATION WITH PROGRAM OUTCOMES | CORRELATION<br>WITH PROGRAM<br>SPECIFIC<br>OUTCOMES |
|----|-----------|-----------------------------------|-----------------------------------------------------|
|----|-----------|-----------------------------------|-----------------------------------------------------|

|              |                                                                                                                                                                               | PO<br>1 | PO | PO | PO | PO | PO | PO<br>7 | PO | PO | PO | PO | PO | PSO<br>1 | PSO | PSO |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|----|----|----|----|---------|----|----|----|----|----|----------|-----|-----|
| AU<br>2202.1 | Describe importance<br>of fundamentals of<br>mechanics and<br>mechanism used in an<br>automobile.                                                                             | 3       | 2  | 3  | 4  | 5  | 0  | /       | 0  | 5  | 10 | 11 | 12 | 1        | 2   | 3   |
| AU<br>2202.2 | Analyze and design<br>profiles for a cam used<br>in automotive Engine.                                                                                                        |         |    |    | 2  |    |    | 2       |    |    |    |    |    |          |     |     |
| AU<br>2202.3 | Analyze and solve<br>problems related to<br>centrifugal governor,<br>gear design and their<br>applications in an<br>automobile to<br><b>improve problem</b><br>solving skill. |         | 1  |    |    |    |    |         |    | 2  |    |    |    |          | 2   |     |
| AU<br>2202.4 | Describe and evaluate<br>different types of<br>forces and factors<br>affect balancing of<br>rotating and<br>reciprocating parts of<br>an automotive engines.                  |         |    |    |    |    | 2  |         | 2  | 1  |    |    |    | 2        |     |     |
| AU<br>2202.5 | Describe, analyse and<br>compute the factors<br>those are involved<br>with gyroscopic effect<br>while turning a two<br>wheeler as well as four<br>wheeler.                    |         | 2  |    |    |    | 2  |         |    |    |    | 3  |    |          | 1   |     |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

| со           | STATEMENT                                                                                                                                                                            |         |    | ΤA | TAINI | MENT<br>Thres | of Pf<br>Shold | ROGRA<br>VALL | AM OU<br>JE: 40 | JTCON<br>% | MES |    |    | ATTAINMENT OF<br>PROGRAM<br>SPECIFIC<br>OUTCOMES |     |     |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|----|-------|---------------|----------------|---------------|-----------------|------------|-----|----|----|--------------------------------------------------|-----|-----|
|              |                                                                                                                                                                                      | PO<br>1 | PO | PO | PO    | PO            | PO             | PO<br>7       | PO              | PO         | PO  | PO | PO | PSO                                              | PSO | PSO |
| AU<br>2202.1 | Describe importance<br>of fundamentals of<br>mechanics and<br>mechanism used in an<br>automobile.                                                                                    | T       | 2  | 3  | 4     | 5             | 0              | 7             | 0               | 9          | 10  |    | 12 | <u> </u>                                         | 2   | 3   |
| AU<br>2202.2 | Analyze and design<br>profiles for a cam used<br>in automotive Engine.                                                                                                               |         |    |    |       |               |                |               |                 |            |     |    |    |                                                  |     |     |
| AU<br>2202.3 | Analyze and solve<br>problems related to<br>centrifugal governor,<br>gear design and their<br>applications in an<br>automobile to<br><b>improve problem</b><br><b>solving skill.</b> |         |    |    |       |               |                |               |                 |            |     |    |    |                                                  |     |     |
| AU<br>2202.4 | Describe and evaluate<br>different types of<br>forces and factors<br>affect balancing of<br>rotating and<br>reciprocating parts of<br>an automotive engines.                         |         |    |    |       |               |                |               |                 |            |     |    |    |                                                  |     |     |
| AU<br>2202.5 | Describe, analyse and<br>compute the factors<br>those are involved<br>with gyroscopic effect<br>while turning a two<br>wheeler as well as four<br>wheeler.                           |         |    |    |       |               |                |               |                 |            |     |    |    |                                                  |     |     |

0-No Attainment; I- Low Attainment; 2- Moderate Attainment; 3- Substantial Attainment



School of Automobile Mechanical and Mechatronics Engineering

### Department of Automobile Engineering Course Hand-out

### Fluid Mechanics | AU2203 | 3 Credits | 3 0 0 3

Session: Feb 21 – Jun 21 | Faculty: Dr Rakesh Kumar | Class: II Year IV Semester

**Introduction:** This course is offered as a core course to the students of II Year B Tech Automobile Engineering. This course offers in depth knowledge including various fluid properties, types of flow, and measurements of flow, pneumatic and hydraulic system used in automobiles. Students are expected to have background knowledge on Engineering Mathematics and Strength of Materials and be familiar with thermodynamics for better learning.

- A. Course Outcomes: At the end of the course, students will be able to
  - [2203.1]. Describe various types of fluid flow and its application in an automobile.
  - **[2203.2].** Compute flow rate through venturimeter, orifice meter and notches and its applications in automobile.
  - **[2203.3].** Determine shear stress and velocity distribution through, circular pipe and between two fixed parallel plates.
  - **[2203.4].** Describe pumps, pneumatic & hydraulic valves, and their importance in Automobile to enhance employability.

# B. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. **Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to</u> <u>assess societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the <u>impact of the professional engineering</u> <u>solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader</u> in diverse teams, and in multidisciplinary settings

- [PO.10]. **Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change
- [PSO.1]. Analyse, design and diagnose automotive systems to improve performance, safety, service and maintenance.
- [PSO.2]. Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.
- [PSO.3]. Demonstrate the use of quality tools for internship projects to solve industrial problems.

| Criteria                   | Description                                                                            | Maximum Marks                             |  |  |  |  |  |  |  |
|----------------------------|----------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|
|                            | Sessional Exam I                                                                       | 20                                        |  |  |  |  |  |  |  |
| Internal Assessment        | Sessional Exam II                                                                      | 20                                        |  |  |  |  |  |  |  |
| (Summative)                | In class Quizzes and Assignments                                                       | 20                                        |  |  |  |  |  |  |  |
|                            | (Accumulated and Averaged)                                                             |                                           |  |  |  |  |  |  |  |
| End Term Exam              | End Term Exam                                                                          | 40                                        |  |  |  |  |  |  |  |
| (Summative)                |                                                                                        |                                           |  |  |  |  |  |  |  |
|                            | Total                                                                                  | 100                                       |  |  |  |  |  |  |  |
| Attendance                 | minimum of 75% Attendance is required to be maintained by a student to be qualified    |                                           |  |  |  |  |  |  |  |
| (Formative)                | for taking up the End Semester examination. The allowance of 25% includes all types of |                                           |  |  |  |  |  |  |  |
|                            | leaves including medical leaves.                                                       |                                           |  |  |  |  |  |  |  |
| Make up Assignments        | Students who misses a class will have to repo                                          | ort to the teacher about the absence. A   |  |  |  |  |  |  |  |
| (Formative)                | makeup assignment on the topic taught on the                                           | day of absence will be given which has to |  |  |  |  |  |  |  |
|                            | be submitted within a week from the date of                                            | absence. No extensions will be given on   |  |  |  |  |  |  |  |
|                            | this. The attendance for that particular day of a                                      | absence will be marked blank, so that the |  |  |  |  |  |  |  |
|                            | student is not accounted for absence. These as                                         | signments are limited to a maximum of 5   |  |  |  |  |  |  |  |
|                            | throughout the entire semester.                                                        |                                           |  |  |  |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student may have                                          | ve to work in home, especially before a   |  |  |  |  |  |  |  |
| Activity Assignment        | flipped classroom. Although these works ar                                             | e not graded with marks. However, a       |  |  |  |  |  |  |  |
| (Formative)                | student is expected to participate and perfor                                          | m these assignments with full zeal since  |  |  |  |  |  |  |  |
|                            | the activity/ flipped classroom participation by                                       | a student will be assessed and marks will |  |  |  |  |  |  |  |
|                            | be awarded.                                                                            |                                           |  |  |  |  |  |  |  |

### C. Assessment Plan:

## D. SYLLABUS

Fundamentals: Definition and properties of fluids, intensity of pressure, variation of pressure in a static fluid, Manometers. Fluid statics: Hydro static forces and centre of pressure on plane surfaces, Buoyancy, centre of Buoyancy, Meta-centre and Meta-centric height, Stability of floating and sub-merged bodies. Kinematics and Dynamics of fluid flow: Types of fluid flow, continuity equation, one dimensional Euler's equation of motion, Bernoulli's energy equation. Fluid flow measurements: Pitot tube, orifice meter, venture meter and notch. Viscous flow: Reynolds Number, laminar flow through circular pipe, laminar flow between fixed parallel plates. Fluid flow in pipes: Losses in pipes, Minor and major losses, Darcy and Chezy equations. Dimensional analysis and Similitude: Methods of dimensional analysis, similitude. Pneumatic & Hydraulic valves: Construction and working of various types of direction control, pressure control, flow control valves, servo valve, proportional valve, accumulator. Hydraulic & Pneumatic circuits: Regeneration, meter in, meter out, bleed off, sequencing, counter balancing, pressure reducing and typical application circuits.

#### **References:**

- 1. Y Cengel, J M Cimbala, Fluid Mechanics, Tata Mcgraw-Hill Publications, New Delhi, 2013.
- 2. F N White, *Fluid Mechanics*, Tata Mcgraw-Hill Publications, New Delhi, 2011.
- 3. B R Munson, T H Okiishi, W W Huebsch, A P Rothmayer, *Fundamentals of Fluid Mechanics*, John Wiley and Sons, New Jersey, 2013.
- 4. C T Crowe, D F Elger, B C Williams, J A Roberson, Engineering Fluid Mechanics, John Wiley and Sons, New Jersey, 2009.
- E. Lecture Plan:

| Lecture  | Topics                                                                                                                                                                         | Session Outcomes                                                                                                     | Mode of                         | Bloom's  | Mode of                                                  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------|----------|----------------------------------------------------------|
| No.      |                                                                                                                                                                                |                                                                                                                      | Delivery                        | Level    | Assessing the Outcome                                    |
| I        | Introduction                                                                                                                                                                   | To acquaint and clear teachers<br>expectations and understand<br>student expectations                                | Lecture                         | NA       |                                                          |
| 2        | <b>Fundamentals:</b> Definition and properties of fluids                                                                                                                       | Describe fluid, its properties and classify types of fluid                                                           | Lecture                         | [2203.1] | Class Quiz<br>Mid Term I<br>End Term                     |
| 3,4      | intensity of pressure, variation of<br>pressure in a static fluid, Absolute,<br>Gauge, Atmospheric and<br>Vacuum pressure                                                      | Describe pressure, variation of pressure ,and its types                                                              | Lecture                         | [2203.1] | Class Quiz<br>Mid Term I<br>End Term                     |
| 5,6      | Manometers                                                                                                                                                                     | Describe manometers and<br>interpret with pressure<br>measurement                                                    | Lecture<br>Flipped<br>Classroom | [2203.1] | Home Assignment<br>Class Quiz<br>Mid Term I<br>End Term  |
| 7,8      | Fluid statics: Hydro static<br>forces and Centre of Pressure on<br>vertical and inclined plane<br>surfaces,                                                                    | Compute total pressure and position of centre of pressure                                                            | Lecture                         | [2203.1] | Home Assignment<br>Class Quiz<br>Mid Term I<br>End Term  |
| 9        | hydrostatic applications in braking<br>systems (master cylinders, wheel<br>cylinders, force distribution in<br>brake linings)                                                  | Apply knowledge of hydrostatic<br>forces in automotive component                                                     | Lecture<br>Flipped<br>Classroom | [2203.1] | Class Quiz<br>Mid Term I<br>End Term                     |
| 10       | clutch cylinder, hydrostatic<br>drives used in automobile and<br>earthmoving equipment,                                                                                        | Apply knowledge of hydrostatic<br>forces in automotive component                                                     | Lecture                         | [2203.1] | Home Assignment<br>Class Quiz<br>Mid Term I<br>End Term  |
| 11,12    | Kinematics and Dynamics of<br>fluid flow : Types of fluid flow;<br>laminar flow, turbulent flow<br>applications in engine intake,<br>exhaust systems and torque<br>converters; | Classify different kind of fluid<br>flow and<br>Application of fluid flow in<br>Automotive component                 | Lecture<br>Flipped<br>Classroom | [2203.1] | Home Assignment<br>Class Quiz<br>Mid Term I<br>End Term  |
| 13       | Continuity equation, one<br>dimensional Euler's equation of<br>motion                                                                                                          | Describe Continuity equation<br>and one dimensional Euler's<br>equation of motion                                    | Lecture                         | [2203.2] | Class Quiz<br>Mid Term I<br>End Term                     |
| 14,15    | Bernoulli's energy equation and<br>their application in vehicle<br>dynamics                                                                                                    | Describe Bernoulli's equation                                                                                        | Lecture<br>Flipped<br>Classroom | [2203.2] | Class Quiz<br>Mid Term I<br>End Term                     |
| 16       | Fluid flow measurements:<br>Venturi meter,                                                                                                                                     | Recall Bernoulli's equation, and compute flow rate for venture meter                                                 | Lecture                         | [2203.2] | Class Quiz<br>Mid Term II<br>End Term                    |
| 17       | Orifice meter                                                                                                                                                                  | Recall Bernoulli's equation, and compute flow rate for orifice meter                                                 | Lecture                         | [2203.2] | Class Quiz<br>Mid Term II<br>End Term                    |
| 18       | Pitot tube and Notch                                                                                                                                                           | Recall Bernoulli's equation, and compute flow rate for notch                                                         | Lecture                         | [2203.2] | Class Quiz<br>Mid Term II<br>End Term                    |
| 19,20,21 | Viscous Flow : Reynolds<br>Number, laminar flow through<br>circular pipes & tubes, Hagen<br>Poiseuille's equation,                                                             | Recall types of flow, draw<br>velocity and shear stress profile<br>for laminar flow through circular<br>pipe         | Lecture                         | [2203.3] | Class Quiz<br>Mid Term II<br>End Term                    |
| 22,23    | laminar flow between fixed parallel<br>plates, applications in automotive<br>lubrication systems                                                                               | Recall types of flow, draw<br>velocity and shear sterss profile<br>for laminar flow between fixed<br>parallel plates | Lecture<br>Flipped<br>Classroom | [2203.3] | Home Assignment<br>Class Quiz<br>Mid Term II<br>End Term |
| 24,25    | Flow Through Pipes & Tubes:<br>Minor and Major losses, Darcy<br>and Chezy equation.                                                                                            | Describe losses in pipes and compute friction losses in pipe                                                         | Lecture                         | [2203.3] | Class Quiz<br>Mid Term II<br>End Term                    |
| 26,27    | FundamentalsofAutomotiveHydraulicPneumaticPumps:pumps, rotary pumps                                                                                                            | Describe pump, evaluate<br>performance of gear pump and<br>rotary pump                                               | Lecture                         | [2203.4] | Class Quiz<br>Mid Term II<br>End Term                    |
| 28,29    | crescent pumps, fuel pumps                                                                                                                                                     | Recall pump, evaluate                                                                                                | Lecture                         | [2203.4] | Class Quiz<br>Mid Term 11                                |

|          |                                    | fuel pumps                        | Classroom |          | End Term        |
|----------|------------------------------------|-----------------------------------|-----------|----------|-----------------|
| 30,31    | oil pumps and coolant pumps        | Recall pump, evaluate             | Lecture   | [2203.4] | Class Quiz      |
|          |                                    | performance of oil pumps and      | Flipped   |          | Mid Term II     |
|          |                                    | coolant pumps                     | Classroom |          | End Term        |
| 32,33    | Automotive Hydraulic &             | Describe hydraulic system used    | Lecture   | [2203.4] | Class Quiz      |
|          | <b>Pneumatic Devices:</b> , torque | in automotive components          |           |          | End Term        |
|          | convertors, fluid couplings        |                                   |           |          |                 |
| 34,35    | Automotive Pneumatic               | Describe pneumatics system and    | Lecture   | [2203.4] | Class Quiz      |
|          | Hydraulic valves: Construction     | apply it in to direction control  |           |          | Mid Term II     |
|          | and working of various types of    | valve                             |           |          | End Term        |
|          | direction control valve            |                                   |           |          |                 |
| 36       | pressure control valve             | Recall pneumatics system          | Lecture   | [2203.4] | Home Assignment |
|          |                                    | requirements and apply it in to   | Flipped   |          | Mid Term II     |
|          |                                    | pressure control valve            | Classroom |          | End Term        |
| 37,38,39 | flow control valves, servo valve,  | Recall pneumatics system          | Lecture   | [2203.4] | Home Assignment |
|          | proportional valve, accumulator,   | requirements and apply it in to   | Flipped   |          | Mid Term II     |
|          |                                    | flow control valves, servo valve, | Classroom |          | End Term        |
|          |                                    | proportional valve, accumulator   |           |          |                 |
| 40,41    | Hydraulic & Pneumatic              | Describe Hydraulic & Pneumatic    | Lecture   | [2203.5] | Home Assignment |
|          | circuits: Regeneration, meter in,  | circuits and their functions      |           |          | End Term        |
|          | meter out, bleed off, sequencing,  |                                   |           |          |                 |
|          | counter balancing,                 |                                   |           |          |                 |
| 42       | Pressure reducing and typical      | Recall Hydraulic & Pneumatic      | Lecture   | [2203.5] | Home Assignment |
|          | application circuits.              | circuits and their functions,     | Flipped   |          | End Term        |
|          |                                    | design new circuits               | Classroom |          |                 |

# F. Course articulation matrix ;- (Mapping of COs and POs)

| со           | STATEMENT                                                                                                                     |         | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |         |         |         |          |          |          | CORRELATION<br>WITH<br>PROGRAM<br>SPECIFIC<br>OUTCOMES |          |          |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|--------------------------------------------------------|----------|----------|--|
|              |                                                                                                                               | PO<br>I | PO<br>2                           | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO<br>I                                               | PSO<br>2 | PSO<br>3 |  |
| AU<br>2203.1 | Describe various<br>types of fluid flow and<br>its application in an<br>automobile.                                           | 3       | 2                                 |         |         |         |         |         |         |         |          |          |          | -                                                      | 1        |          |  |
| AU<br>2203.2 | Compute flow rate<br>through venturimeter,<br>orifice meter and<br>notches and its<br>applications in<br>automobile.          | 3       | 2                                 | 2       | 2       |         |         |         |         | 2       |          |          |          | Ι                                                      |          |          |  |
| AU<br>2203.3 | Determine shear<br>stress and velocity<br>distribution through,<br>circular pipe and<br>between two fixed<br>parallel plates. | 3       | 2                                 |         | 2       |         |         |         |         | 2       |          |          |          | Ι                                                      |          |          |  |
| AU<br>2203.4 | Describe pumps,<br>pneumatic & hydraulic<br>valves, and their<br>importance in<br>Automobile to<br>enhance employability.     | 2       | 2                                 |         |         |         |         |         | Ι       | 2       |          |          |          | 2                                                      | I        |          |  |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



| Course Hand-out<br>CAD GD & T   AU2230   2 Credits   0 0 0 4<br>Session: Jan – May2021   Faculty: Dr Anjaiah Devineni and Dr Vinod Yadav  Class: 2 <sup>nd</sup> Yr<br>Ctive<br>s: At | School of Automobile Mechanical and Mechatronics Engineering<br>Department of Automobile Engineering<br>Course Hand-out<br>CAD GD & T   AU2230   2 Credits   0 0 0 4<br>Session: Jan – May2021   Faculty: Dr Anjaiah Devineni and Dr Vinod Yadav  Class: 2 <sup>nd</sup> Yr | A.<br>ours<br>e<br>Obje<br>ctive<br>s: At | С |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---|

end of the course, students will be able to

- 1. Recall, understand, and execute commands selecting specific options to draw 2D and 3D drawings using AutoCAD and Creo software.
- 2. Prepare 2D, 3D drawings and Solid model of automotive components having simple geometry using AutoCAD and Creo software.
- 3. Explain and interpret the Geometric dimensions and Tolerances provided in the component drawing made in Auto CAD and Creo software which leads to employability.

### **B.** Assessment Plan:

| Criteria                   | Maximum Marks                                                                               |
|----------------------------|---------------------------------------------------------------------------------------------|
|                            | 60                                                                                          |
| Internal Assessment        |                                                                                             |
| (Summative)                |                                                                                             |
| End Term Exam              | 40                                                                                          |
| (Summative)                |                                                                                             |
| Total                      | 100                                                                                         |
| Attendance                 | A minimum of 75% Attendance is required to be maintained by a student to be qualified       |
| (Formative)                | for taking up the End Semester examination. The allowance of 25% includes all types of      |
|                            | leaves including medical leaves.                                                            |
| Make up Assignments        | Students who misses a class will have to report to the teacher about the absence. A         |
| (Formative)                | makeup assignment on the topic taught on the day of absence will be given which has to      |
|                            | be submitted within a week from the date of absence. The attendance for that day of         |
|                            | absence will be marked blank, so that the student is not accounted for absence. These       |
|                            | assignments are limited to a maximum of 5 in a semester.                                    |
| Homework/ Home Assignment/ | There are situations where a student may have to work in home, especially before a          |
| Activity Assignment        | flipped classroom. Although these works are not graded with marks. However, a student       |
| (Formative)                | is expected to participate and perform these assignments with full zeal since the activity/ |
|                            | flipped classroom participation by a student will be assessed and marks will be awarded.    |

### C. Syllabus

### AU2230: COMPUTER AIDED DRAWING LAB [0 0 4 2]

Introduction: CAD software (AutoCAD and Creo) and its applications.

Geometrical Dimensioning & Tolerances: Introduction to GD & T, part features, symbols, screw threads, gears and splines, basic dimension, limits, fits & tolerances, Datum, and plane.

2D Part Drawing using AutoCAD and 3D Part modelling using Creo – exercises on modelling of automotive components. Thread forms, Bolts, nuts, connecting rod, stuffing box, steam engine cross head, Plummer block, simple eccentric, non- return valve, screw jack, swivel bearing, couplings c-clamp, drill jig, square tool post and joints.

### **D. References:**

- 1. A Krulikowski, Fundamentals of Geometric Dimensioning and Tolerancing, International edition, Delmar Cengage Learning, 2012.
- 2. G Omura, B C Benton, Mastering AutoCAD 2013, serious skill, 2012

# 3. I.K Zeid, CAD/CAM Theory and Practice, Tata McGraw Hill New Delhi, 1998.

# A. Lecture Plan

| Lec<br>No | Topics                                                                                                  | Session Objective                                                                                       | Mode of<br>Delivery | Correspon<br>ding Co | Mode of<br>Assessing the<br>Outcome |
|-----------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------|----------------------|-------------------------------------|
| 1.        | Introduction to<br>Course                                                                               | Introduction: AutoCAD introduction<br>and features of drawing software                                  | Lecture             | 2230.1               | NA                                  |
| 2.        | AutoCAD Utility and<br>Draw Commands                                                                    | Draw border lines using Utility and Draw commands.                                                      | Lab<br>Practice     | 2230.1               | Viva and practice                   |
| 3.        | AutoCAD Draw and<br>Modify Commands                                                                     | Exercise on 2D drawings using Draw and modify commands                                                  | Lecture             | 2230.1               | Viva and practice                   |
| 4.        | AutoCAD Draw and 2D drawing (two views) of Hexagonal Lab<br>Modify Commands headed bolt and nut Practic |                                                                                                         | Lab<br>Practice     | 2230.1               | Viva and practice                   |
| 5.        | AutoCAD Draw and<br>Modify Commands                                                                     | 2D drawing of Flanged coupling using draw and modify commands                                           | Lab<br>Practice     | 2230.2               | Viva and practice                   |
| 6.        | AutoCAD Draw and<br>Modify Commands                                                                     | 2D drawing of Bushed Bearing using draw and modify commands                                             | Lab<br>Practice     | 2230.2               | Viva and practice                   |
| 7.        | AutoCAD Draw and<br>Modify Commands                                                                     | 2D drawing of Connecting Rod using draw and modify commands                                             | Lab<br>Practice     | 2230.2               | Viva and practice                   |
| 8.        | AutoCAD Draw and<br>Modify Commands                                                                     | 2D drawing of Studding Box using draw and modify commands                                               | Lab<br>Practice     | 2230.2               | Viva and practice                   |
| 9.        | AutoCAD Draw and<br>Modify Commands                                                                     | 2D drawing of Plummer Block draw and modify commands                                                    | Lab<br>Practice     | 2230.2               | Viva and practice                   |
| 10.       | 3D Modelling in Auto-<br>CAD                                                                            | Demonstration of AutoCAD commands for 3D modelling                                                      | Lab<br>Practice     | 2230.2               | Viva and practice                   |
| 11.       | Introduction to<br>dimension, limits, fits<br>& tolerances                                              | Details of GD & T in Auto- CAD                                                                          | Lecture             | 2230.3               | Viva and practice                   |
| 12.       | Datum, and plane                                                                                        | Details of GD & T in Auto- CAD                                                                          | Lecture             | 2230.3               | Viva and practice                   |
| 13.       | AutoCAD GD&T<br>commands                                                                                | Practice the GD&T commands                                                                              | Lab<br>Practice     | 2230.3               | Viva and practice                   |
| 14.       | Introduction to Creo<br>Software                                                                        | Introduction and feature of Creo and benefits over AutoCAD                                              | Lecture             | NA                   | NA                                  |
| 15.       | Sketching in Creo: 1                                                                                    | Practice commands: Line chain,<br>rectangle, circle, arc, ellipse, spline,<br>fillet, chanfer, and text | Lab<br>Practice     | 2230.1               | Viva and practice                   |
| 16.       | Sketching in Creo: 2                                                                                    | Practice commands: line tangent,<br>offset, thicken, centreline, chanfer,<br>and text                   | Lab<br>Practice     | 2230.1               | Viva and practice                   |
| 17.       | Sketching in Creo: 3                                                                                    | Practice Grid, line style, editing,<br>constraints, dimension options in<br>creo,                       | Lab<br>Practice     | 2230.1               | Viva and practice                   |
| 18.       | Part Modelling in Creo<br>1                                                                             | Practice Extrude, Revolve, Sweep and<br>Helical Sweep commands                                          | Lab<br>Practice     | 2230.2               | Viva and practice                   |
| 19.       | Part Modelling in Creo<br>2                                                                             | Practice Blend, Rotational Swept<br>Blend, and commands                                                 | Lab<br>Practice     | 2230.2               | Viva and practice                   |
| 20.       | Part Modelling in Creo<br>3                                                                             | Practice Hole, Round, Chamfer commands                                                                  | Lab<br>Practice     | 2230.2               | Viva and practice                   |
| 21.       | Part Modelling in Creo<br>4                                                                             | Practice Rib, Bend, Draft, Shell<br>Commands                                                            | Lab<br>Practice     | 2230.2               | Viva and practice                   |
| 22.       | Part Modelling in Creo<br>5                                                                             | Practice Pattern, Mirror and Warp commands                                                              | Lab<br>Practice     | 2230.2               | Viva and practice                   |
| 23.       | Practice exercises for<br>part modelling                                                                | Practice of given exercises in syllabus                                                                 | Lab<br>Practice     | 2230.2               | Viva and practice                   |
| 24.       | Evaluation                                                                                              | Evaluation of both software through exercise and viva                                                   | Lab<br>Practice     | NA                   | Viva and practice                   |



School of Automobile Mechanical and Mechatronics Engineering

#### Department of Automobile Engineering Course Hand-out

Fluid Mechanics Lab | AU 2231 | 1 Credits | 0 0 2 1

Session: Feb 21 – Jun 21 | Faculty: Dr Rakesh Kumar & Dr Ashu Yadav | Class: II Year IV Semester

**Introduction:** This course is offered as a core course to the students of II Year B Tech Automobile Engineering. This course offers in depth knowledge including various pneumatic and hydraulic system used in automobiles.

Course Outcomes: At the end of the course, students will be able to

[2231.1]. Conduct performance test on fluid pumps used in automobiles and interpret the results.

[2231.2]. Identify valves used in pneumatic and hydraulic circuits.

[2231.3]. Develop pneumatic circuits for automotive systems to enhance the employability skills.

## A. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. **Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to</u> <u>assess societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the <u>impact of the professional engineering</u> <u>solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader</u> in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

- [PO.11]. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change
- [PSO.1]. Analyse, design and diagnose automotive systems to improve performance, safety, service and maintenance.
- [PSO.2]. Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.
- [PSO.3]. Demonstrate the use of quality tools for internship projects to solve industrial problems.

# B. Assessment Plan:

| Criteria                   | Description                                                                       | Maximum Marks                             |  |  |  |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|--|
|                            | Practical performance (internal)                                                  | 60                                        |  |  |  |  |  |  |  |  |
| End Term Exam              | End Term Exam                                                                     | 40                                        |  |  |  |  |  |  |  |  |
|                            | Total                                                                             | 100                                       |  |  |  |  |  |  |  |  |
| Attendance                 | A minimum of 75% Attendance is requi                                              | red to be maintained by a student to be   |  |  |  |  |  |  |  |  |
| (Formative)                | qualified for taking up the End Semest                                            | er examination. The allowance of 25%      |  |  |  |  |  |  |  |  |
|                            | includes all types of leaves including medical leaves.                            |                                           |  |  |  |  |  |  |  |  |
| Make up Assignments        | Students who misses a class will have to report to the teacher about the absence. |                                           |  |  |  |  |  |  |  |  |
| (Formative)                | A makeup assignment on the topic taught on the day of absence will be given       |                                           |  |  |  |  |  |  |  |  |
|                            | which has to be submitted within a week from the date of absence. No              |                                           |  |  |  |  |  |  |  |  |
|                            | extensions will be given on this. The atte                                        | ndance for that particular day of absence |  |  |  |  |  |  |  |  |
|                            | will be marked blank, so that the stude                                           | nt is not accounted for absence. These    |  |  |  |  |  |  |  |  |
|                            | assignments are limited to a maximum of                                           | 5 throughout the entire semester.         |  |  |  |  |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student                                              | may have to work in home, especially      |  |  |  |  |  |  |  |  |
| Activity Assignment        | before a flipped classroom. Although th                                           | nese works are not graded with marks.     |  |  |  |  |  |  |  |  |
| (Formative)                | However, a student is expected to par                                             | ticipate and perform these assignments    |  |  |  |  |  |  |  |  |
|                            | with full zeal since the activity/ flipped cla                                    | ssroom participation by a student will be |  |  |  |  |  |  |  |  |
|                            | assessed and marks will be awarded.                                               |                                           |  |  |  |  |  |  |  |  |

## C. SYLLABUS

Flow Measuring Devices, Pneumatic and Hydraulic actuators: Linear Actuator- single acting & double acting cylinder, rotary actuator- gear, vane and piston pump. Pneumatic and Hydraulic valves: direction control, pressure control and flow control valves, servo valves, proportional valves. Hydraulic trainer, Pneumatic trainer.

#### References:

- 1. A Esposito, *Fluid Power with Applications*, (7e), Prentice-Hall International, 2008.
- 2. I Sivaraman, Introduction to Hydraulics and Pneumatics, (3e), PHI Learning Pvt. Ltd., 2017.
- 3. Y Cengel, J Cimbala, *Fluid Mechanics,* (3e), McGraw Hill Education, 2017.

### D. Lecture Plan:

| Lab Module |                                                                                                                             |                    |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|
| Sr No      | Description                                                                                                                 | CO                 |  |  |  |  |  |  |
| 1          | Operation of a Single Acting & Double Acting cylinder                                                                       | [2231.2]; [2231.3] |  |  |  |  |  |  |
| 2          | Actuation of single acting & Double acting cylinder on pneumatic trainer                                                    | [2231.2]; [2231.3] |  |  |  |  |  |  |
| 3          | Operation of a single acting cylinder- controlled from different positions using shuttle (OR) and Dual pressure (AND) valve | [2231.2]; [2231.3] |  |  |  |  |  |  |
| 4          | Operation of a double acting cylinder using quick exhaust valve & time delay valve                                          | [2231.2]; [2231.3] |  |  |  |  |  |  |
| 5          | Controlling the speed of double acting cylinder using METERING IN & METERING OUT valve                                      | [2231.2]; [2231.3] |  |  |  |  |  |  |
| 6          | Automatic operation of a double acting cylinder                                                                             | [2231.2]; [2231.3] |  |  |  |  |  |  |
| 7          | Single cycle automation of multiple cylinder in sequence                                                                    | [2231.2]; [2231.3] |  |  |  |  |  |  |
| 8          | Single cycle automation of multiple cylinders using cascading method                                                        | [2231.2]; [2231.3] |  |  |  |  |  |  |
| 9          | Operation of a single acting and double acting cylinder using solenoid valve                                                | [2231.2]; [2231.3] |  |  |  |  |  |  |
| 10         | Apply AND logic using two manual controls for FWD motion of a double acting cylinder and another control for RET stroke     | [2231.2]; [2231.3] |  |  |  |  |  |  |

| 11 | Actuation of single acting & Double acting cylinder on Hydraulic trainer | [2231.2] |
|----|--------------------------------------------------------------------------|----------|
| 12 | Performance measurement of multi stage centrifugal pump                  | [2231.1] |
| 13 | Performance measurement of reciprocating pump                            | [2231.1] |
| 14 | Performance measurement of gear pump                                     | [2231.1] |
| 15 | Operation of a pneumatic brake used in automobiles                       | [2231.1] |

# E. Course articulation matrix ;- (Mapping of COs and POs)

| со           | STATEMENT                                                                                          |    |         |    |         |      |    |         |    |    |    |    |    | CORRELATION<br>WITH<br>PROGRAM<br>SPECIFIC<br>OUTCOMES |     |          |  |
|--------------|----------------------------------------------------------------------------------------------------|----|---------|----|---------|------|----|---------|----|----|----|----|----|--------------------------------------------------------|-----|----------|--|
|              |                                                                                                    | PO | PO<br>2 | PO | PO<br>⊿ | PO 5 | PO | PO<br>7 | PO | PO | PO | PO | PO | PSO                                                    | PSO | PSO<br>3 |  |
| AU<br>2231.1 | Conduct performance<br>test on fluid pumps<br>used in automobiles<br>and interpret the<br>results. | 3  | 2       | ,  | Т       | ,    | 0  | 7       | -  | 2  |    |    | 12 | 2                                                      |     | 5        |  |
| AU<br>2231.2 | Identify valves used in pneumatic and hydraulic circuits.                                          | 3  | 2       |    |         |      |    |         | I  | 2  |    |    |    | 2                                                      |     |          |  |
| AU<br>2231.3 | Develop pneumatic<br>circuits for<br>automotive systems<br>to enhance the<br>employability skills. | 3  | 2       | 3  | 2       |      |    |         |    | 2  |    |    |    | 2                                                      | I   |          |  |



School of Automobile Mechanical and Mechatronics Engineering

#### Department of Automobile Engineering Course Hand-out

Project Based Learning I | AU 2270 | I Credits | 0 0 2 I

Session: Feb 21 - Jun 21 | Faculty: Dr Rakesh Kumar & Mr Dharmesh Yadav| Class: II Year IV Semester

**Introduction:** This course is offered as a core course to develop professional skills through experiential learning. Also this will help the students to understand the industrial needs and make them industry ready.

Course Outcomes: At the end of the course, students will be able to

- [2270.1]. Identify the problem and Plan the project.
- **[2270.2].** Review the topic in detail for formulating problem statement.

[2270.3]. Develop a model for identified project to enhance research skills.

### A. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. **Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to</u> <u>assess societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the <u>impact of the professional engineering</u> <u>solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader</u> in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

[PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

- [PSO.1]. Analyse, design and diagnose automotive systems to improve performance, safety, service and maintenance.
- [PSO.2]. Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.
- [PSO.3]. Demonstrate the use of quality tools for internship projects to solve industrial problems.

### B. Assessment Plan:

| Criteria                   | Description                                                                 | Maximum Marks                             |  |  |  |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|--|
|                            | Project performance (internal)                                              | 60                                        |  |  |  |  |  |  |  |  |
| End Term Exam              | End Term Presentation and Viva Voce                                         | 40                                        |  |  |  |  |  |  |  |  |
|                            | Total                                                                       | 100                                       |  |  |  |  |  |  |  |  |
| Attendance                 | A minimum of 75% Attendance is require                                      | red to be maintained by a student to be   |  |  |  |  |  |  |  |  |
| (Formative)                | qualified for taking up the End Semest                                      | er examination. The allowance of 25%      |  |  |  |  |  |  |  |  |
|                            | includes all types of leaves including medical leaves.                      |                                           |  |  |  |  |  |  |  |  |
| Make up Assignments        | Students who misses a class will have to                                    | report to the teacher about the absence.  |  |  |  |  |  |  |  |  |
| (Formative)                | A makeup assignment on the topic taught on the day of absence will be given |                                           |  |  |  |  |  |  |  |  |
|                            | which has to be submitted within a week from the date of absence. No        |                                           |  |  |  |  |  |  |  |  |
|                            | extensions will be given on this. The atte                                  | ndance for that particular day of absence |  |  |  |  |  |  |  |  |
|                            | will be marked blank, so that the stude                                     | ent is not accounted for absence. These   |  |  |  |  |  |  |  |  |
|                            | assignments are limited to a maximum of                                     | 5 throughout the entire semester.         |  |  |  |  |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student                                        | may have to work in home, especially      |  |  |  |  |  |  |  |  |
| Activity Assignment        | before a flipped classroom. Although the                                    | nese works are not graded with marks.     |  |  |  |  |  |  |  |  |
| (Formative)                | However, a student is expected to par                                       | ticipate and perform these assignments    |  |  |  |  |  |  |  |  |
|                            | with full zeal since the activity/ flipped cla                              | ssroom participation by a student will be |  |  |  |  |  |  |  |  |
|                            | assessed and marks will be awarded.                                         |                                           |  |  |  |  |  |  |  |  |

### C. SYLLABUS

Project-based learning involves students designing, developing, and constructing hands-on solutions to a problem. The educational value of Project based learning is that it aims to build students' creative capacity to work through difficult or illstructured problems, commonly in small teams. Typically, Project based learning takes students through the following phases or steps: Identifying a problem, Agreeing on or devising a solution and potential solution path to the problem (i.e., how to achieve the solution), Designing and developing a prototype of the solution, refining the solution based on feedback from experts, instructors, and/or peers. Depending on the goals of the instructor, the size and scope of the project can vary greatly.

#### D. Lecture Plan:

|       | Lab Module                       |                              |  |  |  |  |  |  |  |
|-------|----------------------------------|------------------------------|--|--|--|--|--|--|--|
| Sr No | Description                      | CO                           |  |  |  |  |  |  |  |
| 1     | Introduction about the PBL       | [2270.1]; [2270.2]; [2270.3] |  |  |  |  |  |  |  |
| 2     | Planning of project              | [2270.1]                     |  |  |  |  |  |  |  |
| 3     | Review of project                | [2270.2]                     |  |  |  |  |  |  |  |
| 4     | Presentation of Project Progress | [2270.2]; [2270.3]           |  |  |  |  |  |  |  |
| 5     | Presentation of Project Progress | [2270.2]; [2270.3]           |  |  |  |  |  |  |  |
| 6     | Presentation of Project Progress | [2270.2]; [2270.3]           |  |  |  |  |  |  |  |
| 7     | Presentation of Project Progress | [2270.2]; [2270.3]           |  |  |  |  |  |  |  |
| 8     | Presentation of Project Progress | [2270.2]; [2270.3]           |  |  |  |  |  |  |  |
| 9     | Presentation of Project Progress | [2270.2]; [2270.3]           |  |  |  |  |  |  |  |
| 10    | Presentation of Project Progress | [2270.2]; [2270.3]           |  |  |  |  |  |  |  |
| 11    | Presentation of Project Progress | [2270.2]; [2270.3]           |  |  |  |  |  |  |  |
| 12    | Presentation of Project Progress | [2270.2]; [2270.3]           |  |  |  |  |  |  |  |
| 13    | Presentation of Project Progress | [2270.2]; [2270.3]           |  |  |  |  |  |  |  |

| 14 | Presentation of Project Progress | [2270.2]; [2270.3] |
|----|----------------------------------|--------------------|
|    |                                  |                    |

# E. Course articulation matrix ;- (Mapping of COs and POs)

| со           | STATEMENT                                                                             |    | CORRELATION WITH PROGRAM OUTCOMES |    |         |         |         |         |    |         |          | CORRELATION<br>WITH<br>PROGRAM<br>SPECIFIC<br>OUTCOMES |    |          |          |          |
|--------------|---------------------------------------------------------------------------------------|----|-----------------------------------|----|---------|---------|---------|---------|----|---------|----------|--------------------------------------------------------|----|----------|----------|----------|
|              |                                                                                       | PO | PO<br>2                           | PO | PO<br>₄ | PO<br>5 | PO<br>6 | PO<br>7 | PO | PO<br>9 | PO<br>10 | PO                                                     | PO | PSO<br>I | PSO<br>2 | PSO<br>3 |
| AU<br>2270.1 | Identify and plan the project.                                                        | 2  | 1                                 | 5  | •       | 5       | 0       | ,       | 3  | 2       | 10       | 3                                                      | 2  |          |          | <u> </u> |
| AU<br>2270.2 | Review the topic in detail for formulating problem statement.                         | 2  | 2                                 |    |         |         |         |         | 3  | 3       |          | 3                                                      | 2  | 2        | 2        |          |
| AU<br>2270.3 | Design and develop a<br>model for a planned<br>project to enhance<br>research skills. | 2  | 3                                 | 3  |         |         |         |         | 3  | 3       |          | 3                                                      | 3  | 2        | 2        |          |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of School of Automobile, Mechanical & Mechatronics Engineering Department of Mechanical Engineering Course Handout [Organization and Management | BB1540 | 3 Credits | Session: Aug-Dec 2020 | Faculty: Dr. Archana Poonia | Class: B Tech V Semester|

- A. Course Introduction: Today's world consists of many local, national, multinational and global organizations. Success of all business depends on their effective and efficient management. Therefore, management plays a most powerful and crucial role in the success and survival of the whole world. The significance of the course enlightens the dynamic life-giving element in every business. Consequently, it will emerge as a great resource as well an important 'discipline of learning' in the modern business world. The objective is to provide an understanding of basic concepts, principles and practices of organization and management. The aim is to inculcate the ability to apply multifunctional approach to organizational objectives. This course will enable students understand the basic concept of organization and management and various functions of it.
- **B.** Course Outcomes: On completion of the course the students shall be able to:
- **[BBI540.1].** Understand theory and practice of organization and management.
- [BBI540.2]. Build a comprehensive knowledge about marketing and personnel management
- [BBI540.3]. Develop the skills of leadership and motivation.

**[BBI540.4].** Illustrate the concept of entrepreneurship for developing skill for employability. **[BBI540.5].** Develop the knowledge of management information system (MIS).

### C. Program Outcomes and Program Specific Outcomes

- **[PO.I].** Critical Thinking: Take informed actions after identifying the assumptions that frame our thinking and actions, checking out the degree to which these assumptions are accurate and valid, and looking at our ideas and decisions (intellectual, organizational, and personal) from different perspectives.
- **[PO.2]. Effective Communication:** Speak, read, write and listen clearly in person and through electronic media in English and in one Indian language, and make meaning of the world by connecting people, ideas, books, media and technology.
- **[PO.3]. Social Interaction**: Elicit views of others, mediate disagreements and help reach conclusions in group settings.
- **[PO.4]. Effective Citizenship:** Demonstrate empathetic social concern and equity centered national development, and the ability to act with an informed awareness of issues and participate in civic life through volunteering.

- **[PO.5]. Ethics:** Recognize different value systems including your own, understand the moral dimensions of your decisions, and accept responsibility for them.
- **[PO.6]. Environment and Sustainability:** Understand the issues of environmental contexts and sustainable development.
- **[PO.7]. Self-directed and Life-long Learning:** Acquire the ability to engage in independent and life-long learning in the broadest context socio-technological changes.
- [PSO.1]. Understanding Traditional and Contemporary Managerial Concepts and Models: Understanding in detail, the contents of various functional areas of Business & Management and the implications of psychological and behavioral aspects on the organizations.
- **[PSO.2]. Analyzing Business Environment:** Identifying opportunities existing in the domestic and global business and economic environment and initiating systematic approach towards rational decision making.
- [PSO.3]. Application of Business Concepts and Managerial Skills: Implementing conceptual knowledge in real business situations for ensuring business sustainability and growth.

| Criteria             | Description                                                              | Maximum Marks                                             |  |  |  |  |  |  |  |
|----------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|--|
|                      | Sessional Exam I (Closed Book)                                           | 15                                                        |  |  |  |  |  |  |  |
| Internal Assessment  | Sessional Exam II (Closed Book)                                          | 15                                                        |  |  |  |  |  |  |  |
| (Summative)          | In class Quizzes and Assignments , Activity                              | 30                                                        |  |  |  |  |  |  |  |
|                      | feedbacks (Accumulated and Averaged)                                     |                                                           |  |  |  |  |  |  |  |
| End Term Exam        | End Term Exam (Closed Book)                                              | 40                                                        |  |  |  |  |  |  |  |
| (Summative)          |                                                                          |                                                           |  |  |  |  |  |  |  |
|                      | Total                                                                    | 100                                                       |  |  |  |  |  |  |  |
| Attendance           | A minimum of 75% Attendance is required to                               | be maintained by a student to                             |  |  |  |  |  |  |  |
| (Formative)          | be qualified for taking up the End Semester                              | examination. The allowance of                             |  |  |  |  |  |  |  |
|                      | 25% includes all types of leaves including medic                         | 5% includes all types of leaves including medical leaves. |  |  |  |  |  |  |  |
| Make up              | Students who misses a class will have to report to the teacher about the |                                                           |  |  |  |  |  |  |  |
| Assignments          | absence. A makeup assignment on the topic ta                             | ught on the day of absence will                           |  |  |  |  |  |  |  |
| (Formative)          | be given which has to be submitted within a v                            | veek from the date of absence.                            |  |  |  |  |  |  |  |
|                      | No extensions will be given on this. The atten                           | dance for that particular day of                          |  |  |  |  |  |  |  |
|                      | absence will be marked blank, so that the                                | student is not accounted for                              |  |  |  |  |  |  |  |
|                      | absence. These assignments are limited to a                              | maximum of 5 throughout the                               |  |  |  |  |  |  |  |
|                      | entire semester.                                                         |                                                           |  |  |  |  |  |  |  |
| Homework/ Home       | There are situations where a student may have                            | ve to work in home, especially                            |  |  |  |  |  |  |  |
| Assignment/ Activity | before a flipped classroom. Although these wo                            | rks are not graded with marks.                            |  |  |  |  |  |  |  |
| Assignment           | However, a student is expected to participate                            | and perform these assignments                             |  |  |  |  |  |  |  |
| (Formative)          | with full zeal since the activity/ flipped classro                       | oom participation by a student                            |  |  |  |  |  |  |  |
|                      | will be assessed and marks will be awarded.                              |                                                           |  |  |  |  |  |  |  |
|                      |                                                                          |                                                           |  |  |  |  |  |  |  |

### D. Assessment Plan

### E. Syllabus

**Unit I:** Meaning and definition of an organization, Necessity of Organization, Principles of Organization, Formal and Informal Organizations. Management: Functions of Management, Levels of Management, Managerial Skills, Importance of Management, Models of Management, Scientific Management, Forms of Ownership, Organizational Structures, Purchasing and Marketing Management, Functions of Purchasing Department, Methods of Purchasing, Marketing, Functions of Marketing, Advertising.

**Unit 2:** Introduction, Functions of Personal Management, Development of Personal Policy, Manpower Planning, Recruitment and Selection of manpower.

**Unit 3:** Motivation – Introduction, Human needs, Maslow's Hierarchy of needs, Types of Motivation, Techniques of Motivation, Motivation Theories, McGregor's Theory, and Herzberg's Hygiene Maintenance Theory. Leadership - Introduction Qualities of a good Leader, Leadership Styles, Leadership Approach, Leadership Theories.

**Unit 4:** Entrepreneurship – Introduction, Entrepreneurship Development, Entrepreneurial Characteristics, Need for Promotion of Entrepreneurship, Steps for establishing small scale unit.

**Unit 5:** Data and Information; Need, function and Importance of MIS; Evolution of MIS; Organizational Structure and MIS, Computers and MIS, Classification of Information Systems, Information Support for functional areas of management.

### F. Text Books

- TI. Koontz, Harold, Cyril O'Donnell, and Heinz Weihrich: Essentials of Management, Tata McGraw-Hill, New Delhi
- T2. Robbins, Stephen P, and Mary Coulter: Management, Prentice Hall, New Delhi
- T3. E. S. Buffa and R. K. Sarin "Modern Production / Operations Management", 8th Edition, Wiley, 1987

### **G.** Reference Books

R1. H. J. Arnold and D. C. Feldman "Organizational Behavior", McGraw – Hill
R2. Aswathappa K: Human Resource and Personnel Management, Tata McGraw Hill
R3. William Wether& Keith Davis, Human Resource and Personnel Management, McGraw Hill

## H. Lecture Plan

| Lecture | PARTICULARS                   | Session Outcome                | Mode of    | Corresp  | Mode of    |
|---------|-------------------------------|--------------------------------|------------|----------|------------|
| No.     |                               |                                | Delivery   | onding   | Assessing  |
|         |                               |                                |            | со       | the        |
|         |                               |                                |            |          | Outcome    |
| ١.      | Meaning and definition of an  | Understands the importance     | Lecture    | BB1540.1 | Class Quiz |
|         | organization, Necessity of    | and concepts of organization   | PPT ,      |          | Mid Term I |
|         | Organization                  | management.                    | Discussion |          | End Term   |
| 2.      | Principles of Organization,   | Learn and understand the       | Lecture    | BB1540.1 | Class Quiz |
|         | Formal and Informal           | process and principles as well | PPT,       |          | Mid Term I |
|         | Organizations                 | learn types of organizations   | Discussion |          | End Term   |
| 3.      |                               | Learn the principles of        | Lecture    | BB1540.1 | Class Quiz |
|         | Management Function:          | management and                 | PPT,       |          | Mid Term I |
|         | Planning & Organizing         | administration as well how     | Discussion |          | End Term   |
|         |                               | they are applicable in a       |            |          |            |
|         |                               | business Organization          |            |          |            |
| 4.      |                               | Understand the basic process   | Lecture    | BB1540.1 | Class Quiz |
|         | Management Function:          | of various management          | PPT,       |          | Mid Term I |
|         | Leading & Controlling         | functions and how they are     | Discussion |          | End Term   |
|         |                               | applicable in the organization |            |          |            |
| 5.      | Managerial Skills, Importance | Understanding of different     | Lecture    | BB1540.1 | Class Quiz |
|         | of Management                 | managerial skills              | PPT,       |          | Mid Term I |
|         | or rhanagement,               |                                | Discussion |          | End Term   |
| 6.      | Activity                      | Understanding of previous      | Class      | BB1540.1 | Quiz/ Case |
|         | , celvicy                     | lectures                       | activity   |          | study      |
| 7.      | Models of Management:         | Students will gain the         | Lecture ,  | BB1540.1 | Class Quiz |
|         | Scientific and Administrative | knowledge of different         | Discussion |          | Mid Term I |
|         | management                    | Scientific and Administrative  |            |          | End Term   |
|         |                               | management                     |            |          |            |
| 8.      | Models of Management          | Understand the approach of     | Lecture ,  | BB1540.1 | Class Quiz |
|         | Behavioral approach           | behavioral management          | Discussion |          | Mid Term I |
|         |                               |                                |            |          | End Term   |

| 9.  | Activity related models of management                                                     | Understanding of previous<br>lectures                                                                   | Class<br>activity                  | BB1540.1 | Class Quiz/<br>case study             |  |
|-----|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------|----------|---------------------------------------|--|
| 10. | Forms of Ownership and<br>Organization Structures                                         | Understanding of Ownership<br>and Organization Structures                                               | Lecture,<br>Discussion             | BB1540.2 | Class Quiz<br>Mid Term I<br>End Term  |  |
| 11. | Activity                                                                                  | Understanding of previous<br>lectures                                                                   | Class<br>activity                  | BB1540.2 | Class Quiz/<br>case study             |  |
| 12. | Purchasing Function and<br>Marketing Function                                             | Understanding of purchasing<br>function and marketing<br>function                                       | Lecture<br>PPT<br>,Discussio<br>n  | BB1540.2 | Class Quiz<br>Mid Term I<br>End Term  |  |
| 13. | Advertising and Changing<br>Dynamics of Advertising                                       | Students will gain knowledge<br>of advertising and how<br>advertising is changing with<br>market        | Lecture<br>PPT,<br>Discussion      | BB1540.2 | Class Quiz<br>Mid Term I<br>End Term  |  |
| 14. | Activity                                                                                  | Understanding of previous<br>lectures                                                                   | Class<br>activity                  | BB1540.2 | Class Quiz/<br>case study             |  |
| 15. | Introduction, Functions of<br>Personnel Management,<br>Development of Personnel<br>Policy | Understanding of human<br>resource function and<br>policies of personnel<br>management                  | Lecture<br>PPT,<br>Discussion      | BB1540.2 | Class Quiz<br>Mid Term II<br>End Term |  |
| 16. | Manpower Planning                                                                         | Students will gain the<br>knowledge of manpower<br>planning                                             | Lecture,<br>Discussion             | BB1540.2 | Class Quiz<br>Mid Term II<br>End Term |  |
| 17. | Recruitment of Manpower                                                                   | Students will gain the<br>knowledge of various steps<br>and process of recruitment in<br>human resource | Lecture<br>PPT,<br>Discussion<br>: | BB1540.2 | Class Quiz<br>Mid Term II<br>End Term |  |

| 18. |                             | Students will gain the         | Lecture    | BB1540.2 | Mid Term II |
|-----|-----------------------------|--------------------------------|------------|----------|-------------|
|     |                             | knowledge of various steps     | PPT,       |          | End Term    |
|     | Selection of Manpower       | and process of selection in    | Discussion |          |             |
|     |                             | human resource                 |            |          |             |
| 19. |                             | Understanding of previous      | Class      | BB1540.2 | Class Quiz/ |
|     | Activity                    | lectures                       | activity   |          | case study  |
|     |                             |                                | -          |          |             |
| 20. |                             | Understand the meaning of      | Recap of   | BB1540.3 | Class Quiz  |
|     |                             | the motivation, human needs    | previous   |          | Mid Term II |
|     | Introduction to Motivation, | and the Maslow's theory of     | lecture,   |          | End Term    |
|     | Human needs, Maslow's       | motivation Students will learn | Lecture    |          |             |
|     | Hierarchy of needs          | various types of motivation.   | PPT,       |          |             |
|     |                             |                                | Discussion |          |             |
|     |                             |                                |            |          |             |
| 21. | Types and techniques of     | Understand different           | Lecture    | BB1540.3 | Class Quiz  |
|     | Motivation                  | techniques of motivation and   | PPT,       |          | Mid Term II |
|     |                             | their uses.                    | Discussion |          | End Term    |
| 22. | McGregor's Theory,          | Students will learn the        | Lecture    | BB1540.3 | Class Quiz  |
|     | Herzberg's Hygiene          | popular theories of            | PPT,       |          | Mid Term II |
|     | Maintenance Theory          | motivation.                    | Discussion |          | End Term    |
| 23. | A                           | Understanding of previous      | Class      | BB1540.3 | Class Quiz/ |
|     | Activity                    | lectures                       | activity   |          | case study  |
| 24. | Leadership - Introduction   | Students will learn different  | Lecture    | BB1540.3 | Class Quiz  |
|     | Qualities of a good Leader, | approaches of leadership.      | PPT,       |          | Mid Term II |
|     | Leadership Styles           |                                | Discussion |          | End Term    |
| 25. |                             | Understand different theories  | Lecture    | BB1540.3 | Class Quiz  |
|     | Leadership Theories         | of leadership                  | PPT,       |          | Mid Term II |
|     |                             |                                | Discussion |          | End Term    |
| 26. |                             | Understand different theories  | Class      | BB1540.3 | Class Quiz  |
|     | Leadership Theories         | of leadership                  | Activity,  |          | Mid Term II |
|     |                             |                                | PPT        |          | End Term    |
| 27. | Activity                    | Understanding of previous      | Class      | BB1540.3 | Class Quiz/ |

|     |                                                     | lectures                       | activity   |          | case study  |
|-----|-----------------------------------------------------|--------------------------------|------------|----------|-------------|
| 28. | Entrepreneurship –                                  | Students will learn about      | Lecture    | BB1540.4 | Class Quiz  |
|     | Introduction, Entrepreneurship                      | entrepreneurship and its       | PPT,       |          | Mid Term II |
|     | Development                                         | development.                   | Discussion |          | End Term    |
| 29. | Entrepreneurial                                     | Understand the                 | Lecture,   | BB1540.4 | Class Quiz  |
|     | Characteristics, Need for                           | characteristics and need for   | Discussion |          | Mid Term II |
|     | Promotion of                                        | promoting entrepreneurship     |            |          | End Term    |
|     | Entrepreneurship                                    | unit.                          |            |          |             |
| 30. | Stops for ostablishing small                        | Analyze the various steps      | Lecture    | BB1540.4 | Class Quiz  |
|     |                                                     | involved in establishing small | PPT,       |          | Mid Term II |
|     | scale unic                                          | scale.                         | Discussion |          | End Term    |
| 31. | Activity                                            | Understanding of previous      | Class      | BB1540.4 | Class Quiz/ |
|     | Activity                                            | lectures.                      | activity   |          | case study  |
| 32. |                                                     | Understand the difference      | Lecture,   | BB1540.5 | Class Quiz  |
|     |                                                     | between data and               | Discussion |          | End Term    |
|     | Data and Information; Need<br>and Importance of MIS | information and the            |            |          |             |
|     |                                                     | importance of managerial       |            |          |             |
|     |                                                     | information system in an       |            |          |             |
|     |                                                     | organization.                  |            |          |             |
| 33. | Eurotions of MIS and Evolution                      | Understand different phases    | Lecture    | BB1540.5 | Class Quiz  |
|     | of MIS                                              | related to evolution of MIS.   | PPT,       |          | End Term    |
|     | 011113                                              |                                | Discussion |          |             |
| 34. | Activity                                            | Understanding of previous      | Class      | BB1540.5 | Class Quiz/ |
|     | Activity                                            | lectures                       | activity   |          | case study  |
| 35. |                                                     | Understand the use of          | Lecture    | BB1540.5 | Class Quiz  |
|     |                                                     | managerial information         | PPT,       |          | End Term    |
|     | Organizational Structure and                        | system in organizational       | Discussion |          |             |
|     | MIS                                                 | structure. Student will learn  |            |          |             |
|     |                                                     | about management               |            |          |             |
|     |                                                     | information system.            |            |          |             |
| 36. |                                                     | Analyze the close ended case   | Case       | BB1540.5 | Case study  |
|     | Activity                                            | study related to the           | study      |          | analysis    |
|     | -                                                   | management.                    | -          |          | -           |

| 37. |                                 | Understand the basic           | Lecture    | BB1540.5 | Class Quiz |
|-----|---------------------------------|--------------------------------|------------|----------|------------|
|     | Computers and MIS               | requirement of management      | PPT,       |          | End Term   |
|     |                                 | and computers in business      | Discussion |          |            |
| 38. | Classification of Information   | Learn the importance of        | Lecture    | BB1540.5 | Class Quiz |
|     | Systems and Information         | Control and it is the fourth   | PPT,       |          | End Term   |
|     | Support for functional areas of | and final principle element of | Discussion |          |            |
|     | management                      | the managerial process.        |            |          |            |
| 39. | Classification of Information   | Lear the controlling that      | Lecture    | BB1540.5 | Class Quiz |
|     | Systems and Information         | intends to ensure that         | PPT,       |          | End Term   |
|     | Support for functional areas of | everything occurs in           | Discussion |          |            |
|     | management                      | conformity with the plans      |            |          |            |

# I. Course Articulation Matrix: (Mapping of COs with POs)

| со           | STATEMENT                                                                | CORRELATION WITH PROGRAM OUTCOMESCORRELATION WITH<br>PROGRAM SPECIFIC<br>OUTCOMES |      |      |      |      |      |      |       |       |       |
|--------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------|------|------|------|------|------|-------|-------|-------|
|              |                                                                          | PO I                                                                              | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PSO I | PSO 2 | PSO 3 |
| BB<br>1540.1 | Understand theory and practice of organization and management            | 2                                                                                 |      |      |      |      |      |      | 2     |       | 2     |
| BB<br>1540.2 | Build a comprehensive knowledge about marketing and personnel management |                                                                                   | I    | 2    |      |      |      |      |       | 1     |       |
| BB<br>1540.3 | Develop the skills of leadership and motivation.                         |                                                                                   | 2    | 2    |      | 2    |      |      | 2     |       |       |
| BB<br>1540.4 | Illustrate the concept of entrepreneurship.                              | 2                                                                                 |      |      | 1    |      | 1    |      | 1     |       |       |
| BB<br>1540.5 | Develop the knowledge of management information system.                  |                                                                                   |      |      |      |      |      | 1    |       |       | 2     |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Automotive Transmission systems | AU 1512 | 4 Credits | 3 0 2 4

Session: Aug 20 – Dec 20 | Faculty: Dalip Singh | Class: V Sem

A. Introduction: This course is offered as a Program elective course to the students of III Year B Tech Automobile Engineering. To give an introductory familiarization on automotive transmission, it's working principles, primary components that play a role in transmission which offers the essential knowledge required for a graduate automobile engineer and to gear up those, who are interested in research, and higher studies, for advanced courses offered as electives as they progress to higher semesters.

### **B. Course Outcomes:** At the end of the course, students will be able to

- [1512.1]. Describe automotive transmission, their working, and various subsystems that are essential for an efficient transmission.
- [1512.2]. Understand decipher of various terms used by automobile manufacturers such as CVT, AMT and 4x4 etc. and will be able to describe and make critical decisions whenever required.
- [1512.3]. Understand the fundamental prerequisite that is required in automotive transmission for working in the automotive sector, and will be able to define, analyse and compute the factors that are involved with transmission.
- **[1512.4].** Recommend to complete the prerequisite which is required for taking up advanced courses in the future semesters and higher education.
- **[1512.5].** Understand about problem, diagnosis and prerequisite routine and general maintenance of automotive transmission system, which leads to employability skill.

## C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and
  - an engineering specialization to the solution of complex engineering problems
- [PO.2]. Problem analysis: <u>Identify</u>, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. Design/development of solutions: Design solutions for complex engineering problems and <u>design</u> system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern engineering</u> and <u>IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations

- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal</u>, <u>health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader in diverse</u> <u>teams</u>, and in multidisciplinary settings
- **[PO.10].** Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.11].** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

### **PROGRAM SPECIFIC OUTCOMES**

- [PSO.1]. Autotronics and Electric Vehicle Technology: <u>Apply</u> knowledge of electrical and electronics engineering for providing automobile engineering solutions
- [PSO.2]. Alignment to Super Qualification packs of ASDC: <u>Demonstrate knowledge and performance</u> <u>criteria</u> as defined by ASDC super qualification packs for R&D or Quality or Service Engineering
- **[PSO.3].** Application of Lean Six Sigma Methodology: <u>Demonstrate through an internship project</u>, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

#### **D.** Assessment Plan:

| Criteria            | Description                                | Maximum Marks                              |
|---------------------|--------------------------------------------|--------------------------------------------|
|                     | Sessional Exam I (Open Book)               | 15                                         |
| Internal Assessment | Sessional Exam II (Open Book)              | 15                                         |
| (Summative)         | In class Quizzes and Assignments,          | 10                                         |
|                     | Activity feedbacks (Accumulated and        |                                            |
|                     | Averaged)                                  |                                            |
|                     | Practical internal                         | 15                                         |
|                     | Practical External                         | 05                                         |
| End Term Exam       | End Term Exam (Open Book)                  | 40                                         |
| (Summative)         |                                            |                                            |
|                     | Total                                      | 100                                        |
| Attendance          | A minimum of 75% Attendance is requi       | ired to be maintained by a student to be   |
| (Formative)         | qualified for taking up the End Semest     | er examination. The allowance of 25%       |
|                     | includes all types of leaves including med | lical leaves.                              |
| Make up Assignments | Students who misses a class will have to   | report to the teacher about the absence. A |
| (Formative)         | makeup assignment on the topic taught o    | n the day of absence will be given which   |
|                     | has to be submitted within a week from t   | he date of absence. No extensions will be  |
|                     | given on this. The attendance for that p   | articular day of absence will be marked    |
|                     | blank, so that the student is not account  | ted for absence. These assignments are     |

|                            | limited to a maximum of 5 throughout the entire semester.                             |
|----------------------------|---------------------------------------------------------------------------------------|
| Homework/ Home Assignment/ | There are situations where a student may have to work in home, especially before      |
| Activity Assignment        | a flipped classroom. Although these works are not graded with marks. However, a       |
| (Formative)                | student is expected to participate and perform these assignments with full zeal       |
|                            | since the activity/ flipped classroom participation by a student will be assessed and |
|                            | marks will be awarded.                                                                |

### E. SYLLABUS

**Power Required for Propulsion**: Resistances to Motion of the Automobile, Traction, tractive effort, Performance curves, acceleration, grade ability, drawbar pull, Numerical Problems,

Clutch: Types of clutches, construction and operation of all types, Numerical problems,

**Gear box:** Performance characteristics in different gears , Desirable ratios of 3speed and 4speed gear boxes, Constructional details of different types of gear boxes , numerical problems,

**Fluid Coupling and Torque converters** :Constructional details, performance characteristics, slip, principles of torque multiplication, 3 and 4 phase torque converters, typical hydrodynamic transmission,

**Epicyclic Transmission**: Principle of operation, types of planetary transmission, Calculation of gear ratio in different speeds,

Hydrostatic Drives: Principles of hydrostatic drives, different systems of hydrostatic drives, construction and operations,

Automatic and Electric Transmissions: Construction and operation.

- F. Text Book:
  - 1. W.H.Crouse, Automotive transmissions and power trains, McGraw Hill Co. 5th edn, 1976.
- G. References:
  - 1. K.Newton and W. Steeds Motor Vehicle, W. Butter Worths and Co., Publishers Ltd, 1977.
  - 2. Kirpal Singh, Automobile engineering Vol.1, Standard Pub, 2004.
  - 3. G.B.S.Narang, Automobile Engineering, Khanna publication, New Delhi, 2008.

### H. Lecture Plan:

| Lec | Topics                   | Session Objective                      | Mode of     | Bloom's | Mode of Assessing  |
|-----|--------------------------|----------------------------------------|-------------|---------|--------------------|
| No  |                          |                                        | Delivery    | Level   | the Outcome        |
| 1.  | Introductory Class-      | To acquaint and clear teachers         | Lecture     | NA      | NA                 |
|     | Course briefing and      | expectations and understand student    |             |         |                    |
|     | explaining the outcomes  | expectations                           |             |         |                    |
| 2.  | Power Required for       | Discuss about Propulsion of vehicles   | Flipped     | 1       | Class Quiz (Not    |
|     | Propulsion               |                                        | Classroom   |         | Accounted)         |
| 3.  | Resistances to Motion of | Explain Resistances to Motion of the   | Lecture,    | 2,3,4   | Class Quiz         |
|     | the Automobile           | Automobile                             | Activity    |         |                    |
| 4.  | Traction,                | Importance of Traction,                | Lecture     | 3       | Home Assignment    |
| 5.  | tractive effort,         | Importance of tractive effort,         | Activity    | 3       | Home Assignment    |
|     |                          |                                        | (Think Pair |         | _                  |
|     |                          |                                        | Share)      |         |                    |
| 6.  | Performance curves       | Explain Performance curves             | Lecture     | 4       | Home Assignment    |
| 7.  | acceleration,            | Presentation by students acceleration, | Flipped     | 1       | In Class Quiz (Not |
|     |                          |                                        | Classroom   |         | Accounted)         |
| 8.  | grade ability,           | Presentation by students grade         | Flipped     | 1       | In Class Quiz (Not |
|     |                          | ability,                               | Classroom   |         | Accounted)         |
| 9.  | drawbar pull             | Explain drawbar pull                   | Lecture     | 2       | In Class Quiz      |
| 10. | Clutch: Introduction     | Explain Clutch: Introduction           | Lecture,    | 2       | Class Quiz         |
|     |                          |                                        | Activity    |         |                    |
| 11. | Types of clutches        | Explain Types of clutches              | Lecture     | 2       | Class Quiz         |
| 12. | clutch construction      | Brief clutch construction              | Lecture     | 3       | Class Quiz (Not    |
|     |                          |                                        |             |         | Accounted)         |
| 13. | operation of all types,  | Presentation by students operation of  | Flipped     | 1       | Class Quiz (Not    |

|     |                           | all types,                             | Classroom   |       | Accounted)         |  |  |  |
|-----|---------------------------|----------------------------------------|-------------|-------|--------------------|--|--|--|
| 14. | Gear box:Introduction     | Importance and working principle       | Activity    | 3     | Home Assignment    |  |  |  |
|     |                           | Gear box:Introduction                  | (Think Pair |       |                    |  |  |  |
|     |                           |                                        | Share)      |       |                    |  |  |  |
| 15. | Gear box:Need and         | Explain Gear box:Need and              | Lecture     | 4     | Home Assignment    |  |  |  |
|     | Requirements              | Requirements                           |             |       | _                  |  |  |  |
| 16. | Performance               | Performance characteristics in         | Flipped     | 1     | Class Quiz (Not    |  |  |  |
|     | characteristics in        | different gears                        | Classroom   |       | Accounted)         |  |  |  |
|     | different gears           |                                        |             |       |                    |  |  |  |
| 17. | Tutorial Test/Quiz        | Tutorial Test/Quiz                     | Lecture,    | 2,3,4 | Class Quiz         |  |  |  |
|     |                           | -                                      | Activity    |       |                    |  |  |  |
| 18. | Desirable ratios of       | Desirable ratios of 3speed and 4speed  | Lecture     | 3     | Home Assignment    |  |  |  |
|     | 3speed and 4speed gear    | gear boxes                             |             |       | C                  |  |  |  |
|     | boxes                     |                                        |             |       |                    |  |  |  |
| 19. | Constructional details of | Constructional details of different    | Activity    | 3     | Home Assignment    |  |  |  |
|     | different types of gear   | types of gear boxes                    | (Think Pair |       | C                  |  |  |  |
|     | boxes                     |                                        | Share)      |       |                    |  |  |  |
| 20. | Fluid Coupling and        | Presentation by students Fluid         | Flipped     | 1     | In Class Quiz (Not |  |  |  |
|     | Torque converters         | Coupling and Torque converters         | Classroom   |       | Accounted)         |  |  |  |
| 21. | Constructional details    | Constructional details                 | Lecture     | 2     | In Class Quiz      |  |  |  |
| 22. | performance               | performance characteristics, slip      | Lecture     | 1,2   | Home Assignment    |  |  |  |
|     | characteristics, slip     |                                        |             | ,     | 0                  |  |  |  |
| 23. | principles of torque      | principles of torque multiplication,   | Lecture     | 2     | Class Quiz         |  |  |  |
|     | multiplication,           |                                        |             |       |                    |  |  |  |
| 24. | 3 and 4 phase torque      | Presentation by students 3 and 4       | Flipped     | 2.3   | Class Quiz         |  |  |  |
|     | converters.               | phase torque converters.               | Classroom   | _,_   |                    |  |  |  |
| 25. | typical hydrodynamic      | typical hydrodynamic transmission      | Lecture.    | 2     | Class Quiz         |  |  |  |
| 201 | transmission              |                                        | Activity    | -     |                    |  |  |  |
| 26. | Epicyclic Transmission    | Epicyclic Transmission                 | Lecture     | 2     | Class Ouiz         |  |  |  |
| 27. | Principle of operation    | Principle of operation                 | Lecture     | 3     | Class Quiz (Not    |  |  |  |
|     | r · · · · · ·             | r · · · · ·                            |             | -     | Accounted)         |  |  |  |
| 28. | types of planetary        | Presentation by students types of      | Flipped     | 1     | Class Ouiz (Not    |  |  |  |
|     | transmission,             | planetary transmission,                | Classroom   |       | Accounted)         |  |  |  |
| 29. | Calculation of gear ratio | Calculation of gear ratio in different | Lecture,    | 2,3,4 | Class Quiz         |  |  |  |
|     | in different speeds       | speeds                                 | Activity    |       |                    |  |  |  |
| 30. | Hydrostatic Drives        | Hydrostatic Drives                     | Activity    | 3     | Home Assignment    |  |  |  |
|     | 5                         |                                        | (Think Pair |       | U                  |  |  |  |
|     |                           |                                        | Share)      |       |                    |  |  |  |
| 31. | Principles of hydrostatic | Principles of hydrostatic drives       | Lecture     | 4     | Home Assignment    |  |  |  |
|     | drives                    |                                        |             |       |                    |  |  |  |
| 32. | different systems of      | Presentation by students different     | Flipped     | 1     | Class Quiz (Not    |  |  |  |
|     | hydrostatic drives        | systems of hydrostatic drives          | Classroom   |       | Accounted)         |  |  |  |
| 33. | hydrostatic drives.       | hydrostatic drives, construction       | Lecture,    | 2,3,4 | Class Quiz         |  |  |  |
| ,   | construction              |                                        | Activity    |       |                    |  |  |  |
| 34. | hydrostatic drives        | hydrostatic drives operations          | Lecture     | 3     | Home Assignment    |  |  |  |
|     | operations                | - 1                                    |             |       | Ŭ                  |  |  |  |
| 35. | Automatic                 | Automatic Transmissions:               | Activity    | 3     | Home Assignment    |  |  |  |
|     | Transmissions:            | Construction                           | (Think Pair |       | č                  |  |  |  |
|     | Construction              |                                        | Share)      |       |                    |  |  |  |
| 36. | Automatic                 | Automatic Transmissions: operation.    | Lecture     | 4     | Home Assignment    |  |  |  |
| 20. | Transmissions:            |                                        |             |       |                    |  |  |  |
|     | operation.                |                                        |             |       |                    |  |  |  |
| 37. | Electric Transmissions    | Presentation by students Electric      | Flipped     | 1     | In Class Ouiz (Not |  |  |  |
|     | Construction              | Transmissions: Construction            | Classroom   | -     | Accounted)         |  |  |  |
| 38. | Electric Transmissions:   | Presentation by students Electric      | Flipped     | 1     | In Class Ouiz (Not |  |  |  |
|     | operation                 | Transmissions: operation               | Classroom   |       | Accounted)         |  |  |  |

# I. Course articulation matrix ;- (Mapping of COs and POs)

| со     | STATEMENT      |    | CORRELATION WITH PROGRAM OUTCOMES |    |    |    |    |    |    | CORRELATION<br>WITH PROGRAM |    |      |          |       |     |     |
|--------|----------------|----|-----------------------------------|----|----|----|----|----|----|-----------------------------|----|------|----------|-------|-----|-----|
|        | 01/11/211/211  |    |                                   |    |    |    |    |    |    |                             |    |      |          | SPECI | FIC |     |
|        |                |    |                                   |    |    |    |    |    |    |                             | -  | OUTC | OUTCOMES |       |     |     |
|        |                | PO | PO                                | PO | PO | PO | PO | PO | PO | PO                          | РО | PO   | PO       | PSO   | PSO | PSO |
|        |                | 1  | 2                                 | 3  | 4  | 5  | 6  | 7  | 8  | 9                           | 10 | 11   | 12       | 1     | 2   | 3   |
| AU     | Course Outcome | 2  |                                   |    |    |    |    |    |    |                             |    |      |          | 1     | 2   |     |
| 1512.1 | statement      |    |                                   |    |    |    |    |    |    |                             |    |      |          |       |     |     |
| AU     | Course Outcome |    | 3                                 | 2  |    |    |    | 2  |    |                             |    |      |          |       | 2   |     |
| 1512.2 | statement      |    |                                   |    |    |    |    |    |    |                             |    |      |          |       |     |     |
| AU     | Course Outcome |    | 1                                 |    |    |    |    |    |    | 2                           |    |      |          |       | 3   |     |
| 1512.3 | statement      |    |                                   |    |    |    |    |    |    |                             |    |      |          |       |     |     |
| AU     | Course Outcome |    |                                   |    |    |    | 2  |    | 2  | 1                           |    |      |          |       | 2   |     |
| 1512.4 | statement      |    |                                   |    |    |    |    |    |    |                             |    |      |          |       |     |     |
| AU     | Course Outcome |    | 2                                 |    |    |    | 2  |    |    |                             |    | 3    |          |       | 3   |     |
| 1512.5 | statement      |    |                                   |    |    |    |    |    |    |                             |    |      |          |       |     |     |

### I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

### J. Course Outcome Attainment Level Matrix:

|        |                | ATTAINMENT OF PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | ATTAINMENT OF |          |          |     |  |
|--------|----------------|--------------------------------|----|----|----|----|----|----|----|----|----|----|---------------|----------|----------|-----|--|
| со     | STATEMENT      | THRESHOLD VALUE: 40%           |    |    |    |    |    |    |    |    |    |    |               | PROGRAM  |          |     |  |
|        | STATEMENT      |                                |    |    |    |    |    |    |    |    |    |    |               | SPECIFIC |          |     |  |
|        |                |                                |    |    |    |    |    |    |    |    |    |    |               |          | OUTCOMES |     |  |
|        |                | PO                             | PO | PO | PO | PO | PO | PO | PO | PO | PO | РО | PO            | PSO      | PSO      | PSO |  |
|        |                | 1                              | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12            | 1        | 2        | 3   |  |
| AU     | Course Outcome |                                |    |    |    |    |    |    |    |    |    |    |               |          |          |     |  |
| 1512.1 | statement      |                                |    |    |    |    |    |    |    |    |    |    |               |          |          |     |  |
| AU     | Course Outcome |                                |    |    |    |    |    |    |    |    |    |    |               |          |          |     |  |
| 1512.2 | statement      |                                |    |    |    |    |    |    |    |    |    |    |               |          |          |     |  |
| AU     | Course Outcome |                                |    |    |    |    |    |    |    |    |    |    |               |          |          |     |  |
| 1512.3 | statement      |                                |    |    |    |    |    |    |    |    |    |    |               |          |          |     |  |
| AU     | Course Outcome |                                |    |    |    |    |    |    |    |    |    |    |               |          |          |     |  |
| 1512.4 | statement      |                                |    |    |    |    |    |    |    |    |    |    |               |          |          |     |  |
| AU     | Course Outcome |                                |    |    |    |    |    |    |    |    |    |    |               |          |          |     |  |
| 1512.5 | statement      |                                |    |    |    |    |    |    |    |    |    |    |               |          |          |     |  |

0-No Attainment; I- Low Attainment; 2- Moderate Attainment; 3- Substantial Attainment


School of Automobile Mechanical and Mechatronics Engineering

#### Department of Automobile Engineering Course Hand-out

Heat transfer in automotive system | AU 1513 | 4 Credits | 3 0 2 4

Session: Aug 20 - Dec 20 | Faculty: Dr. Vinod Yadav | Class: III Year V Semester

A. Introduction: This course is offered as a core course to the students of III Year B Tech Automobile Engineering. This course offers in depth knowledge including various modes of heat transfer, heat transfer in various automotive component i.e Radiator, fan, hose, fins etc. Students are expected to have background knowledge on Engineering Mathematics, Kinematics, dynamics and Strength of Materials and be familiar with thermodynamics for better learning.

### B. Course Outcomes: At the end of the course, students will be able to

- **[1513.1].** Describe types of heat transfer, interpret and analyse temperature, compute heat transfer coefficient in automotive components
- **[1513.2].** Compute heat transfer rate through plane, cylindrical, spherical and extended surfaces and interpret it to automobile.
- [1513.3]. Describe various types of heat exchangers and its application in an automobile.
- [1513.4]. Design and analyse the performance of heat exchangers to increase the innovative skills.
- [1513.5]. Design and analyse heating and cooling systems
- **[1513.6].** Describe heat loss by radiation and its importance in Automobile.

## C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes\_that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools\_including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues\_and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

- [PO.10]. **Communication**: Communicate effectively\_on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
- [PSO.1]. **Autotronics and Electric Vehicle Technology:** Apply knowledge of electrical and electronics engineering for providing automobile engineering solutions
- [PSO.2]. Alignment to Super Qualification packs of ASDC: Demonstrate knowledge and performance criteria as defined by ASDC super qualification packs for R&D or Quality or Service Engineering
- [PSO.3]. **Application of Lean Six Sigma Methodology:** Demonstrate through an internship project, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

| Criteria                   | Description                                                                 | Maximum Marks                             |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|
|                            | Sessional Exam I                                                            | 15                                        |  |  |  |  |  |
| Internal Assessment        | Sessional Exam II                                                           | 15                                        |  |  |  |  |  |
| (Summative)                | In class Quizzes and Assignments                                            | 10                                        |  |  |  |  |  |
|                            | (Accumulated and Averaged)                                                  |                                           |  |  |  |  |  |
|                            | Practical performance (internal)                                            | 15                                        |  |  |  |  |  |
|                            | Practical Assessment                                                        | 5                                         |  |  |  |  |  |
| End Term Exam              | End Term Exam                                                               | 40                                        |  |  |  |  |  |
| (Summative)                |                                                                             |                                           |  |  |  |  |  |
|                            | Total                                                                       | 100                                       |  |  |  |  |  |
| Attendance                 | A minimum of 75% Attendance is require                                      | red to be maintained by a student to be   |  |  |  |  |  |
| (Formative)                | qualified for taking up the End Semest                                      | er examination. The allowance of 25%      |  |  |  |  |  |
|                            | includes all types of leaves including medi                                 | cal leaves.                               |  |  |  |  |  |
| Make up Assignments        | Students who misses a class will have to                                    | report to the teacher about the absence.  |  |  |  |  |  |
| (Formative)                | A makeup assignment on the topic taug                                       | ght on the day of absence will be given   |  |  |  |  |  |
|                            | which has to be submitted within a                                          | week from the date of absence. No         |  |  |  |  |  |
|                            | extensions will be given on this. The atte                                  | ndance for that particular day of absence |  |  |  |  |  |
|                            | will be marked blank, so that the stude                                     | ent is not accounted for absence. These   |  |  |  |  |  |
|                            | assignments are limited to a maximum of                                     | 5 throughout the entire semester.         |  |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student may have to work in home, especially   |                                           |  |  |  |  |  |
| Activity Assignment        | before a flipped classroom. Although these works are not graded with marks. |                                           |  |  |  |  |  |
| (Formative)                | However, a student is expected to participate and perform these assignments |                                           |  |  |  |  |  |
|                            | with full zeal since the activity/ flipped cla                              | ssroom participation by a student will be |  |  |  |  |  |
|                            | assessed and marks will be awarded.                                         |                                           |  |  |  |  |  |

#### D. Assessment Plan:

#### E. SYLLABUS

Introduction: Various modes of heat transfer, combined modes, conductivity and film coefficient of heat transfer, Thermal diffusivity, overall heat transfer coefficient, thermal resistance and conductance. Heat Transfer by conduction :General heat conduction equation ,Linear heat flow through Plane Wall, Composite Walls, radial heat flow through cylinder, Composite Cylinders, Sphere and Composite spheres, critical thickness of insulation Heat Transfer from Extended Surfaces: Heat transfer from fins of uniform cross section heated at one end or both ends, Efficiency and effectiveness of fin, Heat Transfer by convection: Free and forced convection heat transfer, Application of dimensional analysis to free and forced convection, Reynolds, Prandtl, Grashof, Nusselt and Stanton numbers, Heat Exchangers: Classification of heat exchanger. Analysis using LMTD, Effectiveness-NTU Method, fouling mechanism, growth and design to minimize fouling, small types of heat exchangers, Plate-Fin heat exchangers **Heat transfer in IC engines:** Radiator construction, Engine Cooling system construction, coolant properties. Design parameters for radiator & water pump design, hoses, Thermostat Valve, Radiators Cap, Radiator fan, Radiator Fan shroud, Surge Tank. **Radiation:** Thermal radiation, absorption, reflection and transmission of radiation, Kirchhoff's Law. Wien's displacement Law, Stefan Boltzmann's law, Intensity of radiation, Lambert's cosine law.

Lab: Thermal conductivity of concentric sphere ,Heat transfer through lagged pipe, Heat transfer in pin-fin, Heat transfer in forced convection apparatus, Heat transfer in natural convection, Parallel and counter flow heat exchanger, Emissivity apparatus, Stefan Boltzman Apparatus.

### F. Text Book:

TI. . Dutta, Binay K, Heat Transfer: Principles and Applications, PHI Publication

### G. References:

RI. S G Arora and S Domkundwar, A course in Heat and Mass transfer, Dhanpat Rai and Co, 2008. R2. Mathur and Sharma, Internal combustion engine Dhanpat Rai Publications, P. Ltd, 2009.

#### H. Lecture Plan:

| Lecture  | Topics                                                                                                                                                        | Session Ooutcomes                                                                        | Mode of                         | Corresponding | Mode of                |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------|---------------|------------------------|
| No.      |                                                                                                                                                               |                                                                                          | Delivery                        | со            | Assessing the          |
| 1        | Introduction                                                                                                                                                  | To acquaint and clear<br>teachers expectations and<br>understand student<br>expectations | Lecture                         | NA            | Outcome                |
| 2,3      | Various modes of heat transfer, combined modes                                                                                                                | Describe modes of heat<br>transfer, its physical<br>importance in automobile             | Lecture                         | [1513.1]      |                        |
| 4,5      | conductivity and film<br>coefficient of heat transfer,<br>Thermal diffusivity, overall<br>heat transfer coefficient,<br>thermal resistance and<br>conductance | Describe all terms related<br>to heat transfer and their<br>significance                 | Lecture                         | [1513.1]      |                        |
| 6,7      | Heat Transfer by<br>conduction :General heat<br>conduction equation                                                                                           | Describe General heat conduction equation                                                | Lecture                         | [1513.1]      | Home                   |
| 7,8,9    | Linear heat flow through<br>Plane Wall, Composite<br>Walls,                                                                                                   | Compute heat transfer in plane wall and composite wall                                   | Lecture                         | [1513.2]      | Assignment             |
| 10,11,12 | radial heat flow through<br>cylinder, Composite<br>Cylinders, Sphere and<br>Composite spheres                                                                 | Compute heat transfer in cylinders and spheres                                           |                                 | [1513.2]      | Class Quiz<br>Mid term |
| 13       | critical thickness of insulation                                                                                                                              | Compute critical thickness<br>of insulation to get<br>maximum heat transfer              | Lecture                         | [1513.2]      | End term               |
| 14,15,16 | Heat Transfer from<br>Extended Surfaces: Heat<br>transfer from fins of uniform<br>cross section heated at one<br>end or both ends,                            | Describe heat transfer<br>from extended surface,<br>Apply knowledge in<br>automobiles    | Lecture<br>Flipped<br>Classroom | [1513.2]      |                        |
| 17       | Efficiency and effectiveness of fin                                                                                                                           | Apply knowledge of fins in automobiles                                                   | Lecture<br>Flipped<br>Classroom | [1513.2]      |                        |
| 18       | HeatTransferbyconvection:Freeandforcedconvectionheat                                                                                                          | Describe free and forced convection                                                      | Lecture                         | [1513.1]      | Home<br>Assignment     |

|          | transfer                         |                                             |                      |                      |                 |
|----------|----------------------------------|---------------------------------------------|----------------------|----------------------|-----------------|
| 19.20    | Application of dimensional       | Describe dimensionless                      | Lecture              |                      | Class Quiz      |
| 17,20    | analysis to free and forced      | number ad their usage                       | Flipped              |                      | Mid term        |
|          | convection, Reynolds,            |                                             | Classroom            |                      |                 |
|          | Prandtl, Grashof, Nusselt        |                                             |                      |                      | End term        |
| 21       | Heat Exchangers:                 | Describe HEs                                | Lecture              | Home                 |                 |
|          | Classification of heat           |                                             |                      | [ · · · · ]          | Assignment      |
|          | exchanger                        |                                             |                      |                      | -               |
| 22,23    | Analysis using LMTD,             | Describe LMID method                        | Lecture              | [1513.4]             | Class Quiz      |
| 24.25    | Effectiveness NITLI Method       | Describe NTLL method                        | Locturo              | [[5]]2 /]            |                 |
| 27,23    | Ellectivelless-INTO Flethod.     | Describe INTO method                        | Lecture              | [וסוסיק]             | Mid term        |
| 26       | fouling mechanism, growth        | Recall Fouling mechanism                    | Lecture              | [15]3.4]             | End torm        |
|          | and design to minimize           | 5                                           |                      |                      | Life term       |
|          | fouling,                         |                                             |                      |                      | -               |
| 27,28,29 | small types of heat              | Apply knowledge of HEs in                   | Lecture              | [1513.4]             |                 |
|          | exchangers                       | automobiles                                 | Classroom            |                      |                 |
| 30,31,32 | Heat transfer in IC              | Describe radiator used in                   | Lecture              | [1513.5]             | Home            |
|          | engines: Radiator                | automobiles                                 | Flipped              |                      | Assignment      |
|          | Cooling system                   |                                             | Classroom            |                      |                 |
|          | construction, coolant            |                                             |                      |                      | Class Quiz      |
|          | properties.                      |                                             |                      |                      |                 |
| 33,34,35 | Design parameters for            | Describe cooling system                     | Lecture              | [1513.5]             |                 |
|          | design hoses Thermostat          | component in automobile                     | Filpped<br>Classroom |                      | End term        |
|          | Valve, Radiators Cap,            |                                             |                      |                      |                 |
|          | Radiator fan, Radiator Fan       |                                             |                      |                      |                 |
| 26.27    | shroud, Surge Tank.              | Decall rediction and torms                  | Lastura              | [[[]]                | Home            |
| 36,37    | radiation: Inermai radiation.    | used in it                                  | Lecture              | [1513.6]             | Assignment      |
|          | reflection and transmission      |                                             |                      |                      |                 |
|          | of radiation                     |                                             |                      |                      |                 |
| 38,39,40 | Kirchhoff's Law, Wien's          | Describe laws of radiations                 | Lecture              | [1513.6]             | Class Quiz      |
|          | Boltzmann's law,                 |                                             |                      |                      | Mid term        |
| 41,42    | Intensity of radiation,          | Describe laws of radiations                 | Lecture              | [1513.6]             |                 |
|          | Lambert's cosine law             |                                             |                      |                      | End term        |
|          |                                  | Lab Module                                  |                      |                      |                 |
|          | Determination of thermal cor     | iductivity (K) of Composite w               | alls                 | -                    |                 |
| 2        | Determination of calorific value | ues (CV) of gaseous fuels by B              | oys calorimete       | r                    |                 |
| 3        | Determination of flash and fir   | e points of oils (Open Cup &                | Closed cup)          | ioon two spheres     |                 |
| т,<br>5  | Determination of Stofan Boltz    | $\frac{1}{2}$                               |                      | een two spheres      |                 |
| 6        | Determination of emissivity (    | $\frac{1}{2}$ of a test plate in comparison | with black black     |                      |                 |
| 7        | Determination of rate of heat    | transfer and thermal conduct                | ivity of lagged r    | naterial kept in cor | centrated pipes |
| 8        | Determination of rate of heat    | transfer through natural conv               | vection              |                      | Pipes           |
| 9        | Determination of rate of heat    | transfer through forced conv                | ection               |                      |                 |
| 10       | Calculation of effectiveness in  | parallel flow heat exchangers               |                      |                      |                 |
| 11       | Calculation of effectiveness in  | counter flow heat exchanger                 | S                    |                      |                 |
| 12       | Estimation of heat transfer co   | efficient (h) of a pin fin (circul          | ar) apparatus tł     | nrough forced conv   | ection          |
| 13       | Determination of thermal cor     | nductivity (K) of Copper rod p              | laced in a shell     |                      |                 |
| 14       | Calibration of Thermocouple      | apparatus through suitable m                | edia and compa       | rison of induced er  | ror             |

## I. Course articulation matrix ;- (Mapping of COs and POs)

| со           | STATEMENT                                                                                                                                           |         | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |         | CORRELATION<br>WITH PROGRAM<br>SPECIFIC<br>OUTCOMES |         |          |          |          |          |          |          |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|---------|---------|---------|---------|---------|-----------------------------------------------------|---------|----------|----------|----------|----------|----------|----------|
|              |                                                                                                                                                     | PO<br>1 | РО<br>2                           | PO<br>3 | РО<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8                                             | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
| AU<br>1513.1 | Describe types of heat<br>transfer, interpret and<br>analyse temperature,<br>compute heat transfer<br>coefficient in an<br>automotive<br>components | 3       | 2                                 |         |         |         |         | -       | 1                                                   | 1       |          |          |          |          |          |          |
| AU<br>1513.2 | Compute heat transfer<br>rate through plane,<br>cylindrical, spherical<br>and extended surfaces<br>and interpret it to<br>automobile.               |         | 2                                 | 1       | 2       |         |         |         |                                                     | 2       |          |          |          |          |          |          |
| AU<br>1513.3 | Describevarioustypesofheatexchangersanditsapplicationinanautomobile.                                                                                | 2       | 2                                 |         |         |         |         |         |                                                     |         |          |          |          |          |          |          |
| AU<br>1513.4 | Design and analyze<br>the performance of<br>heat exchangers.                                                                                        |         | 2                                 | 3       | 2       |         |         |         |                                                     | 2       |          |          |          |          |          |          |
| AU<br>1513.5 | Design and analyze<br>heating and cooling<br>systems                                                                                                |         | 2                                 | 3       | 2       |         |         |         |                                                     | 2       |          |          |          |          |          |          |
| AU<br>1513.6 | Describe heat loss by<br>radiation and its<br>importance in<br>Automobile                                                                           | 2       | 2                                 |         |         |         |         |         |                                                     | 2       |          |          |          |          |          |          |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Automotive Design | AU 1514 | 4 Credits | 3 0 2 4

Session: Aug 20 - Dec 20 | Faculty: Ashu Yadav | Class: III Year V Semester

- A. Introduction: This course is offered as a core course to the students of III Year B. Tech Automobile Engineering. This course offers in depth knowledge including design of flywheel, engine components, clutches, brakes, suspension spring and gears. Students are expected to have background knowledge on Engineering Mathematics, Kinematics, and Strength of Materials. This course helps automobile engineering students in design and fabrication of components in automobiles.
- B. Course Objectives: At the end of the course, students will be able to
- **[1514.1].** Classify different aspects of design, analyze design procedures based on requirements.
- **[1514.2].** Design flywheel by analysing constraints like speed fluctuation, moment of inertia, stresses etc.
- **[1514.3].** Recall working of engine, analyze various engine operating requirements and design all its aggregate components.
- **[1514.4].** Design different types of clutches, brakes and suspension springs by interpreting different vehicle loads requirements to enhance employability.
- **[1514.5].** Explain gears and its importance in Automobile. Design and develop gears for automobile based on its requirements.

#### C. Program Outcomes and Program Specific Outcomes

**[PO.I].** Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and engineering specialization to the solution of complex engineering problems

**[PO.2]. Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

**[PO.3].** Design/development of solutions: Design solutions for complex engineering problems and <u>design system</u> <u>components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

**[PO.4].** Conduct investigations of complex problems: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions

**[PO.5].** Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern engineering</u> <u>and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations</u>

**[PO.6].** The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal</u>, <u>health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice

**[PO.7].** Environment and sustainability: Understand the <u>impact of the professional engineering solutions in</u> <u>societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development

**[PO.8].** Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices

**[PO.9].** Individual and team work: Function effectively as an individual, and as a <u>member or leader in diverse</u> <u>teams</u>, and in multidisciplinary settings

**[PO.10]. Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

**[PO.II].** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

**[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

**[PSO.I].** Autotronics and Electric Vehicle Technology: <u>Apply</u> knowledge of electrical and electronics engineering for providing automobile engineering solutions

**[PSO.2].** Alignment to Super Qualification packs of ASDC: <u>Demonstrate knowledge and performance criteria</u> as defined by ASDC super qualification packs for R&D or Quality or Service Engineering

[PSO.3]. Application of Lean Six Sigma Methodology: <u>Demonstrate through an internship project</u>, the

knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

#### D. Assessment Rubrics:

| Criteria                   | Description                                                                 | Maximum Marks                             |  |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|
|                            | Sessional Exam I                                                            | 15                                        |  |  |  |  |  |  |
| Internal Assessment        | Sessional Exam II                                                           | 15                                        |  |  |  |  |  |  |
| (Summative)                | In class Quizzes and Assignments ,                                          | 10                                        |  |  |  |  |  |  |
|                            | Activity feedbacks (Accumulated and                                         |                                           |  |  |  |  |  |  |
|                            | Averaged)                                                                   |                                           |  |  |  |  |  |  |
|                            | Practical Internal                                                          | 15                                        |  |  |  |  |  |  |
| End Term Exam              | End Term Exam                                                               | 40                                        |  |  |  |  |  |  |
| (Summative)                | Practical External                                                          | 05                                        |  |  |  |  |  |  |
|                            | Total                                                                       | 100                                       |  |  |  |  |  |  |
| Attendance                 | A minimum of 75% Attendance is require                                      | red to be maintained by a student to be   |  |  |  |  |  |  |
| (Formative)                | qualified for taking up the End Semest                                      | er examination. The allowance of 25%      |  |  |  |  |  |  |
|                            | includes all types of leaves including medi                                 | cal leaves.                               |  |  |  |  |  |  |
| Make up Assignments        | Students who misses a class will have to                                    | report to the teacher about the absence.  |  |  |  |  |  |  |
| (Formative)                | A makeup assignment on the topic taug                                       | ght on the day of absence will be given   |  |  |  |  |  |  |
|                            | which has to be submitted within a                                          | week from the date of absence. No         |  |  |  |  |  |  |
|                            | extensions will be given on this. The atte                                  | ndance for that particular day of absence |  |  |  |  |  |  |
|                            | will be marked blank, so that the stude                                     | ent is not accounted for absence. These   |  |  |  |  |  |  |
|                            | assignments are limited to a maximum of                                     | 5 throughout the entire semester.         |  |  |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student                                        | may have to work in home, especially      |  |  |  |  |  |  |
| Activity Assignment        | before a flipped classroom. Although these works are not graded with marks. |                                           |  |  |  |  |  |  |
| ;(Formative)               | However, a student is expected to participate and perform these assignments |                                           |  |  |  |  |  |  |
|                            | with full zeal since the activity/ flipped cla                              | ssroom participation by a student will be |  |  |  |  |  |  |
|                            | assessed and marks will be awarded.                                         |                                           |  |  |  |  |  |  |

#### E. Syllabus

**Introduction:** Auto Design, Various Aspects, Classification, Requirements, general procedure of design, principles of design optimization, Brain storming. **Design of flywheel:** Determination of the mass of a flywheel for a given coefficient of speed fluctuation. MI of flywheel, Engine flywheel - stresses on the rim of the flywheels. Design of hubs and arms of the flywheel, turning moment diagram. **Design of Engine Components:** Design of various cylinder heads and cover plates Design of piston, piston pin, piston rings and their materials, design of connecting rod and its material. Design of crank shaft, crankshaft materials, Design considerations of valve design, intake and exhaust valve design, Design of rocker arm. **Design of clutches and Brakes:** Design of Single plate clutch, Multi plate clutch, and Centrifugal Clutch. Design of Drum brake and Disc brake. **Design of Suspension Spring:** Design of laminated leaf spring and coil spring. **Design of Gear:** Design consideration- Strength of gear teeth, Lewis equation-Dynamic tooth load. Design of Spur Gear and helical gears.

**LAB:** - Design of various engine components, Design of flywheel, clutches, brakes, Suspension springs and Gears using design software.

#### F. TEXT BOOKS

T1. J. Shigley, Mechanical Engineering Design, McGraw Hill, SI-FPS Edition, 1980.

T2. M.F. Spotts, Design of Machine Elements, Prentice Hall, India, New FPS-SI Edition, 1980.

#### G. REFERENCE BOOKS

R1. V. B. Bhandari, Design of Machine Elements, Tata McGraw Hill Publishing Company, New Delhi, 1904.

R2. R. B. Gupta, Auto Design, Satya Prakashan, New Delhi, 2015.

### H. Lecture Plan:

| Lec No | Topics                                            | Session Outcome                                     | Mode of      | Corresponding | Mode of Assessing the |
|--------|---------------------------------------------------|-----------------------------------------------------|--------------|---------------|-----------------------|
|        |                                                   |                                                     | Delivery     | CO            | Outcome               |
| 1      | Introduction and Course Hand-out briefing         | To acquaint and clear teachers expectations and     | Lecture      | NA            | NA                    |
|        |                                                   | understand student expectations                     |              |               |                       |
| 2      | Auto Design, Various Aspects, Classification,     | Classify various design types, identify design      | Lecture      |               | Home Assignment       |
|        | Requirements, general procedure of design         | requirements for a given component                  |              |               | Mid term              |
|        |                                                   |                                                     |              |               | End Term              |
| 3      | Principles of design optimization, Brain storming | Describe design and optimize design procedure,      | Lecture      | I             | Home Assignment       |
|        |                                                   | Brain storm different design ideas and identify     |              |               |                       |
|        |                                                   | suitable design                                     |              |               |                       |
| 4      | Flywheel design                                   | Determination of the mass of a flywheel for a given | Lecture      | ١,2           | In class quiz         |
|        |                                                   | co- efficient of speed fluctuation. MI of flywheel  |              |               | Mid term              |
|        |                                                   |                                                     |              |               | End Term              |
| 5      | Flywheel design                                   | Determine stresses on the rim of engine flywheels   | Lecture/     | ١,2           | In class quiz         |
|        |                                                   |                                                     | Flipped      |               | Mid term              |
|        |                                                   |                                                     | Classroom    |               | End Term              |
| 6      | Flywheel design                                   | Design a flywheel by interpreting given constraints | Lecture/     | 1,2           | Home Assignment       |
|        |                                                   | and performance requirements                        | Flipped      |               | Mid term              |
|        |                                                   |                                                     | Classroom    |               | End Term              |
| 7,8    | Flywheel design                                   | Design hubs and arms of the flywheel, turning       | Lecture/     | 1,2           | In class quiz         |
|        |                                                   | moment diagram.                                     | Flipped      |               | Mid term              |
|        |                                                   |                                                     | Classroom    |               | End Term              |
| 9,10   | Engine component design                           | Analyze performance requirements and calculate      | Lecture/     | 1,3           | In class quiz         |
|        |                                                   | design requirements for various cylinder heads and  | Flipped      |               | Mid term              |
|        |                                                   | cover plates                                        | Classroom    |               | End Term              |
| 11,12  | Engine component design                           | Analyze performance requirements and calculate      | Lecture/Flip | 1,3           | In class quiz         |
|        |                                                   | design requirements for piston, piston pin, piston  | ped          |               | Mid term              |
|        |                                                   | rings and select their materials accordingly        | classroom    |               | End Term              |
| 13,14  | Engine component design                           | Analyze performance requirement and calculate       | Flipped      | ١,3           | In class quiz         |
|        |                                                   | design requirements for connecting rod and select   | classroom    |               | Mid term              |
|        |                                                   | material accordingly                                |              |               | End Term              |
| 15,16  | Engine component design                           | Calculate design requirements for crank shaft and   | Flipped      | ١,3           | In class quiz         |
|        |                                                   | select crankshaft materials                         | classroom    |               | Mid term              |
|        |                                                   |                                                     |              |               | End Term              |
| 17,18  | Engine component design                           | Calculate design requirements for intake, exhaust   | Lecture/Flip | 1,3           | In class Quiz         |
|        |                                                   | valves and rocker arm                               | ped          |               | Mid term              |
|        |                                                   |                                                     | classroom    |               | End Term              |
| 19,20  | Engine component design                           | Design crankshaft, valves and rocker arms based     | Lecture/Flip | 1,3           | In class quiz         |
|        |                                                   | on given design requirements                        | ped          |               | Mid Term              |
|        |                                                   |                                                     | classroom    |               | End Term              |

| 21,22 | Clutch design     | Recall clutch properties, requirements and           | Lecture/Flip | 1,4 | In class quiz   |
|-------|-------------------|------------------------------------------------------|--------------|-----|-----------------|
|       |                   | calculate design requirements for a single plate and | ped          |     | Mid Term        |
|       |                   | multiplate clutch for an automobile                  | classroom    |     | End Term        |
| 23    | Clutch design     | Recall clutch properties, requirements and           | Lecture/Flip | 1,4 | In class quiz   |
|       |                   | calculate design requirements for centrifugal        | ped          |     | Mid Term        |
|       |                   | clutch for an automobile                             | classroom    |     | End Term        |
| 24,25 | Clutch design     | Select an appropriate clutch based on given          | Lecture/Flip | 1,4 | Home Assignment |
|       |                   | requirements and design the clutch based on          | ped .        |     | Mid Term        |
|       |                   | performance requirements                             | classroom    |     | End Term        |
| 26,27 | Brakes design     | Recall brakes, brake efficiency and calculate design | Lecture      | 1,4 | In class quiz   |
|       | C C               | requirements for a drum brake                        |              |     | Mid Term        |
|       |                   | 1                                                    |              |     | End Term        |
| 28,29 | Brake design      | Recall brakes, brake efficiency and calculate design | Lecture/Flip | 1,4 | In class quiz   |
|       | Ŭ                 | requirements for a disc brake for an automobile      | ped .        |     | Mid Term        |
|       |                   | •                                                    | classroom    |     | End Term        |
| 30,31 | Brake design      | Select an appropriate brake based on given           | Lecture/Flip | 1,4 | Home Assignment |
| ,     |                   | requirements and design a brake for given            | ped          | ,   | Mid Term        |
|       |                   | performance requirements                             | classroom    |     | End Term        |
| 32    | Suspension design | Calculate design requirements of laminated leaf      | Lecture      | 1,4 | In class guiz   |
|       |                   | spring based on performance requirements             |              | ,   | Mid Term        |
|       |                   |                                                      |              |     | End Term        |
| 33,34 | Suspension design | Calculate design requirements of coil spring based   | Lecture/Flip | 1,4 | In class quiz   |
|       |                   | on performance requirements                          | ped .        |     | Mid Term        |
|       |                   |                                                      | classroom    |     | End Term        |
| 35,36 | Suspension design | Analyze performance requirements and select an       | Lecture/Flip | 1,4 | Home Assignment |
|       |                   | appropriate suspension, design suspension based      | ped          |     | Mid Term        |
|       |                   | on requirements                                      | classroom    |     | End Term        |
| 37    | Gear design       | Analyze Design consideration and determine           | Lecture/Flip | 1,5 | In class quiz   |
|       | 5                 | Strength of gear teeth, dynamic tooth load.          | ped          |     | End Term        |
|       |                   |                                                      | classroom    |     |                 |
| 38,39 | Gear design       | Calculate design requirements for a spur gear        | Lecture/Flip | 1,5 | In class guiz   |
| ,     | 5                 | 5 1 1 5                                              | ped          | ,   | End Term        |
|       |                   |                                                      | classroom    |     |                 |
| 40,41 | Gear design       | Calculate design requirements for a Helical gear     | Lecture/Flip | 1,5 | In class guiz   |
| ,     | 5                 | 5 1 5                                                | ped          | ,   | End Term        |
|       |                   |                                                      | classroom    |     |                 |
| 42    | Gear design       | Analyze performance requirements, select             | Lecture/Flip | 1,5 | Home Assignment |
|       | S S               | appropriate gear and design the gear based on        | ped          |     | Mid Term        |
|       |                   | requirements                                         | classroom    |     | End Term        |
|       |                   | •                                                    |              |     |                 |

| Lab | Lab Module                      |
|-----|---------------------------------|
| I   | Introduction of CATIA V6.       |
| 2   | Introduction to sketcher module |

| 3  | Overview of sketcher module commands.            |
|----|--------------------------------------------------|
| 4  | Practice exercise using sketcher commands        |
| 5  | Introduction of Part module                      |
| 6  | Overview of part module commands.                |
| 7  | Overview of part module commands.                |
| 8  | Practice exercise using part module commands     |
| 9  | Practice exercise using part module commands     |
| 10 | Practice exercise using part module commands     |
| 11 | Introduction to assembly module                  |
| 12 | Practice exercise using assembly module commands |
| 13 | Practice exercise using assembly module commands |
| 14 | Mini project using above modules                 |

# I. Course Articulation Matrix: (Mapping of COs with POs)

| со           | STATEMENT                                                                                                                                      |    | CORRELATION WITH PROGRAM OUTCOMES |    |    |    |    | CORRELATION WITH<br>PROGRAM SPECIFIC<br>OUTCOMES |    |    |    |    |    |       |       |       |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------|----|----|----|----|--------------------------------------------------|----|----|----|----|----|-------|-------|-------|
|              |                                                                                                                                                | PO | PO                                | РО | РО | PO | PO | PO                                               | РО | PO | PO | РО | PO | PSO 1 | PSO 2 | PSO 3 |
|              |                                                                                                                                                | 1  | 2                                 | 3  | 4  | 5  | 6  | 7                                                | 8  | 9  | 10 | 11 | 12 |       |       |       |
| AU<br>1514.1 | Classify different aspects of design, analyze design procedures based on requirements.                                                         | 2  | 2                                 | 2  |    |    | 1  |                                                  |    |    |    |    | 1  |       |       |       |
| AU<br>1514.2 | Design flywheel by analysing constraints like speed fluctuation, moment of inertia, stresses etc.                                              | 3  | 3                                 | 3  | 2  | 2  | 1  |                                                  |    |    |    |    | 1  |       |       |       |
| AU<br>1514.3 | Recall working of engine and, analyze various engine<br>operating requirements and design its aggregate<br>components.                         | 3  | 3                                 | 3  | 2  | 2  | 1  |                                                  |    |    |    |    | 1  |       |       |       |
| AU<br>1514.4 | Design different types of clutches, brakes and<br>suspension springs by interpreting different<br>requirements and vehicle loads requirements. | 3  | 3                                 | 3  | 2  | 2  | 1  |                                                  |    |    |    |    | 1  |       |       |       |
| AU<br>1514.5 | Explain gears and its importance in Automobile.<br>Design and develop gears for automobile based on<br>its requirements.                       | 3  | 3                                 | 3  | 2  | 2  | 1  |                                                  |    |    |    |    | 1  |       |       |       |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Advanced Internal Combustion Engines | AU 1553 | 3 Credits | 3 0 2 3

Session: Aug $20-\mbox{Dec}\ 20$  | Faculty: Upendra Kulshrestha | Class: Program Elective (V Sem)

- A. Introduction: This course is offered by Dept. of Automobile Engineering as a program elective, targeting students who wish to pursue research& development in industries or higher studies in field of Automotive Engineering, including IC Engines, Fuels, and Emission reduction systems. Offers in depth knowledge IC Engine theory by covering SI, CI Engine combustion, genesis of pollutant formation, control techniques and gives an introductory level knowledge on emission standards, measurement devices and alternative fuels. Students are expected to have background knowledge on IC engines for a better learning.
- B. Course Outcomes: At the end of the course, students will be able to

[1553.1] Describe the effects of pollution on environment and depict engine and gas turbine pollution, its effect on global warming.

[1553.2] Interpret and illustrate the formation of different pollutants based on different operating and design parameters [1553.3]Experiment different fuels on engine, analyse formation of pollutants, calculate engine performance and modify different operating parameters to control those emissions.

[1553.4]Recognize different emission control techniques and judge the best way to achieve overall emission control for a specific engine

[1553.5]Recall different commercial testing procedures for different types of vehicles, chose and test emissions in an automobile for Indian driving cycle.

[1553.6] Analyze and explain engine combustion and the factors that affects combustion in engines

## C. Program Outcomes and Program SpecificOutcomes

[PO.1]. Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>,

and an engineering specialization to the solution of complex engineering problems

[PO.2]. Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
[PO.3]. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the publichealth and safety, and the cultural, societal, and environmental considerations

[PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions

[PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern</u> <u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations

[PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess</u> societal, <u>health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice

[PO.7]. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

[PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices

[PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

[PO.10]. Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

[PO.11]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

[PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

[PSO.1]. Autotronics and Electric Vehicle Technology: <u>Apply</u>knowledge of electrical and electronics engineering for providing automobile engineering solutions

[PSO.2]. Alignment to Super Qualification packs of ASDC: Demonstrate knowledge and performance criteria as defined by ASDC super qualification packs for R&D or Quality or Service Engineering
[PSO.3]. Application of Lean Six Sigma Methodology: Demonstrate through an internship project, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

D. Assessment Plan:

| Criteria                                                      | Description                                                                                                                                                                                                                                                            | Maximum Marks                                                                                                                                                                                                                                 |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               | Sessional Exam I (Open Book)                                                                                                                                                                                                                                           | 15                                                                                                                                                                                                                                            |
| Internal Assessment                                           | Sessional Exam II (Open Book)                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                            |
| (Summative)                                                   | In class Quizzes and Assignments,                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                            |
|                                                               | Activity feedbacks (Accumulated and                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                               |
|                                                               | Averaged)                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                               |
|                                                               | Laboratory Sessions                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                            |
| End Term Exam<br>(Summative)                                  | End Term Exam (Open Book)                                                                                                                                                                                                                                              | 40                                                                                                                                                                                                                                            |
|                                                               | Total                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                           |
| Attendance<br>(Formative)                                     | A minimum of 75% Attendance is require<br>qualified for taking up the End Semester<br>includes all types of leaves including me                                                                                                                                        | ed to be maintained by a student to be<br><sup>c</sup> examination. The allowance of 25%<br>edical leaves.                                                                                                                                    |
| Make up Assignments<br>(Formative)                            | Students who misses a class will have to re<br>A makeup assignment on the topic taught<br>has to be submitted within a week from th<br>given on this. The attendance for that p<br>blank, so that the student is not accoun-<br>limited to a maximum of 5 throughout 1 | Port to the teacher about the absence.<br>on the day of absence will be given which<br>ne date of absence. No extensions will be<br>articular day of absence will be marked<br>ted for absence. These assignments are<br>the entire semester. |
| Homework/ Home Assignment/<br>Activity Assignment (Formative) | There are situations where a student may<br>a flipped classroom. Although these work<br>student is expected to participate and perf<br>the activity/ flipped classroom participatic<br>will be awarded.                                                                | have to work in home, especially before<br>s are not graded with marks. However, a<br>form these assignments with full zeal since<br>on by a student will be assessed and marks                                                               |

#### E. Syllabus

Theory of SI and CI engine combustion, Ignition delay - physical and chemical, Flame velocity, area of flame front, fuel spray characteristics - droplet size, depth of penetration and atomization. Chemical energy, heat of reaction, chemical equilibrium and adiabatic flame temperature calculations, Combustion equation, progressive combustion, pre-mixed and diffusion combustion, flame quenching, flammability limits, Pollutant - sources, formation, effect of pollution on environment, human health, regulated and unregulated emissions, emission standards, Formation of NOx, CO, uBHC, smoke from petrol and diesel engines, Formation of soot, particulate, intermediate compounds from CI engine, Control of Pollutants - Catalytic converter, charcoal canister, PCV, secondary air injection, thermal reactor, Laser Assisted combustion, Fumigation, EGR, HCCI, Particulate traps, SCR, Testing and Emission measurements - Constant volume sampling 1 and 3, Sampling procedures, Chassis dyno, seven mode and thirteen mode cycle for emission sampling, emission analyzers - NDIR, FID, Chemiluminescent, smoke meters, dilution tunnels, SHED tests, Sensors for engine management- load, speed, air flow, temperature, pressure, lambda, throttle position, knock etc., their working principle and location, Non-conventional IC engines - concept of LHR, VCR, Wankel engine, dual fuel engine, free piston engine, stratified, lean burn, locomotive and marine engines. Photographic studies of combustion visualization, Alternative fuels like alcohols, vegetable oils, hydrogen, bio gas, natural gas - their production, properties, performance and emission standards, safety, material compatibility, engine modifications.

#### F. Text Books

- T1. IC Engines Combustion and Emission, BP Pundir, Narosa Publications
- T2. Handbook of Airpollution from combustion engines, Eran Sher, McGrawHill
  - G. Reference Books
- R1. IC Engine Fundamentals, John Heywood, McGrawHill
- R2. Pollution Manuals from ARAI, Federal Testing Procedures R3. Alternative Fuels, SS Thipse, Jaico Publications

### A. Lecture Plan:

| Lec No | Topics                                                  | Session Outcome                                                                                                                                                                      | Mode of Delivery                                                       | Corresponding<br>CO | Mode of Assessing the<br>Outcome                        |  |
|--------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------|---------------------------------------------------------|--|
| 1      | Introduction and Course Hand-out briefing               | To acquaint and clear teachers<br>expectations and understand<br>student expectations                                                                                                | Lecture                                                                | NA                  | NA                                                      |  |
| 2      | Engine Combustion - Introduction                        | Recall working of Engines, Engine combustion                                                                                                                                         | ecall working of Engines, Engine Flipped Classroom 1553.6<br>ombustion |                     |                                                         |  |
| 3,4    | Pollution - Introduction, Engine Pollutants             | Identify different engine pollutants and describe their formation                                                                                                                    | Lecture                                                                | 1553.1              | In Class Quiz<br>End Term                               |  |
| 5,6    | Global Warming, Green House Effect, Effects             | Explain global warming and report<br>the effects of global warming and its<br>effects                                                                                                | Guided Self-Study                                                      | 1553.1              | Home Assignment<br>End Term                             |  |
| 7.8    | Genesis of Pollutant Formation - Nox SI Engines         | Recall Engine pollutants and<br>interpret the formation of NOx<br>from SI engine based on design,<br>operating parameters                                                            | Lecture                                                                | 1553.2              | In Class Quiz<br>End Term                               |  |
| 9      | Genesis of Pollutant Formation - Nox Cl<br>Engines      | Recall Engine pollutants and<br>interpret the formation of NOx<br>from CI engine based on design,<br>operating parameters                                                            | Activity (Think Pair<br>Share)                                         | 1553.2              | Class Quiz<br>Mid Term I<br>End Term                    |  |
| 10     | Genesis of Pollutant Formation CO SI and CI<br>Engines  | Recall Engine pollutants and<br>interpret the formation of CO from<br>SI&CI engine based on design,<br>operating parameters. Compare<br>formation of CO between SI and CI<br>Engines | Activity (Jigsaw)                                                      | 1553.2              | Class Quiz<br>Mid Term 1<br>End term                    |  |
| 11     | Genesis of Pollutant Formation – HC Emissions<br>SI     | Recall Engine pollutants and<br>interpret the formation of HC from<br>SI engine based on design, operating<br>parameters                                                             | Flipped Class                                                          | 1553.2              | Home Assignment<br>Class Quiz<br>Mid Term 1<br>End Term |  |
| 12     | Genesis of Pollutant Formation – HC Emissions<br>Cl     | Recall Engine pollutants and<br>interpret the formation of HC from<br>Clengine based on design, operating<br>parameters                                                              | Activity (Think Pair<br>Share)                                         | 1553.2              | Class Quiz<br>Mid Term 1<br>End Term                    |  |
| 13     | Genesis of Pollutant Formation – PM, Soot CI<br>Engines | Recall Engine pollutants and<br>interpret the formation of PM from                                                                                                                   | Lecture                                                                | 1553.2              | Class Quiz<br>Mid Term I                                |  |

|       |                                                                  | Clengine based on design, operating<br>parameters. Interpret why PM<br>emissions in SI Engine are negligible                                                                                              |                   |        | End Term                              |
|-------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|---------------------------------------|
| 14    | Genesis of Pollutant Formation - Miscellaneous                   | Recall Engine pollutants and<br>interpret the formation of<br>Miscellaneous Polutants like sulphur,<br>Aldehydes etc                                                                                      | Lecture           | 1553.2 | Class Quiz<br>End Term                |
| 15,16 | Emission Reduction - Engine Design                               | Analyse engine design parameters<br>for emission reduction and<br>formulate various design changes<br>that reduce engine pollutants                                                                       | Jigsaw            | 1553.4 | Class Quiz<br>Mid Term II<br>End Term |
| 17    | Emission Reduction - fuel changes, evaporative emissions control | Examine fuel properties and propose<br>changes for emission reduction<br>Locate different regions where<br>evaporative emission occurs and<br>propose design changes to minimize<br>evaporative emissions | Lecture, Activity | 1553.4 | Class Quiz<br>Mid Term II<br>End Term |
| 18    | Emission Reduction- EGR, Air Injection Systems                   | Describe working of EGR , Air injection systems and synthesise the effects of EGR on emissions                                                                                                            | Lecture, Activity | 1553.4 | Class Quiz<br>Mid Term II<br>End Term |
| 19    | Emission Reduction - Catalytic Converters,<br>Water Injections   | Describe working of Catalytic<br>Converters, water injection systems<br>and analyse the effects of catalytic<br>converters on engine emissions and<br>calculate converter efficiency                      | Lecture           | 1553.4 | Class Quiz<br>Mid Term II<br>End Term |
| 20    | Emission Reduction - Sensors and Electronics                     | Describe the working of sensors and electronics in emission reduction                                                                                                                                     | Lecture           | 1553.4 | Class Quiz<br>End Term                |
| 21    | Emission Reduction - CRDI, Particulate Traps                     | Describe the working of CRDI, PTs<br>in emission reduction                                                                                                                                                | Flipped Class     | 1553.4 | Class Quiz<br>End Term                |
| 22    | Emission Reduction - DeNOx, SCR systems                          | Describe the working of DeNOx<br>and SCR in emission reduction                                                                                                                                            | Flipped Class     | 1553.4 | Class Quiz<br>End Term                |
| 23    | Emission Reduction - GDI, HCCI Concepts                          | Describe the working of GDI and<br>HCCI in emission reduction                                                                                                                                             | Flipped Class     | 1553.4 | Class Quiz<br>End Term                |
| 24    | Emission Measurement - NDIR, Gas<br>Chromotography               | Describe the working of sensors<br>and electronics in emission<br>reduction                                                                                                                               | Flipped Class     | 1553.5 | Class Quiz<br>End Term                |
| 25    | EmissionMeasurement-FID, SmokeMeters                             | Describe the working of FID and smoke meters in emission reduction                                                                                                                                        | Flipped Class     | 1553.5 | Class Quiz<br>End term                |
| 26    | Emission Measurement - PM and Noise<br>Measurement               | Describe the measurement of PM and NOx in engines                                                                                                                                                         | Flipped Class     | 1553.5 | Class Quiz                            |

| 27      | Fuel Changes - Alternative Fuels Introduction                        | Identify different alternative fuels and<br>analyse the ability of a specimen to<br>be a fuel based on its properties | Lecture           | 1553.5           | Class Quiz<br>Mid Term II<br>End Term |
|---------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------|------------------|---------------------------------------|
| 28,29   | Alternative Fuels - Ethanol                                          | Examine fuel properties, sketch and compare emission trends in engines                                                | Flipped Classroom | 1553.5<br>1553.3 | Class Quiz<br>Mid Term II<br>End Term |
| 30,31   | Alternative Fuels - Hydrogen                                         | Examine fuel properties, sketchand compare emission trends in engines                                                 | Flipped Classroom | 1553.5<br>1553.3 | Class Quiz<br>Mid Term II<br>End Term |
| 32,33   | Alternative Fuels - CNG, LPG                                         | Examine fuel properties, sketch and compare emission trends in engines                                                | Flipped Classroom | 1553.5<br>1553.3 | Class Quiz<br>End Term                |
| 34,35   | Alternative Fuels - Bio diesels                                      | Examine fuel properties, sketch and compare emission trends in engines                                                | Flipped Classroom | 1553.5<br>1553.3 | Class Quiz<br>End Term                |
| 36, 37  | Driving Cycles - Transient Dynamometers                              | Describe driving cycle procedures<br>for different vehicles                                                           | Lecture           | 1553.1           | Class Quiz<br>End Term                |
| 38      | US Driving Cycles                                                    | Describe driving cycle procedures<br>for different vehicles                                                           | Flipped Classroom | 1553.1           | Class Quiz<br>End Term                |
| 39      | Euro Driving Cycles                                                  | Describe driving cycle procedures<br>for different vehicles                                                           | Flipped Classroom | 1553.1           | Class Quiz<br>End Term                |
| 40      | Indian Driving Cycles                                                | Describe driving cycle procedures<br>for different vehicles                                                           | Flipped Classroom | 1553.1           | Class Quiz<br>End Term                |
| 41      | Conclusion and Course Summarization                                  | NA                                                                                                                    | NA                |                  | NA                                    |
| PROJECT | Project on preparation of biodiesel and testing biodiesel in engines | Experiment and test different fuels<br>on engines and analyse their impact<br>on pollution reduction                  | Lab Sessions      | 1553.3<br>1553.6 | Project Report<br>End TermViva        |

| со           | STATEMENT                                                                                                                                                                             |         | CORRELATION WITH PROGRAM<br>OUTCOMES |         |         |         |         |         |         | CORRELATIO<br>N WITH<br>PROGRAM<br>SPECIFIC<br>OUTCOMES |          |          |          |          |          |       |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------|---------|---------|---------|---------|---------|---------|---------------------------------------------------------|----------|----------|----------|----------|----------|-------|
|              |                                                                                                                                                                                       | PO<br>1 | PO<br>2                              | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9                                                 | PO<br>10 | PO<br>11 | PO<br>12 | PSO<br>1 | PSO<br>2 | PSO 3 |
| AU<br>1553.1 | Describe the effects of pollution on<br>environment engine operation, gas<br>turbine pollution, global warming.                                                                       | 3       |                                      |         |         |         |         |         | 1       |                                                         |          |          |          |          | 2        |       |
| AU<br>1553.2 | Interpret and illustrate the formation<br>of different pollutants based on<br>different operating and design<br>parameters                                                            |         | 2                                    | 2       |         |         |         |         |         |                                                         |          | 2        |          |          | 2        |       |
| AU<br>1553.3 | Experiment different fuels on engine,<br>analyse formation of pollutants,<br>calculate engine performance and<br>modify different operating parameters<br>to control those emissions. |         |                                      |         | 2       | 2       |         |         |         |                                                         |          |          |          |          | 1        |       |
| AU<br>1553.4 | Recognize different emission control<br>techniques and judge the best way to<br>achieve overall emission control for a<br>specific engine                                             |         |                                      |         |         |         | 2       |         | 2       | 3                                                       |          |          |          |          | 2        |       |
| AU<br>1553.5 | Recall different commercial testing<br>procedures for<br>different types of vehicles, chose and<br>test emissions in an automobile for<br>Indian driving cycle                        |         |                                      | 1       |         |         |         |         |         | 1                                                       | 1        |          |          |          | 3        |       |
| AU<br>1553.6 | Analyze and explain engine<br>combustion and the<br>factors that affects combustion in<br>engines                                                                                     | 3       |                                      |         |         |         |         |         |         |                                                         |          |          | 1        |          | 1        |       |

1- Low Correlation; 2- Moderate

Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Two & Three Wheeled Vehicle Systems | AU 1554 | 3 Credits | 3 0 0 3

Session: Aug - Nov 2020 | Faculty: Dharmesh Yadav | Class: III Year V Semester

#### A. Introduction:

This course is offered as a Program elective course to the students of III Year B Tech Automobile Engineering. This course offers in depth knowledge two and three wheeled vehicles and their components i.e brake, clutch, suspension, electrical, steering system etc. Students are expected to have background knowledge on basic working of all components for better learning.

#### **B. Course Outcomes:**

At the end of the course, students will be able to

- [1554.1] Classify two wheeler and three wheeler for their significant use.
- [1554.2] Explain various types of component used in two or three wheeled vehicle.
- [1554.3] Learn assembling and dismantling of two and three wheeled vehicle.
- [1554.4] Diagnose and service the 2 & 3 Wheeler for attaining employability skills.

#### c. Program outcomes and program specific outcomes

- **[PO.1].** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- **[PO.2].** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3].** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4].** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- **[PO.5].** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- **[PO.6].** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7].** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8].** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- **[PO.9].** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- **[PO.10].** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.11].** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
- **[PSO.1].** Autotronics and Electric Vehicle Technology: Apply knowledge of electrical and electronics engineering for providing automobile engineering solutions
- **[PSO.2].** Alignment to Super Qualification packs of ASDC: Demonstrate knowledge and performance criteria as defined by ASDC super qualification packs for R&D or Quality or Service Engineering

**[PSO.3].** Application of Lean Six Sigma Methodology: Demonstrate through an internship project, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

#### **Assessment Rubrics:**

| Criteria                  | Description                                                                        | Maximum Marks                                                                         |  |  |  |  |  |  |  |
|---------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                           | Sessional Exam I (Open Book)                                                       | 15                                                                                    |  |  |  |  |  |  |  |
| Internal Assessment       | Sessional Exam II (Open Book)                                                      | 15                                                                                    |  |  |  |  |  |  |  |
| (Summative)               | In class Quizzes and Assignments                                                   | 10                                                                                    |  |  |  |  |  |  |  |
|                           | (Accumulated and Averaged)                                                         |                                                                                       |  |  |  |  |  |  |  |
|                           | Practical performance (internal)                                                   | 15                                                                                    |  |  |  |  |  |  |  |
|                           | Practical Assessment                                                               | 5                                                                                     |  |  |  |  |  |  |  |
| End Term Exam             | End Term Exam (Open Book)                                                          | 40                                                                                    |  |  |  |  |  |  |  |
| (Summative)               |                                                                                    |                                                                                       |  |  |  |  |  |  |  |
|                           | Total                                                                              | 100                                                                                   |  |  |  |  |  |  |  |
| Attendance                | A minimum of 75% Attendance is required to                                         | o be maintained by a student to be qualified                                          |  |  |  |  |  |  |  |
| (Formative)               | for taking up the End Semester examination                                         | . The allowance of 25% includes all types of                                          |  |  |  |  |  |  |  |
|                           | leaves including medical leaves.                                                   |                                                                                       |  |  |  |  |  |  |  |
| Make up Assignments       | Students who misses a class will have to r                                         | eport to the teacher about the absence. A                                             |  |  |  |  |  |  |  |
| (Formative)               | makeup assignment on the topic taught on t                                         | he day of absence will be given which has to                                          |  |  |  |  |  |  |  |
|                           | be submitted within a week from the date of                                        | absence. No extensions will be given on this.                                         |  |  |  |  |  |  |  |
|                           | The attendance for that particular day of                                          | absence will be marked blank, so that the                                             |  |  |  |  |  |  |  |
|                           | student is not accounted for absence. These                                        | assignments are limited to a maximum of 5                                             |  |  |  |  |  |  |  |
|                           | throughout the entire semester.                                                    |                                                                                       |  |  |  |  |  |  |  |
| Homework/ Home Assignment | There are situations where a student may have to work in home, especially before a |                                                                                       |  |  |  |  |  |  |  |
| (Formative)               | flipped classroom. Although these works are                                        | flipped classroom. Although these works are not graded with marks. However, a student |  |  |  |  |  |  |  |
|                           | is expected to participate and perform these                                       | assignments with full zeal since the activity/                                        |  |  |  |  |  |  |  |
|                           | flipped classroom participation by a student v                                     | will be assessed and marks will be awarded.                                           |  |  |  |  |  |  |  |

### SYLLABUS:

**Introduction** - Evolution, classification and layouts of 2 and 3 wheelers, 2 and 3 wheel automotive industry in India and Rest of World, recent developments, electrical vehicle technology and developments for 2 and 3 wheelers. **Aerodynamics of 2 and 3 wheelers** origin of forces and moments, lateral stability, methods to calculate force and moments, stability under cross winds, dirt accumulation on vehicles, add-ons to improve handling and stability. **Instrumentation for two and three wheelers** measurement of force, torque, pressure power, temperature, fluid flow, vibration, rotational speed, velocity, acceleration and angular motion, IS code for engine testing, instrumentation for performance testing on engine, R&D, noise, vibration, in cylinder gas flow, flame temperature, dynamic cylinder pressure. **Maintenance** need, classification, general service procedures for different types of vehicle, study on basic and special service tools. Maintenance fundamentals for engine, engine subsystems, clutch, rear axle, shaft, bearings, differential assemblies, steering systems, braking systems, suspension, tyres, brakes – typical faults, their identification and diagnosing methods. Servicing of electrical components like batteries, charging system, starting system, body electricals – diagnosing using scan tools, Introduction to body repairs like panel beating, tinkering, soldering, polishing and painting

**Lab:** Workshop operations, workshop safety, first aid, general engine service, fuel delivery adjustments for max. power, max. fuel economy, clutch – general check, adjustment and service including clutch play, service and inspection of steering, braking systems, wheels – alignment, balance, removal and fitting of tyres, tyre wear, rotation and inspection, transmission systems – chain drives – slack and lubrication, fundamentals of vehicle washing, delivery checklists etc. Vehicle electrical – replacement, of head lamps, turning indicators, tail lamp, basic wiring, battery installation and removal, installation and removal of vehicle accessories like indicator buzzers, horn, horn tuning, hands-on techniques like soldering, polishing, painting.

#### Lecture Plan:

| Lecture No.            | Topics                                                                    | Session Objective                                                                                       | Mode of                         | Bloom's | Mode of                                         |
|------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------|---------|-------------------------------------------------|
|                        |                                                                           |                                                                                                         | Delivery                        | Level   | Assessing the<br>Outcome                        |
| 1                      | Introduction                                                              | To acquaint and clear<br>teachers expectations and<br>understand student<br>expectations                | Lecture                         | NA      |                                                 |
| 2,3                    | Evolution                                                                 | Origin of two and three wheeled vehicle                                                                 | Lecture                         | 2       | Home                                            |
| 4,5                    | classification and layouts of 2<br>and 3 wheelers                         | Explain the classification of two and three wheeled vehicle                                             | Lecture                         | 2       | Assignment                                      |
| 6,7,8                  | Electrical vehicle technology<br>and developments for 2 and 3<br>wheelers | How electrical technology<br>replace the conventional<br>technology from two and<br>three wheel vehicle | Lecture                         | 2       | Class Quiz                                      |
| 8,9,10,11              | Aerodynamics of 2 and 3 wheelers                                          | Explain the forces act to restrict the performance of vehicle                                           | Lecture                         | 4       | Home<br>Assignment                              |
| 12,13,<br>14,15,16,    | Instrumentation for two and three wheelers                                | Testing parameter to<br>improve efficiency for two<br>and three wheeled vehicle                         |                                 | 4       | Class Quiz                                      |
| 17,18,19,20,21,<br>22, | Maintenance procedure for two and three wheeled vehicle                   | Service method and maintenance schedule for all components                                              | Lecture                         | 2       |                                                 |
| 23,24,25,26,<br>27,    | Fault diagnosis for two and three vehicle vehicle                         | Explain procedure to find<br>out the fault and how do<br>remedy fault                                   | Lecture<br>Flipped<br>Classroom | 2,3     | Home<br>Assignment                              |
| 28,29,30,<br>31,32,    | Servicing of electric components                                          | Explain the proper servicing<br>for electric component for<br>two wheeler                               | Lecture<br>Flipped<br>Classroom | 2,3     | Class Quiz                                      |
| 33,34,35,36,           | Introduction to body repairs                                              | Explain the procedure for the body repairing                                                            | Lecture                         | 2       |                                                 |
| 37,38,                 | Home assignment for two wheeler presentation                              | Discussion on different<br>types of two wheeler<br>technology                                           | Flipped<br>Classroom            | 3       | Presentation of<br>Ppt developed<br>by students |
| 39,40                  | Home assignment for three wheeler presentation                            | Discussion on different<br>types of three wheeler<br>technology                                         | Flipped<br>Classroom            | 3       |                                                 |

|        | Lab Module                                                                                     |  |  |  |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 1      | Overhaul and assembly and disassembly of clutch system for two and three wheeled vehicle       |  |  |  |  |  |  |  |  |
| 2      | Overhaul and assembly and disassembly of steering system for two and three wheeled vehicle     |  |  |  |  |  |  |  |  |
| 3      | Overhaul and assembly and disassembly of brake system for two and three wheeled vehicle        |  |  |  |  |  |  |  |  |
| 4,5    | Overhaul and assembly and disassembly of transmission system for two and three wheeled vehicle |  |  |  |  |  |  |  |  |
| 6      | Overhaul and assembly and disassembly of suspension system for two and three wheeled vehicle   |  |  |  |  |  |  |  |  |
| 7      | Procedure for servicing and washing of two wheeler and three wheeler vehicle                   |  |  |  |  |  |  |  |  |
| 8,9,10 | Overhaul and assembly and disassembly of engine system for two and three wheeled vehicle       |  |  |  |  |  |  |  |  |
| 11     | Procedure for servicing of electric component for two and three wheelers                       |  |  |  |  |  |  |  |  |
| 12     | Testing the performance of two wheeler over two wheeler chassis dynamometer                    |  |  |  |  |  |  |  |  |

# A. Course Articulation Matrix: (Mapping of COs with POs and PSOs)

| со           | STATEMENT                                                                           |    | CORRELATION WITH PROGRAM OUTCOMES |    |    |    |    |    |    |    |    | CORRELATION<br>WITH PROGRAM<br>SPECIFIC<br>OUTCOMES |    |     |     |     |
|--------------|-------------------------------------------------------------------------------------|----|-----------------------------------|----|----|----|----|----|----|----|----|-----------------------------------------------------|----|-----|-----|-----|
|              |                                                                                     | РО | РО                                | РО | РО | РО | РО | РО | РО | РО | РО | РО                                                  | РО | PSO | PSO | PSO |
|              |                                                                                     | 1  | 2                                 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11                                                  | 12 | 1   | 2   | 3   |
| AU<br>1554.1 | Classify two wheeler<br>and three wheeler for<br>their significant use.             | 3  | 1                                 | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0                                                   | 2  | 0   | 1   | 0   |
| AU<br>1554.2 | Explain various types of<br>component used in two<br>or three wheeled<br>vehicle.   | 1  | 2                                 | 0  | 1  | 1  | 0  | 0  | 0  | 1  | 0  | 0                                                   | 2  | 0   | 2   | 0   |
| AU<br>1554.3 | Learn assembling and dismantling of two and three wheeled vehicle.                  | 2  | 1                                 | 0  | 1  | 1  | 0  | 0  | 0  | 1  | 0  | 0                                                   | 1  | 0   | 2   | 0   |
| AU<br>1554.4 | Diagnose and service<br>the 2 & 3 Wheeler for<br>attaining employability<br>skills. | 0  | 0                                 | 0  | 2  | 1  | 0  | 1  | 0  | 0  | 1  | 1                                                   | 3  | 0   | 3   | 0   |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

#### B. Course Outcome Attainment Level Matrix:

| со           | STATEMENT                    |    | ATTAINMENT OF PROGRAM OUTCOMES<br>THRESHOLD VALUE: 40% |    |    |    |    |    |    |    |    |    | ATTAINMENT OF<br>PROGRAM<br>SPECIFIC<br>OUTCOMES |     |     |     |
|--------------|------------------------------|----|--------------------------------------------------------|----|----|----|----|----|----|----|----|----|--------------------------------------------------|-----|-----|-----|
|              |                              | PO | PO                                                     | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO                                               | PSO | PSO | PSO |
| A11          | Classify two wheeler         | 1  | 2                                                      | 3  | 4  | 5  | 6  | /  | 8  | 9  | 10 | 11 | 12                                               | 1   | 2   | 3   |
| AU<br>1554 1 | and three wheeler for        |    |                                                        |    |    |    |    |    |    |    |    |    |                                                  |     |     |     |
| 1554.1       | their significant use.       |    |                                                        |    |    |    |    |    |    |    |    |    |                                                  |     |     |     |
| AU           | Explain various types of     |    |                                                        |    |    |    |    |    |    |    |    |    |                                                  |     |     |     |
| 1554.2       | component used in two        |    |                                                        |    |    |    |    |    |    |    |    |    |                                                  |     |     |     |
|              | or three wheeled<br>vehicle. |    |                                                        |    |    |    |    |    |    |    |    |    |                                                  |     |     |     |
| AU           | Learn assembling and         |    |                                                        |    |    |    |    |    |    |    |    |    |                                                  |     |     |     |
| 1554.3       | dismantling of two and       |    |                                                        |    |    |    |    |    |    |    |    |    |                                                  |     |     |     |
|              | three wheeled vehicle.       |    |                                                        |    |    |    |    |    |    |    |    |    |                                                  |     |     |     |
| AU           | Diagnose and service         |    |                                                        |    |    |    |    |    |    |    |    |    |                                                  |     |     |     |
| 1554.4       | the 2 & 3 Wheeler for        |    |                                                        |    |    |    |    |    |    |    |    |    |                                                  |     |     |     |
|              | attaining employability      |    |                                                        |    |    |    |    |    |    |    |    |    |                                                  |     |     |     |
|              | skills.                      |    |                                                        |    |    |    |    |    |    |    |    |    |                                                  |     |     |     |

0-No Attainment; 1- Low Attainment; 2- Moderate Attainment; 3- Substantial Attainment



School of Automobile Mechanical and Mechatronics Engineering Department of Automobile Engineering Course Hand-out Automotive Electrical Systems | AU-1602 | 4 Credits | 3 0 2 4 Session: Jan. 21 – May. 21 | Faculty: Dr. Dalip Singh | Class: III Yr. VI Sem.

**A. Introduction:** This course is offered as a core course to the students of III Year B Tech Automobile Engineering. This course offers in depth knowledge including various electrical systems like battery, charging system, starting system, ignition system, lighting system and accessories used in automobiles. Students are expected to have background knowledge on IC engines, Basic electrical engineering, and be familiar with automotive chassis system for better learning.

### **B.** Course Outcomes: At the end of the course, students shall be able to

- **[1602.1].** Describe types of automotive battery, starting, charging, lighting and ignition systems, and their characteristics.
- **[1602.2].** Distinguish different wiring layouts for vehicles.
- **[1602.3].** Practice service and maintenance procedures of different automotive electrical sub systems.
- **[1602.4].** Diagnose faults in automotive electrical systems using on-board diagnosis equipment to enhance the employability.
- C. Program Outcomes and Program Specific Outcomes

**[PO.I]. Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and an engineering specialization to the solution of complex engineering problems

[PO.2]. Problem analysis: <u>Identify</u>, formulate, research literature, and analyze complex engineering problems

reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

**[PO.3]. Design/development of solutions**: Design solutions for complex engineering problems and <u>design</u> <u>system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

[PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research

methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to

provide valid conclusions

[PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

<u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations

[PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess</u> societal,

<u>health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice

**[PO.7].** Environment and sustainability: Understand the <u>impact of the professional engineering solutions</u> in <u>societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development

**[PO.8]. Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the

engineering practices

[PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse

teams, and in multidisciplinary settings

**[PO.10]. Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

**[PO.II].** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

**[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

**[PSO-1].** Analyse, design and diagnose automotive systems to improve performance, safety, service and maintenance.

[PSO-2]. Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.

**[PSO-3].** Demonstrate the use of quality tools for internship projects to solve industrial problems.

#### **D.** Assessment Rubrics:

| Criteria             | Description                                  | Maximum Marks                            |
|----------------------|----------------------------------------------|------------------------------------------|
|                      | Sessional Exam I (Closed Book)               | 15                                       |
| Internal Assessment  | Sessional Exam II (Closed Book)              | 15                                       |
| (Summative)          | In class Quizzes, Assignments,               | 10                                       |
|                      | Lab activity (Accumulated and                | 5+5                                      |
|                      | Averaged)                                    |                                          |
| End Term Exam        | End Term Exam (Close Book)                   | 40                                       |
| (Summative)          |                                              |                                          |
|                      | Total                                        | 100                                      |
| Attendance           | A minimum of 75% Attendance is requi         | red to be maintained by a student to be  |
| (Formative)          | qualified for taking up the End Semest       | er examination. The allowance of 25%     |
|                      | includes all types of leaves including me    | dical leaves.                            |
| Make up Assignments  | Students who misses a class will have        | e to report to the teacher about the     |
| (Formative)          | absence. A makeup assignment on the          | topic taught on the day of absence will  |
|                      | be given which has to be submitted w         | ithin a week from the date of absence.   |
|                      | No extensions will be given on this. The     | ne attendance for that particular day of |
|                      | absence will be marked blank, so th          | hat the student is not accounted for     |
|                      | absence. These assignments are limite        | d to a maximum of 5 throughout the       |
|                      | entire semester.                             |                                          |
| Homework/ Home       | There are situations where a student         | may have to work in home, especially     |
| Assignment/ Activity | before a flipped classroom. Although th      | nese works are not graded with marks.    |
| Assignment           | However, a student is expected to par        | ticipate and perform these assignments   |
| (Formative)          | with full zeal since the activity/ flipped o | lassroom participation by a student will |
|                      | be assessed and marks will be awarded.       |                                          |

#### E. SYLLABUS

**Batteries:** -- Different types of batteries, Characteristics, rating, capacity and efficiency of different batteries. Battery charging methods. Battery Diagnosis using various tests. Maintenance and troubleshooting. Applications- SLI, EVs and Large Scale Energy Storage.

**Starting System:** - Condition of starting behavior of starter during starting. Starter motor and its characteristics. Principle & construction of starter motor. Working of different starter drive units. Starter circuit, Care & maintenance of starter motor, Modern Starting system- Integrated Starter Generator. **Charging System:** - Alternator- operating principle, charging circuit, characteristics curves, design. Components of DC and AC Charging System for vehicle, charging circuit, controls – cut out,

relays, voltage and current regulators. Fast Charging, Ultra-Fast charging systems. Charging system maintenance & troubleshooting.

**Ignition System:** - Types, construction & working of battery coil and magneto ignition systems. Centrifugal and vacuum advance mechanisms. Types and construction of spark plugs, Electronic Ignition system. Digital ignition system. Maintenance and troubleshooting

**Lighting System & Accessories**: - Vehicle earthling & insulation, earthling methods. Positive & negative earth systems Electrical circuits, symbols & diagrams & protection, electrical safety procedures. Wire Harness & connectors. Details of headlights, sidelight. Head light dazzling & preventive methods. Electrical fuel-pump, Digital display of information & warnings, Speedometer, Fuel, oil & temperature gauges, Horn, Wiper system, Fault Diagnosis & troubleshooting.

Lab: Use of electrical and electronic testing & measurement equipment digital multimeter (volt meters, ammeters, ohmmeters, etc) battery testing equipment, cell discharge tester, hydrometer Testing, servicing, charging, present state of charge of batteries, in-vehicle & outside. Battery Monitoring System with Data Loggers Testing, servicing, dismantling, assembly, inspection of Alternator, generator, starter motor. Electrical wiring diagrams, connectors, fuses, electrical load calculations, identification and replacement of faulty components Repair, servicing or replacement of condition monitoring trip counters, visual displays, Electronic ignition systems, direct ignition spark plugs, electronic fuel control, electronic diesel fuel injection, electronic control of carburetion, electronic petrol fuel injection, **Computer based diagnostic equipment:** Use of On Board Diagnostic kit for scanning ECU, data scanners, test lights, test LEDs, pulse generators etc.

#### F. Text Book:

T1. Robert Bosch Gmbh. BOSCH Automotive Electrics and Automotive Electronics, 5<sup>th</sup> Edition, Springer, 2007.

#### G. References:

R1. T.R. Crompton, *Battery Reference Book*, 3<sup>rd</sup> Edition, Newnes, 2000.

R2. B. Wördenweber, J. Wallaschek, P. Boyce, D. Hoffman, *Automotive Lighting and Human Vision*, 1<sup>st</sup> Edition, Springer, 2007.

## A. Lecture Plan:

| Lec<br>No | Topics                                                                                                                     | Session Outcome                                                                                         | Mode of<br>Delivery  | Mode of<br>Assessing the<br>Outcome | со     |
|-----------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|--------|
| 1         | Introduction and Course<br>Hand-out briefing                                                                               | To acquaint and clear<br>teachers' expectations and<br>understand student<br>expectations               | Lecture              | NA                                  | 1602.1 |
| 2         | Battery types and basics                                                                                                   | Recall the different batteries used in electronic gadgets.                                              | Flipped<br>Classroom | In Class Quiz<br>(Not Accounted)    | 1602.1 |
| 3,4       | Battery Design Parameters<br>– Capacity, Discharge rate,<br>State of charge, state of<br>Discharge, Depth of<br>Discharge, | Explain the different design<br>parameters for various types<br>of batteries.                           | Lecture              | In Class Quiz                       | 1602.1 |
| 5,6       | Technical characteristics of<br>Lead Acid                                                                                  | Recall Lead acid batteries<br>being used in vehicles and<br>interpret the technical<br>characteristics. | Lecture              | In Class Quiz                       | 1602.1 |

| 7,8              | Technical characteristics of<br>Lithium Ion Batteries (Li-<br>polymer, LiFePO4, Li-<br>Titanate, LiMn <sub>2</sub> O <sub>4</sub> )   | Explain the detail about<br>Lithium Ion batteries and<br>their characteristics   | Lecture                           | Home<br>Assignment | 1602.1 |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|--------------------|--------|
| 9                | Condition of starting<br>behavior of starter during<br>starting.                                                                      | Explain the detail about starting behaviour                                      | Activity<br>(Think Pair<br>Share) | Class Quiz         | 1602.3 |
| 10               | Starter motor and its<br>characteristics. Principle &<br>construction of starter<br>motor.                                            | Explain the detail about starter motor characteristics                           | Lecture                           | Class Quiz         | 1602.3 |
| 11,12            | Working of different starter drive units.                                                                                             | Explain the different starter drive systems                                      | Flipped Class                     | Class Quiz         | 1602.3 |
| 13,<br>14,<br>15 | Starter circuit, Care &<br>maintenance of starter<br>motor, Modern Starting<br>system- Integrated Starter<br>Generator.               | Explain the starter circuits                                                     | Lecture                           | Class Quiz         | 1602.3 |
| 16               | Alternator- operating<br>principle, charging circuit,                                                                                 | Explain the details about alternators                                            | Activity<br>(Think Pair<br>Share) | Home<br>Assignment | 1602.3 |
| 17               | characteristics curves,<br>design. Components of DC<br>and AC Charging System<br>for vehicle,                                         | Explain the working and<br>characteristic curves of<br>alternator                | Lecture                           | Class Quiz         | 1602.2 |
| 18,19            | charging circuit, controls –<br>cut out, relays, voltage and<br>current regulators. Fast<br>Charging, Ultra-Fast<br>charging systems. | Explain the working of relays<br>and regulators                                  | Lecture                           | Class Quiz         | 1602.2 |
| 20               | Charging system<br>maintenance &<br>troubleshooting.                                                                                  | Explain the maintenance issues and its troubleshooting                           | Lecture,<br>Activity              | Class Quiz         | 1602.4 |
| 21,22            | Types, construction & working of battery coil and magneto ignition systems.                                                           | Explain the construction & working of magneto ignition system                    | Lecture,<br>Activity              | Class Quiz         | 1602.4 |
| 23,24            | Centrifugal and vacuum advance mechanisms.                                                                                            | Explain the working of advance mechanism                                         | Lecture                           | Class Quiz         | 1602.4 |
| 25               | Types and construction of spark plugs,                                                                                                | Recall the types of spark plugs and their construction                           | Lecture                           | Class Quiz         | 1602.4 |
| 26               | Electronic Ignition system.                                                                                                           | Explain the working of Electronic ignition system                                | Lecture                           | Home<br>Assignment | 1602.4 |
| 27               | Digital ignition system.                                                                                                              | Explain the working of Digital ignition system                                   | Lecture,<br>Activity              | Class Quiz         | 1602.4 |
| 28               | Maintenance and troubleshooting                                                                                                       | Explain the maintenance<br>issues and corresponding<br>troubleshooting.          | Lecture                           | Class Quiz         | 1602.4 |
| 29,30            | Vehicle earthing &<br>insulation, earthling<br>methods. Positive &<br>negative earth systems                                          | Explain the concept of<br>earthing for automotive<br>electrical circuits         | Lecture                           | Class Quiz         | 1602.4 |
| 31,32            | Electrical circuits, symbols<br>& diagrams & protection,<br>electrical safety<br>procedures.                                          | Explain the symbols and<br>conventions used for<br>automotive electrical systems | Lecture                           | Class Quiz         | 1602.4 |
| 33               | Wire Harness & connectors.                                                                                                            | Explain the design of wiring harness                                             | Lecture                           | Home<br>Assignment | 1602.4 |

| 34          | Details of headlights,<br>sidelight. Head light<br>dazzling & preventive                                                | Explain the types and<br>working of automotive<br>headlights         | Activity<br>(Think Pair<br>Share) | Class Quiz           | 1602.5 |
|-------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|----------------------|--------|
| 35          | Electrical fuel-pump,                                                                                                   | Explain the working of fuel pump                                     | Lecture                           | Class Quiz           | 1602.5 |
| 36,37<br>38 | Digital display of<br>information & warnings,<br>Speedometer, Fuel, oil &<br>temperature gauges, Horn,<br>Wiper system, | Explain the design and<br>operating principle of digital<br>displays | Lecture                           | Class Quiz           | 1602.5 |
| 39,40       | FaultDiagnosis&troubleshooting, OBD                                                                                     | Explain the working of On-<br>board-diagnosis                        | Lecture                           | Class Quiz           | 1602.6 |
|             |                                                                                                                         | Lab Plan                                                             |                                   |                      |        |
| 1           | Battery load test                                                                                                       | Practical exposure for students                                      | Practical                         | Reading verification | 1602.1 |
| 2           | Maintenance and trouble shooting of battery                                                                             | Practical exposure for students                                      | Practical                         | viva                 | 1602.1 |
| 3           | BatteryperformancetestingusingBOSCHBAT131                                                                               | Practical exposure for students                                      | Practical                         | Reading verification | 1602.1 |
| 4           | BatteryperformancetestingusingBOSCHBAT131 on car                                                                        | Practical exposure for students                                      | Practical                         | Reading verification | 1602.1 |
| 5           | Starter motor test performance                                                                                          | Practical exposure for students                                      | Practical                         | Reading verification | 1602.2 |
| 6           | Assembling and<br>disassembling of starter<br>motor                                                                     | Learn about different component of starter motor                     | Practical                         | viva                 | 1602.2 |
| 7           | Alternator test performance                                                                                             | Practical exposure for students                                      | Practical                         | Reading verification | 1602.2 |
| 8           | Assembling and disassembling of Alternator                                                                              | Learn about different component of starter motor                     | Practical                         | viva                 | 1602.2 |
| 9           | Auto electric system by Digital multimeter                                                                              | Learn Use of digital multimeter                                      | Practical                         | Reading verification | 1602.5 |
| 10          | Error coder of Automobile ECU                                                                                           | Learn Use of digital KTS                                             | Practical                         | Reading verification | 1602.5 |
| 11          | Scanning of engine using KTS                                                                                            | Learn Use of digital KTS                                             | Practical                         | Reading verification | 1602.6 |
| 12          | Digital oscilloscope<br>working                                                                                         | Learn Use of digital oscilloscope                                    | Practical                         | viva                 | 1602.6 |
| 13          | Ignition system fault diagnosis                                                                                         | Lear diagnosis process                                               | Practical                         | viva                 | 1602.3 |
| 14          | Maintenance of spark plug                                                                                               | Practical exposure for students                                      | Practical                         | viva                 | 1602.3 |

## **B.** Course articulation matrix: -

| со           | STATEMENT                                                                                   |         | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |         |         |         |          |    |    | CORRELATION<br>WITH<br>PROGRAM<br>SPECIFIC<br>OUTCOMES |          |          |
|--------------|---------------------------------------------------------------------------------------------|---------|-----------------------------------|---------|---------|---------|---------|---------|---------|---------|----------|----|----|--------------------------------------------------------|----------|----------|
|              |                                                                                             | PO<br>1 | PO<br>2                           | PO<br>۲ | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO | PO | PSO<br>I                                               | PSO<br>2 | PSO<br>3 |
| AU<br>1602.1 | Describe types of<br>automotive<br>battery, starting,<br>charging, lighting<br>and ignition | •       | _                                 | •       |         |         | •       | 1       |         | 1       | 2        |    |    |                                                        | _        |          |

|              | systems, and their characteristics.                                                                                                    |   |  |   |   |   |   |   |  |   |   |   |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|---|--|---|---|---|---|---|--|---|---|---|--|
| AU<br>1602.2 | Distinguish<br>different wiring<br>layouts for<br>vehicles.                                                                            | 1 |  | 1 |   | 1 |   | 1 |  |   |   | 2 |  |
| AU<br>1602.3 | Practice service<br>and maintenance<br>procedures of<br>different<br>automotive<br>electrical sub<br>systems.                          |   |  | 2 | 2 | I |   | 3 |  | 3 | 2 |   |  |
| AU<br>1602.4 | Diagnose faults in<br>automotive<br>electrical systems<br>using on-board<br>diagnosis<br>equipment to<br>enhance the<br>employability. |   |  | 3 |   | I | I | 3 |  | 3 | 3 | 1 |  |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out Electronic Control for Vehicle System Code: AU-1606 | 4 Credits | 3 0 2 4

Session: Jan.-May.2021 | Faculty: Dr. Ashish Malik | Class: VI semester

## A. Introduction:

This course is offered by Dept. of Automobile Engineering as an Open Elective subject, targeting students who wish to pursue research & development in industries or higher studies in the field of electronics in automobile engineering, microprocessors, Electronic control unit; engine management, microcontroller peripherals and configuration, sensors for automobile applications, Basic of actuators, Requirement of automotive networking and others. Students are expected to have background knowledge on basic electronics circuit and its components engines for a better learning.

#### **B.** Course Outcomes: At the end of the course, students will be able to

**[1606.1].** Awareness of basic electronics, semiconductor devices and its function to understand different role of electronics in automobile engineering.

**[1606.2].** Understand the roles of integrated circuits, digital circuits, microprocessors and microcontroller in automobile.

**[1606.3].** Describe the operation of Open loop and closed loop control microcontrollers. Microcontroller peripherals and configuration for automobile.

**[1606.4].** Analyse the operation and control of sensors for automobile applications, classifications, measuring principles, types of sensors for skill development.

**[1606.5].** Understand the operation of basic concept of different actuators, types of actuators, their automotive applications. Reorganization of automobile communication devices used automobile.

| Criteria                           | Description                                           | Maximum Marks                |  |  |  |  |
|------------------------------------|-------------------------------------------------------|------------------------------|--|--|--|--|
|                                    | Sessional Exam I (Closed Book)                        | 15                           |  |  |  |  |
| Internal Assessment<br>(Summative) | Sessional Exam II (Closed Book)                       | 15                           |  |  |  |  |
| (eannacive)                        | In class Quizzes and Assignments                      | 10                           |  |  |  |  |
|                                    | (Accumulated and Averaged)                            |                              |  |  |  |  |
|                                    | Practical performance (internal)                      |                              |  |  |  |  |
| End Term Exam                      | End Term Exam (Closed Book)                           | 40                           |  |  |  |  |
| (Summative)                        | Practical Assessment                                  | 5                            |  |  |  |  |
|                                    | Total                                                 | 100                          |  |  |  |  |
| Attendance                         | A minimum of 75% Attendance is required to be         | maintained by a student to   |  |  |  |  |
| (Formative)                        | be qualified for taking up the End Semester exa       | mination. The allowance of   |  |  |  |  |
|                                    | 25% includes all types of leaves including medical le | eaves.                       |  |  |  |  |
| Make up                            | Students who misses a class will have to report       | t to the teacher about the   |  |  |  |  |
| Assignments                        | absence. A makeup assignment on the topic taugh       | t on the day of absence will |  |  |  |  |
| (Formative)                        | be given which has to be submitted within a wee       | k from the date of absence.  |  |  |  |  |

### C. Assessment Plan:

|                      | No extensions will be given on this. The attendance for that particular day of  |
|----------------------|---------------------------------------------------------------------------------|
|                      | absence will be marked blank, so that the student is not accounted for          |
|                      | absence. These assignments are limited to a maximum of 5 throughout the         |
|                      | entire semester.                                                                |
| Homework/ Home       | There are situations where a student may have to work in home, especially       |
| Assignment/ Activity | before a flipped classroom. Although these works are not graded with marks.     |
| Assignment           | However, a student is expected to participate and perform these assignments     |
| (Formative)          | with full zeal since the activity/ flipped classroom participation by a student |
|                      | will be assessed and marks will be awarded.                                     |

## **D.** Syllabus:

**Introduction** Role of electronics in automobile engineering, concept of a system, semiconductor devices, integrated circuits, digital circuits, microprocessors, Electronic control unit, Open loop and closed loop control

**Microcontrollers** difference between microprocessor and microcontroller, requirements of microcontroller for automobile, compiler, debugger, emulator, simulator, programming of microcontroller, architecture of HCS12, microcontroller peripherals and configuration

**Sensors:** Basic of sensors, sensors for automobile applications, classifications, measuring principles, Types of sensors i.e. speed sensors, pressure sensors, temperature sensors, position sensors, knock sensors, acceleration sensors, torque sensor, rain/light sensor and Lambda oxygen sensors.

Actuators: Basic of actuators, types of actuators i.e., electromechanical, fluid mechanical and electrical machines, their automotive applications.

Automotive Networking Requirement of automotive networking, need of bus system, classification of bus system, examples of bus system in automobile communication devices used in automobile.

**Lab:** MATLAB and SIMULINK based modelling and simulation of automotive control systems, Verifying logic gates (OR, AND, NAND, NOR, EX-OR, NOT), characteristics of Full wave rectifier, square wave form in 555 TIME, Characteristics of Thermocouple, Thermistor, Hall effect transducer and inductive pickup, Resistive Temperature Detector, DC servo motor speed control system, programming on microcontroller, interfacing of peripherals

## E. Text Book:

• Williams B. Ribbens, *Understanding Automotive Electronics*, 7<sup>th</sup> Edition, Elsevier, London, 2012.

### F. Reference Books:

- Rafi Quazzaman, *Microprocessors Theory and Applications: Intel and Motorola*, Prentice Hall of India, Pvt. Ltd., New Delhi, 2003.
- Robert Bosch Gmbh, *BOSCH Automotive Electric and Automotive Electronics*, 5<sup>th</sup> Edition, Springer Vieweg, Berlin, 2007.
- J.P. Hasebrink and R. Kobler, *Fundamentals of Pneumatic Control Engineering*, Festo Didactic GMBH & Co, Germany, 2002.

# G. Lecture Plan:

| Lec   | Topics                                                         | Session Objective                                                                                            | Mode of                           | Mode of            |
|-------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------|
|       |                                                                |                                                                                                              | Delivery                          | the<br>Outcome     |
| 1     | Introduction and Course<br>Hand-out briefing                   | To acquaint and clear teachers<br>expectations and understand student<br>expectations                        | Lecture                           | NA                 |
| 2     | Role of electronics in automobile engineering                  | Recall working of electronics                                                                                | Lecture                           | In Class Quiz      |
| 3,4   | Introduction of electronics<br>switches and their<br>operation | Describe use and operation of<br>different electronics based systems                                         | Activity<br>(Think Pair<br>Share) | By Activity        |
| 5     | Block Diagram Representation<br>of a System                    |                                                                                                              |                                   | Mid Term - I       |
| 6,7   | Integrated circuits, digital circuits                          |                                                                                                              | Lecture                           | Home<br>Assignment |
| 8     | Introduction of microprocessors                                |                                                                                                              | Lecture                           | Class Quiz         |
| 9,10  | Open loop<br>Microcontroller based<br>system                   | Use of microprocessor and microcontroller for automobile                                                     | Activity<br>(Think Pair<br>Share) | By Activity        |
| 11,12 | Closed loop control<br>Microcontroller based<br>system         |                                                                                                              |                                   | Mid Term - I       |
| 13    | Difference between<br>microprocessor and<br>microcontroller    |                                                                                                              | Lecture                           | Home<br>Assignment |
| 14,15 | Microcontroller<br>peripherals and<br>configuration            |                                                                                                              |                                   | Mid Term - I       |
| 16,17 | Requirements of<br>microcontroller for<br>automobile           |                                                                                                              | Lecture                           | Class Quiz         |
| 18,19 | Basic of sensors, sensors<br>for automobile<br>applications,   | Describe different type of sensors and<br>their operation, concept of<br>measuring principles for automobile | Lecture                           |                    |
| 20    | Classifications, measuring principles of sensor                |                                                                                                              |                                   | Home<br>Assignment |
| 21,22 | Speed sensors, pressure sensors,                               |                                                                                                              |                                   |                    |
| 23,24 | Temperature sensors, position sensors                          |                                                                                                              |                                   | Home<br>Assignment |
| 25,26 | knock sensors,<br>acceleration sensors,<br>torque sensor,      |                                                                                                              |                                   |                    |

| 27,28    | rain/light sensor and      |                                      | Lecture  | Mid Term - II  |
|----------|----------------------------|--------------------------------------|----------|----------------|
|          | Lambda oxygen sensors.     |                                      |          |                |
| 29,30    | Basic of actuators, types  | Describe different type of actuators | Jigsaw   | Mid Term - II  |
|          | of actuators               | and their operation                  |          |                |
| 31,32    | Operation                  |                                      | Lecture, | Class Quiz     |
|          | Electromechanical          |                                      | Activity |                |
|          | actuators                  |                                      |          |                |
| 33       | Operation fluid            |                                      |          |                |
|          | mechanical                 |                                      |          |                |
| 34,35    | Electrical machines, their |                                      |          | Class Quiz     |
|          | automotive applications    |                                      |          |                |
| 36,37    | Requirement of             | Networking using communication       | Flipped  | Mid Term - I I |
|          | automotive networking,     | devices                              | Class    |                |
|          | need of bus system         |                                      |          |                |
| 38,39    | Classification of bus      |                                      | Flipped  | Mid Term - I I |
|          | system                     |                                      | Class    |                |
| 40,41,42 | Automobile                 |                                      |          | Class Quiz     |
|          | communication devices      |                                      |          |                |
|          | used in automobile         |                                      |          |                |

## H. Course articulation matrix: -

| со           | STATEMENT                                                                                                                                                                                                         | CORRELATION WITH PROGRAM OUTCOMES CORRELATION<br>WITH<br>PROGRAM<br>SPECIFIC<br>OUTCOMES |    |    |    |    |    |    |    |    |    |    |    |     |     |     |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|
|              |                                                                                                                                                                                                                   | PO                                                                                       | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO | PSO | PSO |
|              | Auronana af hasia                                                                                                                                                                                                 | <br>2                                                                                    | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
| 1606.1       | Awareness of basic<br>electronics,<br>semiconductor<br>devices and its<br>function to<br>understand different<br>role of electronics in<br>automobile<br>engineering.                                             | 3                                                                                        | 2  |    |    |    |    |    | 1  |    |    |    |    | 2   |     |     |
| AU<br>1606.2 | Understand the roles<br>of integrated circuits,<br>digital circuits,<br>microprocessors and<br>microcontroller in<br>automobile                                                                                   |                                                                                          | 2  | 2  | 2  |    |    |    |    | 2  |    |    |    | 2   |     |     |
| AU<br>1606.3 | Describe the operation<br>of Open loop and<br>closed loop control<br>microcontrollers.<br>Microcontroller<br>peripherals and<br>configuration for<br>automobile                                                   |                                                                                          | 2  |    | 2  |    |    |    |    | 2  |    |    |    | 2   | I   |     |
| AU<br>1606.4 | An introduction of the<br>operation and control<br>of sensors for<br>automobile<br>applications,<br>classifications,<br>measuring principles,<br>types of sensors                                                 | 2                                                                                        | 2  |    |    |    |    |    | 1  | 2  |    |    |    | 2   | I   |     |
| AU<br>1606.5 | Understand the<br>operation of basic<br>concept of different<br>actuators, types of<br>actuators, their<br>automotiveapplications.<br>Reorganization of<br>automobile<br>communication devices<br>used automobile | 2                                                                                        | 2  |    |    |    |    |    | 1  | 2  |    |    |    | 2   | I   |     |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation


School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Quality Assurance and Reliability Engineering AU 1607 | 4 Credits | 3 0 2 4

Session: Jan 21 - May 21 | Faculty: Dr. Vinod Yadav & Dr. Avanish Singh Chauhan | Class: VI Semester

- A. Introduction: This course is offered by Dept. of Automobile Engineering for sixth semester students as a core course. This course provides knowledge of various statistical tools and techniques used in quality engineering along with their application. Quality plays a critical role in the growth of any industry or organisation and is the key to competitive success in the increasingly globalized business environment. This course also discusses the basic concepts of reliability engineering and different techniques used to evaluate failure of any system. Students are expected to have a basic knowledge of descriptive statistical concepts.
- **B.** Course Objectives: At the end of the course, students shall be able to
- [1607.1]. Discuss the philosophy and basic concepts of quality tools for improvement.

**[1607.2].** Demonstrate the ability to design, use, and interpret control charts.

[1607.3]. Perform process capability for a process to improve employability.

- **[1607.4].** Develop and interpret acceptance sampling plan.
- [1607.5]. Explain the concepts of reliability engineering using statistical and design models in reliability engineering.
- C. Program Outcomes and Program Specific Outcomes
- **[PO.I]. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **[PO.2]. Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **[PO.3]. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **[PO.4]. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **[PO.5]. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **[PO.6]. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7]. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8]. Ethics**: Apply ethical principles and commit to professional ethics\_and responsibilities and norms of the engineering practices
- **[PO.9]. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- **[PO.10].** Communication: Communicate effectively\_on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.11]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

- **[PSO.I].** Analyse, design and diagnose automotive systems to improve performance, safety, service and maintenance.
- **[PSO.2].** Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.
- **[PSO.3].** Demonstrate the use of quality tools for internship projects to solve industrial problems.

#### **D.** Assessment Rubrics:

| Criteria                   | Description                                                                 | Maximum Marks                             |  |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|
|                            | Sessional Exam I (Close Book)                                               | 15                                        |  |  |  |  |  |  |
| Internal Assessment        | Sessional Exam II (Close Book)                                              | 15                                        |  |  |  |  |  |  |
| (Summative)                | In class Quizzes and Assignments ,                                          | 10                                        |  |  |  |  |  |  |
|                            | Activity feedbacks (Accumulated and                                         |                                           |  |  |  |  |  |  |
|                            | Averaged)                                                                   |                                           |  |  |  |  |  |  |
|                            | Lab                                                                         | 20                                        |  |  |  |  |  |  |
| End Term Exam              | End Term Exam (Close Book)                                                  | 40                                        |  |  |  |  |  |  |
| (Summative)                |                                                                             |                                           |  |  |  |  |  |  |
|                            | Total                                                                       | 100                                       |  |  |  |  |  |  |
| Attendance                 | A minimum of 75% Attendance is requi                                        | red to be maintained by a student to be   |  |  |  |  |  |  |
| (Formative)                | qualified for taking up the End Semest                                      | er examination. The allowance of 25%      |  |  |  |  |  |  |
|                            | includes all types of leaves including med                                  | lical leaves.                             |  |  |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student                                        | may have to work in home, especially      |  |  |  |  |  |  |
| Activity Assignment        | before a flipped classroom. Although the                                    | nese works are not graded with marks.     |  |  |  |  |  |  |
| (Formative)                | However, a student is expected to participate and perform these assignments |                                           |  |  |  |  |  |  |
|                            | with full zeal since the activity/ flipped of                               | classroom participation by a student will |  |  |  |  |  |  |
|                            | be assessed and marks will be awarded.                                      |                                           |  |  |  |  |  |  |

#### E. Syllabus

**QUALITY ASSURANCE AND RELIABILITY ENGINEERING:** Definition of quality, quality control, quality assurance, quality audit, Dimension of quality, cost of poor quality (COPQ) calculation methodology, type of quality cost. Organization for quality, TQM, General quality control engineering fundamentals, Advanced Product Quality Planning procedure **Measures of central tendency and dispersion** like Average, Standard deviation, Median, Mode, Range, Variance, Concept of variation, Causes of Variation, Patterns of variation, Frequency distribution, The Normal distribution curve, Inequality theorems, Shewhart's experiments, overview of SAP and ERP

**Reliability**: Concepts of reliability, Quality and Reliability, Methods of Estimating of Reliability, Field Failure Data Analysis, Failure Rate, Failure Density, Life testing, MTBF, MTTF, Maintainability & Availability, Reliability Allocation - Series Systems, Parallel Systems, Combined Series and parallel Systems. Block Diagrams, Fault tree analysis, Event tree analysis, Design review and validation, Design for reliability.

Lab: Minitab exercises for: Identifying common cause and special cause variation, Identifying out of control processes using control charts, developing statistical models of reliability.

#### F. Text Books

- TI. E.L. Grant, Statistical Quality Control, 6th Edition, McGraw Hill Publications, New York, 1988.
- T2. A.J. Duncan, Quality Control and Industrial statistics, Irwin Press, New York, 1970.
- T3. C.E. Ebeling, An introduction to reliability and maintainability engineering, Tata McGraw-Hill Education, 2004

#### **G.** Reference Books

- RI. J.M. Juran, Quality Planning and Analysis, McGraw Hill Publications, Delhi, 1980.
- R2. B. L. Hansen, Quality Control-theory and applications Prentice Hall India, Delhi, 1987.
- R3. C. Douglas, Introduction to Statistical Quality Control, I, 2nd Edition, John Wiley and Sons, New York, 2000.
- R4. K.B. Misra, Handbook of Performability Engineering, Springer London, 2008
- R5. A. Mitra, Fundamentals of Quality Control and Improvement, Wiley, 1993

| Lec.  | Topics                                                                                                                                                                                                                            | Session Objective                                                                                                                                                                                                      | Mode of                                                  | Corresponding                          | Mode of                          |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|----------------------------------|
| No.   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                        | Delivery                                                 | со                                     | Assessing the<br>Outcome         |
| I     | Introduction and<br>Course Hand-out<br>briefing                                                                                                                                                                                   | To acquaint and clear teachers<br>expectations and understand student<br>expectations                                                                                                                                  | Lecture                                                  | NA                                     | NA                               |
| 2     | Definition of quality,<br>Quality control                                                                                                                                                                                         | Recall concept of quality and its<br>importance in manufacturing<br>engineering                                                                                                                                        | Lecture                                                  | [AU1607.2]                             | In Class Quiz                    |
| 3     | Quality assurance,<br>Quality audit                                                                                                                                                                                               | Explain meaning of quality assurance<br>and quality audit and its significance<br>at various levels of product life cycle.                                                                                             | Lecture                                                  | [AU1607.2]<br>[AU1607.8]               | In Class Quiz                    |
| 5     | Dimension of quality                                                                                                                                                                                                              | Understand dimensions of quality and quality to conformance.                                                                                                                                                           | Lecture                                                  | [AU1607.2]<br>[AU1607.8]               | Home<br>Assignment               |
| 6,7   | Cost of poor quality<br>(COPQ) calculation<br>methodology, Type of<br>quality cost.                                                                                                                                               | Identify different quality costs and methods to calculate it.                                                                                                                                                          | Lecture                                                  | [AU1607.2]<br>[AU1607.8]               | In Class Quiz                    |
| 8     | Organization for<br>quality, TQM                                                                                                                                                                                                  | Recall and discuss five principles of<br>total quality management and they<br>are used in any organizational<br>structure.                                                                                             | Lecture,<br>Activity<br>(Think<br>Pair<br>Share)         | [AU1607.2]<br>[AU1607.8]               | Class Quiz                       |
| 9     | General quality control<br>engineering<br>fundamentals,                                                                                                                                                                           | Understand various types of control<br>charts and their application in<br>different types of process along with<br>their use in problem solving.                                                                       | Lecture,<br>Activity,<br>Lab                             | [AU1607.2]                             | Class Quiz                       |
| 10    | Advanced Product<br>Quality Planning<br>procedure                                                                                                                                                                                 | Discuss and define process for a product development system                                                                                                                                                            | Lecture,<br>Case<br>study                                | [AU1607.2]<br>[AU1607.8]               | Home<br>Assignment<br>Class Quiz |
| 11    | Measures of central<br>tendency and<br>dispersion like Average,<br>Standard deviation,<br>Median, Mode, Range,<br>Variance, Concept of<br>variation, Causes of<br>Variation, Patterns of<br>variation, Frequency<br>distribution. | Establish the basic understanding of<br>concepts of statistics and use them<br>in problem solving. Define the<br>concepts of variation in process and<br>infer the meaning of different types<br>of process variation. | Lecture,<br>Team<br>Activity<br>(Think<br>Pair<br>Share) | [AU1607.1]<br>[AU1607.2]<br>[AU1607.8] | Class Quiz                       |
| 12    | The Normal distribution curve                                                                                                                                                                                                     | Define normal distribution and use<br>and importance of various<br>parameters of Normal distribution                                                                                                                   | Lecture                                                  | [AU1607.1]<br>[AU1607.2]<br>[AU1607.8] | Class Quiz                       |
| 13    | Inequality theorems                                                                                                                                                                                                               | Identify various inequality theorems<br>and their application in different<br>processes.                                                                                                                               | Flipped<br>Class,<br>Group<br>Discussion                 | [AU1607.2]                             | Class Quiz                       |
| 14    | Shewhart's<br>experiments                                                                                                                                                                                                         | Develop an understanding of<br>Shewhart's experiment and basis of<br>control charts                                                                                                                                    | Flipped<br>Class,<br>Group<br>Discussion                 | [AU1607.2]                             |                                  |
| 15,16 | Overview of SAP and ERP                                                                                                                                                                                                           | Describe the fundamental of an ERP system and working modules of SAP and ERP.                                                                                                                                          | Lecture,<br>Activity                                     | [AU1607.8]                             | Class Quiz                       |
| 18    | Concepts of reliability                                                                                                                                                                                                           | Define the concept of reliability and its significance in quality engineering.                                                                                                                                         | Lecture                                                  | [AU1607.3]                             | Class Quiz                       |
| 19    | Quality and Reliability                                                                                                                                                                                                           | Establish relationship between quality and reliability.                                                                                                                                                                | Lecture                                                  | [AU1607.2]<br>[AU1607.3]               | Class Quiz                       |
| 20    | Methods of Estimating of Reliability                                                                                                                                                                                              | Analyse various statistical models of reliability for system reliability estimation.                                                                                                                                   | Lecture                                                  | [AU1607.3]                             | Class Quiz                       |
| 21,22 | Field Failure Data                                                                                                                                                                                                                | Understand the concept of failure                                                                                                                                                                                      | Lecture                                                  | [AU1607.3]                             | Class Quiz                       |

|        | Analysis, Failure Rate,<br>Failure Density, Life<br>testing                                                 | and introduction to various<br>terminologies of physics of failure.                                                                                                |                                 |                          |            |
|--------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------|------------|
| 23,24  | MTBF, MTTF                                                                                                  | Establish conceptual understanding<br>of MTBF and MTTF and solve<br>problems based on the two.                                                                     | Lecture                         | [AU1607.3]               | Class Quiz |
| 25,26  | Maintainability &<br>Availability                                                                           | Define concept of maintainability and<br>availability and relate it to product<br>life cycle.                                                                      | Lecture                         | [AU1607.3]               | Class Quiz |
| 27     | Reliability Allocation -<br>Series Systems, Parallel<br>Systems, Combined<br>Series and parallel<br>Systems | Describe different types of system<br>architecture and calculation of<br>system reliability for each type of<br>system.                                            | Lecture                         | [AU1607.5]               | Class Quiz |
| 28,29  | Block Diagrams                                                                                              | Estimate system reliability for<br>different kinds of system using Block<br>Diagram method and apply the<br>knowledge for a product.                               | Lecture,<br>Activity<br>and Lab | [AU1607.5]<br>[AU1607.6] | Class Quiz |
| 30,31  | Fault tree analysis                                                                                         | To understand various steps<br>followed for fault tree and safety<br>analysis of system and apply the<br>knowledge for a product.                                  | Lecture,<br>Activity<br>and Lab | [AU1607.5]<br>[AU1607.6] | Class Quiz |
| 31, 32 | Event tree analysis                                                                                         | To understand an understanding of<br>various steps followed to develop an<br>event tree for any<br>system/part/product and apply the<br>knowledge for any product. | Lecture,<br>Activity<br>and Lab | [AU1607.5]<br>[AU1607.6] | Class Quiz |
| 33-35  | Design review and validation                                                                                | Develop an understanding of DRV<br>and apply the knowledge for<br>different product cases.                                                                         | Lecture,<br>Activity<br>and Lab | [AU1607.5]<br>[AU1607.6] | Class Quiz |
| 36-38  | Design for reliability                                                                                      | Recall the steps followed to design<br>for reliability and apply the<br>knowledge for the same.                                                                    | Lecture,<br>Activity<br>and Lab | [AU1607.5]<br>[AU1607.6] | Class Quiz |
| 39     | Conclusion and Course<br>Summarization                                                                      | NA                                                                                                                                                                 | NA                              |                          | NA         |

#### Lab Plan:

| Exp. | Objective                                                    | Mode of      | Corresponding                           | Mode of       |
|------|--------------------------------------------------------------|--------------|-----------------------------------------|---------------|
| No.  |                                                              | Delivery     | со                                      | Assessing the |
|      |                                                              |              |                                         | Outcome       |
| 1.   | Introduction to Quality control                              | Lecture      | [AU1607.1]                              |               |
| 2.   | Introduction to Mini Tab Software                            | Lecture      | [AU1607.1]                              |               |
| 3.   | To generate random numbers using MiniTab Software            | Lab Practice | [AU1607.1]                              | PRS/PRE       |
| 4.   | To perform normality tests using MiniTab Software            | Lab Practice | [AU1607.2]                              | PRS/PRE       |
| 5.   | To plot an I-MR chart and interpret managerial implications  | Lab Practice | [AU1607.2]                              | PRS/PRE       |
| 6.   | To plot control charts for variables (X bar) and interpret   | Lab Practice |                                         | PRS/PRE       |
|      | managerial implications                                      |              |                                         |               |
| 7.   | To plot control charts for variables (R chart) and interpret | Lab Practice | [1]                                     | PRS/PRE       |
|      | managerial implications                                      |              |                                         |               |
| 8.   | To plot control charts for variables (X bar and R chart) and | Lab Practice | [1]                                     | PRS/PRE       |
|      | interpret managerial implications                            |              |                                         |               |
| 9.   | To plot control charts for variables (X bar and sigma chart) | Lab Practice | [1]                                     | PRS/PRE       |
|      | and interpret managerial implications                        |              |                                         |               |
| 10.  | To plot control charts for attributes (Defectives) and       | Lab Practice | [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] | PRS/PRE       |
|      | interpret managerial implications                            |              |                                         |               |
| 11.  | To plot control charts for attributes (Defects) and          | Lab Practice | [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] | PRS/PRE       |
|      | interpret managerial implications                            |              |                                         |               |
| 12.  | To perform process capability analysis and interpret         | Lab Practice | [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] | PRS/PRE       |
|      | managerial implications                                      |              |                                         |               |

# I. Course Articulation Matrix: (Mapping of COs with POs)

| со           | STATEMENT                                                                                                                                                       |    | CORRELATION WITH PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | CORRELATION<br>WITH PROGRAM<br>SPECIFIC<br>OUTCOMES |     |     |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------|----|----|----|----|----|----|----|----|----|----|-----------------------------------------------------|-----|-----|
|              |                                                                                                                                                                 | РО | РО                                | РО | РО | РО | РО | РО | РО | РО | РО | РО | РО | PSO                                                 | PSO | PSO |
|              |                                                                                                                                                                 | 1  | 2                                 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1                                                   | 2   | 3   |
| AU<br>1607.1 | Understand the philosophy<br>and basic concepts of<br>Quality Engineering and<br>Improvement.                                                                   | 2  | 1                                 | 0  | 1  | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 1  | 0                                                   | 0   | 2   |
| AU<br>1607.2 | Demonstrate the ability to design, use, and interpret control charts.                                                                                           | 2  | 1                                 | 0  | 0  | 0  | 0  | 1  | 0  | 2  | 3  | 0  | 1  | 0                                                   | 0   | 3   |
| AU<br>1607.3 | Perform analysis of process capability.                                                                                                                         | 3  | 1                                 | 0  | 2  | 2  | 0  | 1  | 0  | 1  | 0  | 0  | 1  | 0                                                   | 0   | 3   |
| AU<br>1607.4 | Demonstrate the ability to develop and interpret acceptance sampling plan.                                                                                      | 2  | 1                                 | 0  | 2  | 3  | 0  | 1  | 0  | 1  | 0  | 0  | 1  | 0                                                   | 0   | 3   |
| AU<br>1607.5 | Develop a basic<br>understanding of concepts<br>of reliability engineering<br>along with use of statistical<br>and design models in<br>reliability engineering. | 0  | 1                                 | 0  | 3  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 1  | 2                                                   | 2   | 2   |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

## CAD/CAM Lab | AU 1630 | 2 Credits | 0 0 4 2

Session: Jan 21 – May 21 | Faculty: Ashu Yadav and Satish Namdev | Class: III Year VI Semester

A. Introduction: This course is offered by Department of Automobile Engineering, targeting students who wish to pursue research & development in industries or higher studies in field of Automobile engineering as a design specialist. In this course, it is aimed to provide students with the CAD and CAM tools usages in the product development.

B. Course Objectives: At the end of the course, students shall be able to

[1630.1]. Construct 2D and 3D drawings of automotive components with the given geometry using CATIA.

**[1630.2].** Create assembly from the part drawings with the given constraints to enhance the employability skills. **[1630.3].** Generate 2D drawings with different views from 3D solid models.

[1630.4]. Develop the basic automotive components using CATIA-CAM tools.

## C. Program Outcomes and Program Specific Outcomes

[PO.1]. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,

and engineering specialization to the solution of complex engineering problems

**[PO.2]. Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

**[PO.3].** Design/development of solutions: Design solutions for complex engineering problems and <u>design</u> <u>system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

[PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research

methods including <u>design of experiments</u>, <u>analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions

[PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations

**[PO.6].** The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal</u>, <u>health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice

**[PO.7].** Environment and sustainability: Understand the <u>impact of the professional engineering solutions in</u> <u>societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development

**[PO.8].** Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices

**[PO.9]. Individual and teamwork**: Function effectively as an individual, and as a <u>member or leader in diverse</u> <u>teams</u>, and in multidisciplinary settings

**[PO.10]. Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

#### [PO.11]. Project management and finance: Demonstrate knowledge and understanding of the engineering

and management principles and apply these to one's own work, as a member and leader in a team, to manage projects

and in multidisciplinary environments

[PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change

#### **Programme Specific Outcomes:**

[PSO.1]. Analyse, design and diagnose automotive systems to improve performance, safety, service and maintenance.

[PSO.2]. Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.

[PSO.3]. Demonstrate the use of quality tools for internship projects to solve industrial problems.

#### **D.** Assessment Rubrics:

| Criteria                   | Description                                  | Maximum Marks                              |
|----------------------------|----------------------------------------------|--------------------------------------------|
| Internal Assessment        | Lab work and Assignments                     | 60 %                                       |
| (Summative)                |                                              |                                            |
|                            |                                              |                                            |
| End Term Exam              | End semester examination                     | 40 %                                       |
| (Summative)                |                                              |                                            |
|                            | Total                                        | 100                                        |
| Attendance                 | A minimum of 75% Attendance is requi         | ired to be maintained by a student to be   |
| (Formative)                | qualified for taking up the End Semest       | er examination. The allowance of 25%       |
|                            | includes all types of leaves including med   | ical leaves.                               |
| Make up Assignments        | Students who misses a class will have to     | report to the teacher about the absence. A |
| (Formative)                | makeup assignment on the topic taught o      | n the day of absence will be given which   |
|                            | has to be submitted within a week from t     | he date of absence. No extensions will be  |
|                            | given on this. The attendance for that p     | articular day of absence will be marked    |
|                            | blank, so that the student is not account    | ted for absence. These assignments are     |
|                            | limited to a maximum of 5 throughout the     | e entire semester.                         |
| Homework/ Home Assignment/ | There are situations where a student may     | have to work in home, especially before    |
| Activity Assignment        | a flipped classroom. Although these work     | as are not graded with marks. However, a   |
| ;(Formative)               | student is expected to participate and p     | erform these assignments with full zeal    |
|                            | since the activity/ flipped classroom parti- | cipation by a student will be assessed and |
|                            | marks will be awarded.                       |                                            |

## E. Syllabus

Exercises on geometric modelling of automotive components using CATIA, CAM using CATIA.

#### F. TEXT BOOKS

- 1. T1:- S. Tickoo, CATIA V5-6R2016 for Designers, BPB Publications, 14th Edition 2017.
- 2. T2:- Lab manual for CNC turning, CNC milling.

#### G. REFERENCE BOOKS

R1. Online manuals for CATIA and ANSYS

| Lab No | Topics                                                                                                                                                                                                                                  | Session Outcome                                                                                                                                                       | Mode of           | Corresponding    | Mode of Assessing the                 |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|---------------------------------------|
| 1,2    | Introduction to sketcher workbench to draw<br>2D geometries- Standard tool bar,<br>profile tool bar, view tool bar, sketch tool<br>bar, constraint tool bar, Introduction to Part<br>design workbench- Sketch based features<br>toolbar | Students will be able to apply principles of<br>engineering sciences to generate 2D sketches<br>and analyse for a better design of machine<br>components and systems. | Hands on          | COI              | Student lab practice                  |
| 3,4    | Part design workbench- Dress up feature tool<br>bar, Transformation feature tool bar,<br>Measure, surface-based feature tool bar,<br>Drafting                                                                                           | Students will be capable to effectively communicate about the 3D models design                                                                                        | Hands on          | CO1 and CO2      | Student lab practice on given problem |
| 5,6    | Practise Exercise on part design                                                                                                                                                                                                        | 2D and 3D Modelling in CATIA                                                                                                                                          | Hands on          | CO1              | Student lab practice                  |
| 7,8    | Demonstration and practise exercise on<br>Assembly                                                                                                                                                                                      | Students will be able to apply fundamental<br>engineering knowledge in the design,<br>modelling and assembly of machine<br>components                                 | Hands on          | CO2              | Student lab practice                  |
| 9,10   | Assignment problems                                                                                                                                                                                                                     | 2D and 3D Modelling in CATIA                                                                                                                                          | Hands on          | CO1, CO2 and CO4 | University Exam                       |
| 11,12  | Surfacing Modelling based Component:<br>Environment, Tool bars, Surface Creation                                                                                                                                                        | Over view of surface modelling on CATIA                                                                                                                               | Hands on          | CO3              | Student lab practice                  |
| 13,14  | Practice on Extrude, Revolve, Sphere,<br>Cylinder                                                                                                                                                                                       | Students will able to understand the basic<br>surface modelling commands through part<br>modelling.                                                                   | Hands on          | CO3              | Student lab practice                  |
| 15,16  | Concept of Surface Modification, Surface Editing                                                                                                                                                                                        | Students will know about surface modification and editing.                                                                                                            | Hands on          | CO3 and CO4      | Student lab practice                  |
| 17,18  | Practice on Trim, Split, Shape Fillet, Close<br>Surface, Thickness                                                                                                                                                                      | Students will able to build a shape design of the machine element by using a different commands                                                                       | Hands on          | CO3 and CO4      | Student lab practice                  |
| 19,20  | Assignment problem                                                                                                                                                                                                                      | Surface modelling on CATIA                                                                                                                                            | Hands on          | CO3 and CO4      | Student lab practice                  |
| 21,22  | Introduction To Drafting: Initial Drafting<br>setting, Sheet Background, Views (ortho,<br>ISO), Dimensions (Types Generate<br>Dimension & Create Dimension).                                                                            | Students will able to understand basic concept of drafting and detailing.                                                                                             | Hands om          | CO3              | Students lab practice                 |
| 23,24  | Introduction to G and M codes for CNC milling and drilling                                                                                                                                                                              | Students will be able to understand CNC programming codes                                                                                                             | Demonstra<br>tion | CO4              | Viva-Voce                             |
| 25,26  | Demonstration on CNC Milling machine                                                                                                                                                                                                    | Students will be capable of conducting CNC                                                                                                                            | Live demo         | CO4              | Observational Data.                   |

# I. Course Articulation Matrix: (Mapping of COs with POs)

| СО           | STATEMENT                                                                                  |         | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |         |         |         | CORRELATION WITH<br>PROGRAM SPECIFIC<br>OUTCOMES |          |          |       |       |       |
|--------------|--------------------------------------------------------------------------------------------|---------|-----------------------------------|---------|---------|---------|---------|---------|---------|---------|--------------------------------------------------|----------|----------|-------|-------|-------|
|              |                                                                                            | PO<br>1 | PO<br>2                           | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10                                         | PO<br>11 | PO<br>12 | PSO 1 | PSO 2 | PSO 3 |
| AU<br>1630.1 | Construct 2D and 3D drawings of automotive components with the given geometry using CATIA. | 2       |                                   | 1       |         | 1       |         | ,       |         |         | 2                                                |          | 1        | 2     |       |       |
| AU<br>1630.2 | Create assembly from the part drawings with the given constraints.                         | 2       | 2                                 | 1       |         |         |         |         |         |         | 1                                                |          | 1        | 2     |       |       |
| AU<br>1630.3 | Generate 2D drawings with different views from 3D solid models.                            | 3       | 2                                 | 2       |         | 1       |         |         |         |         | 2                                                |          | 2        | 2     |       |       |
| AU<br>1630.4 | Develop the basic automotive components using CATIA-CAM tools.                             | 2       | 2                                 | 1       |         | 1       |         |         |         |         | 1                                                |          | 2        | 1     |       |       |

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Product Design and Development | AU 1657 | 4 Credits | 3 0 2 4

Session: Jan 20 – May 20 | Faculty: Dr. Avanish Singh Chauhan | Class: VI Semester (Program Elective)

- A. Introduction: This course is offered by Dept. of Automobile Engineering for sixth semester students as a program elective course targeting the students who wish to enhance their knowledge in the area of research and development of automotive products. This course provides knowledge of the design process and conceptual design of products. This course offers in-depth knowledge about product design, development, and management process; along with an introductory level knowledge of engineering design. This course is designed to help students learn how to turn product ideas into commercial products.
- B. Course Objectives: At the end of the course, students will be able to
- [1657.1]. Identify and analyze various stages of product design and development processes in manufacturing industries.
- [1657.2]. Analyze, evaluate, and apply the methodologies for product design, development and management.
- [1657.3]. Undertake methodical approaches to the management of product development to satisfy customer needs and develop entrepreneurship skills.
- [1657.4]. Be familiar with product lifecycle management and implement various PLM strategies to bridge gaps in information and workflow.
- C. Program Outcomes and Program Specific Outcomes
  - **[PO.1].** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
  - **[PO.2]. Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
  - **[PO.3].** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
  - **[PO.4].** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
  - **[PO.5].** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
  - **[PO.6].** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
  - **[PO.7].** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
  - [PO.8]. Ethics: Apply ethical principles and commit to professional ethics\_and responsibilities and norms of the engineering practices
  - **[PO.9].** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
  - **[PO.10].** Communication: Communicate effectively\_on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
  - **[PO.11]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- **[PSO.1].** Autotronics and Electric Vehicle Technology: Apply\_knowledge of electrical and electronics engineering for providing automobile engineering solutions
- [PSO.2]. Alignment to Super Qualification packs of ASDC: Demonstrate knowledge and performance criteria as defined by ASDC super qualification packs for R&D or Quality or Service Engineering
- **[PSO.3].** Application of Lean Six Sigma Methodology: Demonstrate through an internship project, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

## **D.** Assessment Rubrics:

| Criteria                   | Description                                                                     | Maximum Marks                              |  |  |  |  |  |  |
|----------------------------|---------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|
|                            | Sessional Exam I (Close Book)                                                   | 15                                         |  |  |  |  |  |  |
| Internal Assessment        | Sessional Exam II (Close Book)                                                  | 15                                         |  |  |  |  |  |  |
| (Summative)                | In class Quizzes and Assignments,                                               | 10                                         |  |  |  |  |  |  |
|                            | Activity feedbacks                                                              |                                            |  |  |  |  |  |  |
|                            | Lab Exercises                                                                   | 20 (15+5)                                  |  |  |  |  |  |  |
| End Term Exam              | End Term Exam (Close Book)                                                      | 40                                         |  |  |  |  |  |  |
| (Summative)                |                                                                                 |                                            |  |  |  |  |  |  |
|                            | Total                                                                           | 100                                        |  |  |  |  |  |  |
| Attendance                 | A minimum of 75% Attendance is requi                                            | ired to be maintained by a student to be   |  |  |  |  |  |  |
| (Formative)                | qualified for taking up the End Semest                                          | ter examination. The allowance of 25%      |  |  |  |  |  |  |
|                            | includes all types of leaves including med                                      | lical leaves.                              |  |  |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student may                                        | have to work in home, especially before    |  |  |  |  |  |  |
| Activity Assignment        | a flipped classroom. Although these work                                        | as are not graded with marks. However, a   |  |  |  |  |  |  |
| (Formative)                | student is expected to participate and perform these assignments with full zeal |                                            |  |  |  |  |  |  |
|                            | since the activity/ flipped classroom parti                                     | cipation by a student will be assessed for |  |  |  |  |  |  |
|                            | internal evaluation.                                                            |                                            |  |  |  |  |  |  |

# E. Syllabus

**Introduction:** Design theory, design materials, human factors in design, man-machine system, applied ergonomics, characteristics of successful product development, challenges to product development. **Fatigue Considerations in Design:** Variable load, loading pattern, endurance stresses, influence of size, surface finish, notch sensitivity and stress concentration, Goodman line, Soderberg line, Design of machine members subjected to combined, steady and alternating stresses, Design for finite life, Design of Shafts under Variable Stresses.

**Development process and product planning:** Generic development process, Concept development, product development process flows, product planning process-Advanced Product Quality Planning.

**Product specifications:** Introduction to QFD, Identify Voice of Customer (VOC) using Kano Analysis and prioritize for using QFD. Product specification, steps to establish the target specifications using QFD.

**Concept generation:** Concept generation, five step concept generation method, concept selection, concept screening, concept testing, and product architecture.

**Product design methods:** Creative and rational, clarifying objectives - the objective tree method, establishing functions- the function analysis method, setting requirements – the performance specification method, determining characteristics using QFD, generating alternatives – morphological chart method, evaluating alternatives – the weighted objective method, improving details – the value engineering method and design strategies.

**Product Lifecycle Management:** Concept of Product Life Cycle, Components / Elements of PLM, Emergence of PLM, Significance of PLM, Customer Involvement. Company's PLM vision, The PLM Strategy, Principles for PLM strategy, Preparing for the PLM strategy, Developing a PLM strategy, Strategy identification and selection, Change Management for PLM. Understand the information flow process for product lifecycle management (PLM), Product Data and Product Workflow. Identify the gaps in the information flow and devise PLM database. Collaborate with system developers and implement PLM database.

Lab: Exercises based on Kano analysis, QFD, perceptual mapping, and idea generation.

#### F. Text Books

T1. Product Design and Development, Ulrich K. T, and Eppinger S.D, Tata McGraw Hill, Special Indian Edition.

## G. Reference Books

- R1. Product Design and Manufacturing, Chitale, A. K. and Gupta, R. C., PHI.
- R2. NPTEL Video Lectures: Product Design and Development.

| Lec No   | Topics                  | Session Outcome                              | Mode of  | Corresponding | Mode of       |
|----------|-------------------------|----------------------------------------------|----------|---------------|---------------|
|          |                         |                                              | Delivery | CO            | Assessing the |
|          |                         |                                              |          |               | Outcome       |
| 1        | Introduction and Course | To acquaint and clear teachers               | Lecture  | NA            | NA            |
|          | Hand-out briefing       | expectations and understand student          |          |               |               |
|          |                         | expectations                                 |          |               |               |
| 2        | Introduction: Project   | To acquaint and clear teachers               | Lecture  | NA            | NA            |
|          | work briefing           | expectations from project and the project    |          |               |               |
|          |                         | work timeline                                |          |               |               |
| 3        | Introduction: Design    | Understand and explain the theories          | Lecture  | 1657.1        | Sessional 1   |
|          | Theory and Materials    | and materials involved in design of a        |          |               | ETE           |
|          |                         | product                                      |          |               |               |
| 4        | Introduction: Human     | Understand and analyse various               | Lecture  | 1657.1        | Sessional 1   |
|          | factors in design, man  | human factors and their effects in a product |          |               | ETE           |
|          | machine system          | design                                       |          |               |               |
| 5        | Characteristics of      | Identify and understand the                  | Lecture  | 1657.1        | Sessional 1   |
|          | successful              | characteristics associated with a            |          |               | ETE           |
|          | product                 | successful product development               |          |               |               |
| 6        | Challenges to product   | Understand various challenges                | Lecture  | 1657.1        | Sessional 1   |
|          | development             | associated with product development and      |          |               | ETE           |
|          | -                       | take necessary steps to overcome the         |          |               |               |
|          |                         | challenges                                   |          |               |               |
| 7        | Development process and | Understand and explain the generic           | Lecture  | 1657.2        | Sessional I   |
|          | product planning        | product development process and product      |          |               | ETE           |
|          |                         | policy of an organization                    |          |               |               |
| 8,9,10   | Development process and | Understand product life cycle and            | Lecture  | 1657.2        | Sessional I   |
|          | product planning        | develop concepts, workflows and analyse      |          |               | ETE           |
|          |                         | product development                          |          |               |               |
| 11,12    | Development process and | Recall concepts from product                 | Lecture  | 1657.2        | Sessional I   |
|          | product planning        | development analysis and apply concepts to   |          | 1657.3        | ETE           |
|          |                         | develop advanced quality planning            |          |               |               |
|          |                         |                                              |          |               |               |
| 13,14    | Product specifications  | Understand and explain the                   | Lecture  | 1657.3        | Sessional II  |
|          |                         | importance of product development tools      |          |               | ETE           |
|          |                         | like QFD, VOC etc                            |          |               |               |
| 15,16,17 | Product specifications  | Recall concepts of QFD and other             | Lecture  | 1657.3        | Sessional II  |
|          |                         | tools and apply concepts to identify the     |          | 1657.4        | ETE           |
|          |                         | customer requirements                        |          |               |               |
| 18,19,20 | Product specifications  | Analyse and understand customer              | Lecture  | 1657.4        |               |
|          |                         | needs, translate them and establish product  |          | 1657.5        |               |
|          |                         | specifications                               |          |               |               |
| 21,22,23 | Product specification   | Apply QFD to establish target                | Lecture  | 1657.4        | Sessional II  |
|          |                         | specifications based on customer             |          | 1657.5        |               |
|          |                         | equirements                                  |          |               |               |
| 24,25,26 | Concept generation      | Understand five steps of concept             | Lecture  | 1657.4        | Sessional II  |
|          |                         | generation and apply these steps to develop  |          | 1657.5        |               |
|          |                         | the concept based on customer requirements   |          |               |               |

| 27,28 | Product design methods          | Analyse, understand, differentiate various product design methods                                            | Lecture | 1657.4<br>1657.5 | ETE |
|-------|---------------------------------|--------------------------------------------------------------------------------------------------------------|---------|------------------|-----|
| 29,30 | Product design methods          | Recall concepts and select the right<br>design method by clarifying design<br>objectives                     | Lecture | 1657.4<br>1657.5 | ETE |
| 31,32 | Product design methods          | Analyse design objectives and<br>develop alternative approaches to select<br>design methods by incorporating | Lecture | 1657.4<br>1657.5 | ETE |
| 33,34 | Product lifecycle<br>management | Understand and explain various concepts and elements of PLM and their significance                           | Lecture | 1657.6           | ETE |
| 35,36 | Product lifecycle<br>management | Understand the importance of customer involvement, and company's PLM vision                                  | Lecture | 1657.6           | ETE |
| 37,38 | Product lifecycle<br>management | Understand PLM strategy and explain the principles of PLM strategy                                           | Lecture | 1657.6           | ETE |
| 39.40 | Product lifecycle<br>management | Recall PLM concepts and develop a PLM<br>strategy for their own project using various<br>PLM principles      | Lecture | 1657.6           | ETE |
| 41,42 | Product lifecycle<br>management | Understand information flow, identify and<br>bridge gaps in PLM workflow in an<br>organization               | Lecture | 1657.6           | ETE |

# I. Course Articulation Matrix: (Mapping of COs with POs)

|        |                                    |    |                                          |    |    |    |    | Correlation With |    |    |                  |    |          |     |     |     |
|--------|------------------------------------|----|------------------------------------------|----|----|----|----|------------------|----|----|------------------|----|----------|-----|-----|-----|
| CO     | STATEMENT                          |    | <b>Correlation With Program Outcomes</b> |    |    |    |    |                  |    |    | Program Specific |    |          |     |     |     |
|        |                                    |    |                                          |    |    |    |    |                  |    |    |                  |    | Outcomes |     |     |     |
|        |                                    | PO | PO                                       | PO | PO | PO | PO | PO               | PO | PO | PO               | PO | PO       | PSO | PSO | PSO |
|        |                                    | 1  | 2                                        | 3  | 4  | 5  | 6  | 7                | 8  | 9  | 10               | 11 | 12       | 1   | 2   | 3   |
| AU     | Identify and analyze various       |    |                                          |    |    |    |    |                  |    |    |                  |    |          |     |     |     |
| 1657.1 | stages of product design and       | 2  |                                          |    |    |    |    |                  |    |    |                  |    | 1        |     | 2   |     |
|        | development processes in           | 2  |                                          |    |    |    |    |                  |    |    |                  |    | 1        |     | Z   |     |
|        | manufacturing industries           |    |                                          |    |    |    |    |                  |    |    |                  |    |          |     |     |     |
| AU     | Analyze, evaluate, and apply the   |    |                                          |    |    |    |    |                  |    |    |                  |    |          |     |     |     |
| 1657.2 | methodologies for product          | 2  | 2                                        | 2  |    | ~  |    |                  |    | 2  |                  | 1  |          |     | 2   |     |
|        | design, development and            | 3  | 3                                        | 3  |    | 2  |    |                  |    | 2  |                  | 1  |          |     | 3   |     |
|        | management                         |    |                                          |    |    |    |    |                  |    |    |                  |    |          |     |     |     |
| AU     | Undertake methodical               |    |                                          |    |    |    |    |                  |    |    |                  |    |          |     |     |     |
| 1657.3 | approaches to the management of    |    |                                          |    |    |    |    |                  |    |    |                  |    |          |     |     |     |
|        | product development to satisfy     | 3  | 2                                        | 3  |    | 2  | 1  |                  | 1  | 2  | 2                | 1  |          | 1   | 3   | 1   |
|        | customer needs and develop         |    |                                          |    |    |    |    |                  |    |    |                  |    |          |     |     |     |
|        | entrepreneurship skills            |    |                                          |    |    |    |    |                  |    |    |                  |    |          |     |     |     |
| AU     | Be familiar with product lifecycle |    |                                          |    |    |    |    |                  |    |    |                  |    |          |     |     |     |
| 1657.4 | management and implement various   | 1  |                                          |    |    | 2  |    |                  |    |    |                  |    | 1        |     | 3   |     |
|        | PLM strategies to bridge gaps in   | 1  |                                          |    |    | 2  |    |                  |    |    |                  |    | 1        |     | 5   |     |
|        | information and workflow           |    |                                          |    |    |    |    |                  |    |    |                  |    |          |     |     |     |

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Automotive Air Conditioning Systems| AU 1658 | 4 Credits | 3 0 2 4

Session: Feb 21 – Jun 21 | Faculty: Mr Dharmesh Yadav | Class: III Yr Program Elective

- **A. Introduction:** Vehicle air conditioning is the important feature of any modern vehicle. This course is designed to learn the fundamental principles and basic concept of vehicle air conditioner system. Also this will help the students in understanding the troubles occurring in vehicle air conditioner system, its possible causes and required measures. The student will develop the ability to use the instruments and tools to check and service the system.
- B. Course Outcomes: At the end of the course, students will be able to
- [1658.1]. Identify various components of Vehicle Air conditioning and heating system.
- **[1658.2].** Describe various concepts related to Air conditioning and heating system.
- [1658.3]. Operate manually and automatic Air conditioning and heating system.

[1658.4]. Diagnose various faults in air conditioning system by using suitable tools and instruments.

[1658.5]. Practice safety rules while servicing of Air conditioning and heating system to develop professional skills.

# C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. **Ethics**: Apply ethical principles and commit to professional ethics\_and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: Communicate effectively\_on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

[PSO.1] Analyse, design and diagnose automotive systems to improve performance, safety, service and maintenance.

[PSO.2] Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.

[PSO.3] Demonstrate the use of quality tools for internship projects to solve industrial problems.

#### D. Assessment Plan:

| Criteria                   | Description                                                                 | Maximum Marks                             |  |  |  |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|--|
|                            | Sessional Exam I                                                            | 15                                        |  |  |  |  |  |  |  |  |
| Internal Assessment        | Sessional Exam II                                                           | 15                                        |  |  |  |  |  |  |  |  |
| (Summative)                | In class Quizzes and Assignments ,                                          | 10                                        |  |  |  |  |  |  |  |  |
|                            | Activity feedbacks (Accumulated and                                         |                                           |  |  |  |  |  |  |  |  |
|                            | Averaged)                                                                   |                                           |  |  |  |  |  |  |  |  |
|                            | Class Assessment of Practical                                               | 15                                        |  |  |  |  |  |  |  |  |
|                            | End Term Practical Exam                                                     | 05                                        |  |  |  |  |  |  |  |  |
| End Term Exam              | End Term Exam                                                               | 40                                        |  |  |  |  |  |  |  |  |
| (Summative)                |                                                                             |                                           |  |  |  |  |  |  |  |  |
|                            | Total                                                                       | 100                                       |  |  |  |  |  |  |  |  |
| Attendance                 | A minimum of 75% Attendance is requir                                       | red to be maintained by a student to be   |  |  |  |  |  |  |  |  |
| (Formative)                | qualified for taking up the End Semest                                      | er examination. The allowance of 25%      |  |  |  |  |  |  |  |  |
|                            | includes all types of leaves including medi                                 | cal leaves.                               |  |  |  |  |  |  |  |  |
| Make up Assignments        | Students who misses a class will have to                                    | report to the teacher about the absence.  |  |  |  |  |  |  |  |  |
| (Formative)                | A makeup assignment on the topic taug                                       | ght on the day of absence will be given   |  |  |  |  |  |  |  |  |
|                            | which has to be submitted within a                                          | week from the date of absence. No         |  |  |  |  |  |  |  |  |
|                            | extensions will be given on this. The atte                                  | ndance for that particular day of absence |  |  |  |  |  |  |  |  |
|                            | will be marked blank, so that the stude                                     | nt is not accounted for absence. These    |  |  |  |  |  |  |  |  |
|                            | assignments are limited to a maximum of                                     | 5 throughout the entire semester.         |  |  |  |  |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student may have to work in home, especially   |                                           |  |  |  |  |  |  |  |  |
| Activity Assignment        | before a flipped classroom. Although these works are not graded with marks. |                                           |  |  |  |  |  |  |  |  |
| (Formative)                | However, a student is expected to par                                       | ticipate and perform these assignments    |  |  |  |  |  |  |  |  |
|                            | with full zeal since the activity/ flipped cla                              | ssroom participation by a student will be |  |  |  |  |  |  |  |  |
|                            | assessed and marks will be awarded.                                         |                                           |  |  |  |  |  |  |  |  |

## E. SYLLABUS

**Introduction to Air Conditioning**: Components of Air conditioners, Operation of an Air-conditioning System, Type of Air conditioners, Heaters, Vehicle ventilation, combination heater and air conditioner, manually controlled air conditioner and heater system, automatically controlled air conditioner and heater systems, Air Heating equipment, Ducts, Registers and Grills, blowers, filters, Trouble Shooting and Services, Servicing of Air Conditioners, Psychrometry: Psychometric properties and processes, sensible and latent heat loads, characterization and SHF load for ventilation and filtration, concepts of SHF and ESHF and ADP, concepts of human comfort and effective temperature,

Lab:- Tools used for Air conditioning overhauling, service, diagnosis and repair, Overhauling, routine service, diagnosis and repair of compressor, evaporator, condenser, receiver dryer expansion valve, accumulator and orifice, Testing of air conditioning system

## **.TEXT BOOKS**

- **TI.** B. H. Dwiggins, Automotive Air Conditioning, Cengage Learning., 2001.
- **T2.** 2. *M.* Prasad, Refrigeration and Air Conditioning New Age International, 2002.

#### **REFERENCE BOOKS**

RI. CP Arora, Refrigeration and Air Conditioning, Tata Mc Graw Hill, 2008.

| Lec | Topics           | Session Objective                 | Mode of  | Corresponding | Mode of Assessing   |
|-----|------------------|-----------------------------------|----------|---------------|---------------------|
| No  |                  |                                   | Delivery | СО            | the Outcome         |
| I   | Introduction and | To acquaint and clear teachers    | Lecture  | NA            | NA                  |
|     | Course Hand-out  | expectations and understand       |          |               |                     |
|     | briefing         | student expectations              |          |               |                     |
| 2   | Introduction to  | Describe the purpose and function | Flipped  | [1658.1]      | In Class Quiz ( Not |

|        | Air Conditioning  | of Air conditioning system in        | Classroom      |                 | Accounted)      |
|--------|-------------------|--------------------------------------|----------------|-----------------|-----------------|
|        |                   | automobiles                          |                |                 |                 |
| 3,4    | Components of     | Describe the purpose and function    | Lecture        | [1658.1]        | In Class Quiz   |
|        | Air conditioners  | of individual component of Air       |                |                 |                 |
| - /    | <u> </u>          | conditioning system                  |                | 51 ( 50 23      |                 |
| 5,6    | Operation of an   | Explain working principle and how    | Lecture        | [1658.3]        | Home Assignment |
|        | Air-conditioning  | Air conditioning system works        |                |                 |                 |
| 70     | System            | Describe various types of Air        |                |                 | In Class Quiz   |
| 7.0    | conditioners      | conditioning systems used in         | Lecture        | [1050.1]        | In Class Quiz   |
|        | conditioner 3     | automobiles with their specific      |                |                 |                 |
|        |                   | purposes                             |                |                 |                 |
| 9      | Heaters           | Describe various types of Heater     | Activity       | [1658.1]        | Class Ouiz      |
|        |                   | and explain its role in Air          | (Think Pair    |                 |                 |
|        |                   | conditioning systems                 | Share)         |                 |                 |
| 10     | Vehicle           | Identify the importance of proper    | Activity       | [1658.2]        | Class Quiz      |
|        | ventilation       | ventilation in vehicle and explain   | (Jigsaw)       |                 |                 |
|        |                   | how it can be achieved               |                |                 |                 |
| 11     | combination       | Describe the working of              | Flipped Class  | [1658.3]        | Home Assignment |
|        | heater and air    | combination heater and air           |                |                 | Class Quiz      |
| 12.12  | conditioner       | conditioner with its usefulness      | <b>A</b>       | <u>[[([0])]</u> |                 |
| 12,13  | manually          | Explain the history and journey of   | Activity       | [1658.3]        | Class Quiz      |
|        | controlled air    | this technology development and      | (Inink Pair    |                 |                 |
|        | heater system     | controlled air conditioner and       | Silare)        |                 |                 |
|        | neater system     | heater system with its usefulness    |                |                 |                 |
| 14.15  | automatically     | Explain the need and importance of   | Lecture        | [1658.3]        | Class Quiz      |
|        | controlled air    | this technology development and      |                | []              |                 |
|        | conditioner and   | Describe the working of              |                |                 |                 |
|        | heater systems    | automatically controlled air         |                |                 |                 |
|        | -                 | conditioner and heater system with   |                |                 |                 |
|        |                   | its usefulness                       |                |                 |                 |
| 16     | Air Heating       | Explain the need and importance of   | Lecture        | [1658.1]        | Class Quiz      |
| 17.10  | equipment         | Air Heating equipment                | 1.             |                 |                 |
| 17,18  | Ducts             | Describe the purpose, importance     | Jigsaw         | [1658.1]        | Class Quiz      |
|        |                   | or proper ducting and explain        |                |                 |                 |
|        |                   | pro's and con's                      |                |                 |                 |
| 19     | Registers and     | Describe the purpose importance      | Lecture.       | [[658.]]        | Class Quiz      |
|        | Grills            | of using Registers and Grills and    | Activity       | []              | 0.000 20.2      |
|        |                   | explain various types of Registers   | ,              |                 |                 |
|        |                   | and Grills with pro's and con's      |                |                 |                 |
| 20     | Blowers           | Explain various types of blowers     | Lecture,       | [1658.1]        | Class Quiz      |
|        |                   | used and Describe working of         | Activity       |                 |                 |
|        |                   | various blowers                      |                |                 |                 |
| 21     | filters,          | Explain various types of filters usd | Lecture        | [1658.1]        | Class Quiz      |
| 22.22  | <b>T</b> 11 01 ·  | with maintenance requirements        |                |                 |                 |
| 22,23  | I rouble Shooting | Examine proper functioning of        | Lecture        | [1658.4]        | Class Quiz      |
|        |                   | faults and trouble sheet             |                |                 |                 |
| 24.25  | Services          | Analyse the performance and          | Flipped Class  | [1658 5]        | Class Quiz      |
| ∠-7,∠J |                   | Explain how to service individual    | i iippeu Ciass | [1050.5]        | Ciass Quiz      |
|        |                   | component. if required               |                |                 |                 |
| 26     | Servicing of Air  | Analyse the performance by           | Flipped Class  | [1658.4]        | Class Quiz      |
|        | Conditioners      | examining its proper functioning     |                |                 | _               |
|        |                   | and servicing procedure of           |                |                 |                 |
|        |                   | Automotive air conditioning system   |                |                 |                 |
| 27     | Psychometry       | Describe the fundamentals of         | Flipped Class  | [1658.2]        | Class Quiz      |
|        | <b>-</b> .        | Psychometry                          |                |                 |                 |
| 28,29  | Psychometric      | Describe the various properties of   | Flipped Class  | [1658.2]        | Class Quiz      |
| 20.21  | properties        | Psychometric properties              |                | 51720.03        |                 |
| 30,31  | processes,        | Explain the various processes        | Flipped Class  | [1658.2]        | Class Quiz      |

|       |                                                                                                     | involved in Psychometry                |                   |                   |                    |  |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|-------------------|--------------------|--|--|--|--|
| 32    | sensible and                                                                                        | Describe the sensible and latent       | Flipped Class     | [1658.2]          | Class Quiz         |  |  |  |  |
|       | latent heat loads,                                                                                  | heat and explain heat loads            |                   |                   |                    |  |  |  |  |
| 33.34 | characterization                                                                                    | Understand and Examine                 | Lecture           | [1658.2]          | Class Quiz         |  |  |  |  |
|       | and SHF load for                                                                                    | characterization and SHF load for      |                   |                   |                    |  |  |  |  |
|       | ventilation and                                                                                     | ventilation and filtration,            |                   |                   |                    |  |  |  |  |
|       | filtration,                                                                                         |                                        |                   |                   |                    |  |  |  |  |
| 35,36 | concepts of SHF                                                                                     | Describe concepts of SHF and ESHF      | Flipped           | [1658.2]          | Class Quiz         |  |  |  |  |
|       | and ESHF and                                                                                        | and ADP                                | Classroom         |                   |                    |  |  |  |  |
| 27.20 | ADP                                                                                                 |                                        |                   | 51720.03          |                    |  |  |  |  |
| 37,38 | concepts of                                                                                         | Explain concepts of human comfort      | Flipped           | [1658.2]          | Class Quiz         |  |  |  |  |
| 20.40 | numan comfort                                                                                       | and analyse its factors affecting      |                   | 51720.03          |                    |  |  |  |  |
| 39,40 | concepts of                                                                                         | Explain concepts of effective          | Flipped           | [1658.2]          | Class Quiz         |  |  |  |  |
|       | enective                                                                                            | temperature and analyse its factors    | Classroom         |                   |                    |  |  |  |  |
| 41    | Conducion and                                                                                       |                                        |                   |                   | ΝΙΔ                |  |  |  |  |
| 41    | Conclusion and                                                                                      | NA                                     | INA               | INA               | INA                |  |  |  |  |
|       | Summarization                                                                                       |                                        |                   |                   |                    |  |  |  |  |
|       | Summanization                                                                                       | Lab Module                             |                   |                   |                    |  |  |  |  |
| 1     | Study about safe                                                                                    | practices and tools & equipment for    | air conditionin   | a systems         | [1658 1]           |  |  |  |  |
| 1     | Study about sale                                                                                    | practices and tools & equipment for    |                   | g systems         |                    |  |  |  |  |
| 2     | Study about basic                                                                                   | e refrigeration circuit used in automo | otive air conditi | oning systems     | [1658.1]; [1658.2] |  |  |  |  |
| 3,4   | Study about vario                                                                                   | ous components used in automotive a    | air conditioning  | g systems         | [1658.2]; [1658.3] |  |  |  |  |
| 5,6   | Study about diag                                                                                    | nosis and repair procedures for autor  | motive air cond   | itioning systems  | [1658.2]; [1658.3] |  |  |  |  |
| 7,8   | Study about various automotive air conditioning control systems[1658.3]; [1658.4]                   |                                        |                   |                   |                    |  |  |  |  |
| 9     | Study about automatic temperature control of automotive air conditioning systems [1658.3]; [1658.5] |                                        |                   |                   |                    |  |  |  |  |
| 10,11 | Study about diag                                                                                    | nosis & repair of automatic temper     | rature control o  | of automotive a/c | [1658.4]; [1658.5] |  |  |  |  |
|       | systems                                                                                             |                                        |                   |                   |                    |  |  |  |  |
| 12    | Study about autor                                                                                   | notive air conditioning system for h   | ybrid vehicles    |                   | [1658.2]; [1658.4] |  |  |  |  |

# G. Course Articulation Matrix: (Mapping of COs with POs)

| со       | STATEMENT                                                                                                  |         | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |         |         |         |          |          |          |    |    | CORRELATION<br>WITH<br>PROGRAM<br>SPECIFIC<br>OUTCOMES |  |  |
|----------|------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----|----|--------------------------------------------------------|--|--|
|          |                                                                                                            | PO<br>1 | PO<br>2                           | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12 | PS | PS | PS                                                     |  |  |
| [1658.1] | Identify various<br>components of<br>Vehicle Air<br>conditioning and<br>heating system.                    | 1       |                                   |         |         |         |         | 2       |         |         | 10       |          | 3        | 1  | 02 |                                                        |  |  |
| [1658.2] | Apply various<br>concepts related to<br>Air conditioning<br>and heating system.                            |         | 2                                 | 1       |         |         | 1       |         | 2       |         |          |          | 2        | 2  |    |                                                        |  |  |
| [1658.3] | Operate manually<br>and automatic Air<br>conditioning and<br>heating system.                               |         |                                   |         | 2       |         |         |         |         | 1       |          |          | 2        | 3  |    |                                                        |  |  |
| [1658.4] | Diagnose various<br>faults in air<br>conditioning<br>system by using<br>suitable tools and<br>instruments. |         | 2                                 |         |         | 3       |         |         | 2       |         |          |          |          | 3  |    |                                                        |  |  |
| [1658.5] | Practice safety<br>rules while<br>servicing of Air<br>conditioning and<br>heating system.                  |         |                                   |         |         |         |         |         |         |         |          |          | 2        | 2  |    |                                                        |  |  |



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Computer Aided Design & FEA| AU 1660 | 3 Credits | 2 0 2 4

Session: Jan 21 - May 21 | Faculty: Ashu Yadav | Class: III Year VI Semester

A. Introduction: Computer aided design & FEA is widely used in industry for analysing and modelling structures and creating solutions for various problems at a faster and efficient ways. The CAD & FEA is particularly useful for engineering designs that are too complicated to be solved by conventional designing process. The brief contents of the course include Introduction to CAD fundamentals, transformation, mathematical representation of curves, surface and solids, synthetic surfaces, solid modelling, Finite Element Modelling (FEM) approaches and Analysis.

**B.** Course Objectives: At the end of the course, students shall be able to

**[1660.1].** Explain the importance of CAD and FEA in engineering with examples.

**[1660.2].** Evaluate the geometric transformations for CAD/CAM application.

**[1660.3].** Represent geometric curves, surfaces and solids.

[1660.4]. Analyze simple structures using the finite element method to improve the practical skills.

## C. Program Outcomes and Program Specific Outcomes

[PO.I]. Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>,

and engineering specialization to the solution of complex engineering problems

**[PO.2]. Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

[PO.3]. Design/development of solutions: Design solutions for complex engineering problems and <u>design</u>

system components or processes that meet the specified needs with appropriate consideration for the public health

and safety, and the cultural, societal, and environmental considerations

**[PO.4].** Conduct investigations of complex problems: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions

**[PO.5].** Modern tool usage: Create, select, and apply appropriate techniques, resources, and <u>modern</u>

<u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations

[PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess</u> societal,

<u>health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice

[PO.7]. Environment and sustainability: Understand the impact of the professional engineering solutions

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

[PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of

the

in

[PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or leader in</u> <u>diverse</u>

teams, and in multidisciplinary settings

**[PO.10].** Communication: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

**[PO.II].** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects

and in multidisciplinary environments

**[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change

## **Programme Specific Outcomes:**

**[PSO.1].** Analyse, design and diagnose automotive systems to improve performance, safety, service and maintenance.

**[PSO.2].** Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.

**[PSO.3].** Demonstrate the use of quality tools for internship projects to solve industrial problems.

#### **D.** Assessment Rubrics:

| Criteria                   | Description                                                                 | Maximum Marks                             |  |  |  |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|--|
|                            | Sessional Exam I                                                            | 15                                        |  |  |  |  |  |  |  |  |
| Internal Assessment        | Sessional Exam II                                                           | 15                                        |  |  |  |  |  |  |  |  |
| (Summative)                | In class Quizzes and Assignments ,                                          | 10                                        |  |  |  |  |  |  |  |  |
|                            | Activity feedbacks (Accumulated and                                         |                                           |  |  |  |  |  |  |  |  |
|                            | Averaged)                                                                   |                                           |  |  |  |  |  |  |  |  |
|                            | Practical Internal                                                          | 15                                        |  |  |  |  |  |  |  |  |
| End Term Exam              | End Term Exam                                                               | 40                                        |  |  |  |  |  |  |  |  |
| (Summative)                | Practical External                                                          | 05                                        |  |  |  |  |  |  |  |  |
|                            | Total                                                                       | 100                                       |  |  |  |  |  |  |  |  |
| Attendance                 | A minimum of 75% Attendance is required to be maintained by a student to    |                                           |  |  |  |  |  |  |  |  |
| (Formative)                | qualified for taking up the End Semest                                      | er examination. The allowance of 25%      |  |  |  |  |  |  |  |  |
|                            | includes all types of leaves including medi                                 | cal leaves.                               |  |  |  |  |  |  |  |  |
| Make up Assignments        | Students who misses a class will have to                                    | report to the teacher about the absence.  |  |  |  |  |  |  |  |  |
| (Formative)                | A makeup assignment on the topic taug                                       | ght on the day of absence will be given   |  |  |  |  |  |  |  |  |
|                            | which has to be submitted within a                                          | week from the date of absence. No         |  |  |  |  |  |  |  |  |
|                            | extensions will be given on this. The atte                                  | ndance for that particular day of absence |  |  |  |  |  |  |  |  |
|                            | will be marked blank, so that the stude                                     | nt is not accounted for absence. These    |  |  |  |  |  |  |  |  |
|                            | assignments are limited to a maximum of                                     | 5 throughout the entire semester.         |  |  |  |  |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student may have to work in home, especially   |                                           |  |  |  |  |  |  |  |  |
| Activity Assignment        | before a flipped classroom. Although these works are not graded with marks. |                                           |  |  |  |  |  |  |  |  |
| ;(Formative)               | However, a student is expected to par                                       | ticipate and perform these assignments    |  |  |  |  |  |  |  |  |
|                            | with full zeal since the activity/ flipped cla                              | ssroom participation by a student will be |  |  |  |  |  |  |  |  |
|                            | assessed and marks will be awarded.                                         |                                           |  |  |  |  |  |  |  |  |

## E. Syllabus

**Principles of Graphics:** Generation and display of simple elements like line, circle, ellipse, Transformations, Translation, Rotation and Scaling, reflection, Clipping, Line, polygon, text, **Geometric Modelling:** Types and representation of curves, Analytical curves, line, ellipse, parabola, Synthetic curves, Cubic, Bezier and B-spline curves, Types and representation of surfaces, Analytic surfaces, Plane, ruled, revolution and tabulated surfaces,

Synthetic surfaces, cubic, Bezier and B-spline surfaces, Types and representation of solids, Solid representation, half spaces, Boundary Representation, **Finite Element Modelling and Analysis:** Strain, displacement and Stress strain relations, General procedure of FEM, Formulation and solution of typical problems with Spring, Truss and Beam elements, Element equations, Assembly of elements, Boundary conditions and External loads, Solution of global equations, Introduction to Plane stress / strain and solid elements.

**LAB:** - Finite Element Analysis of Vehicle Chassis Frame by using ANSYS. Conduct front, side and rear crash impact. Conduct Drop test of vehicle model.

## F. TEXT BOOKS

T1:- K Zeid, CAD/CAM Theory and Practice, Tata McGraw Hill New Delhi, 1998.

T2:- Saeed Moaveni, Finite Element Analysis: Theory & Applications with ANSYS, Prentice Hall, 1999

#### G. REFERENCE BOOKS

- R1. D. F Rogers and J. A. Adams, Mathematical Elements for Computer Graphics, Tata McGraw Hill New Delhi, 2002.
- R2. David V Hutton, Fundamentals of Finite Element Analysis, McGraw Hill, 2004

R3.D L Logan, A First Course in Finite Element Method, Pearson Education New Delhi, 2003.

| Lec No | Topics                                                                      | Session Outcome                                                                            | Mode of<br>Delivery              | Corresponding | Mode of Assessing the<br>Outcome          |
|--------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------|---------------|-------------------------------------------|
| I      | Introduction and Course Hand-out briefing                                   | To acquaint and clear teachers expectations and understand student expectations            | Lecture                          | NA            | NA                                        |
| 2      | CAD- Introduction and foundational brief                                    | Understand and describe CAD and its necessity                                              | Lecture                          | 1660.1        | Home Assignment<br>I Mid term<br>End Term |
| 3      | Generation and display of simple elements like line, circle, ellipse        | Understand and generate, display simple elements like line, circle and ellipse.            | Lecture                          | 1660.1        | Home Assignment                           |
| 4      | Geometric transformation techniques, translation, Rotation, scaling         | Analyze and provide engineering solutions using geometric transformation techniques        | Lecture                          | 1660.2        | In class quiz<br>I Mid term<br>End Term   |
| 5,6    | Problems based on translation, rotation and scaling, Refection and shearing | Analyze and provide engineering solutions using geometric transformation techniques        | Lecture/<br>Flipped<br>Classroom | 1660.2        | In class quiz<br>I Mid term<br>End Term   |
| 7      | Problem based on 2D transformation technique                                | Understand requirement and provide engineering solution using 2D transformation techniques | Lecture/<br>Flipped<br>Classroom | 1660.2        | In class quiz<br>I Mid term<br>End Term   |
| 8      | Problem based on 3D transformation technique representation of curves       | Understand requirement and provide engineering solution using 2D transformation techniques | Lecture/<br>Flipped<br>Classroom | 1660.2        | In class quiz<br>I Mid term<br>End Term   |
| 9      | Geometric Modelling: Types and representation of curves                     | Describe and demonstrate types of geometric modeling and its necessity                     | Lecture/Flip<br>ped<br>classroom | 1660.3        | In class quiz<br>I Mid term<br>End Term   |
| 10     | Analytical curves, line, ellipse, parabola                                  | Describe and demonstrate types of geometric modeling and its necessity                     | Flipped<br>classroom             | 1660.3        | In class quiz<br>I Mid term<br>End Term   |
| 11     | Synthetic curves, Cubic curves                                              | Describe and demonstrate types of geometric modeling and its necessity                     | Flipped<br>classroom             | 1660.3        | In class quiz<br>I Mid term<br>End Term   |
| 12,13  | Bezier and B-spline curves                                                  | Describe and demonstrate types of geometric modeling and its necessity                     | Lecture/Flip<br>ped<br>classroom | 1660.3        | In class Quiz<br>I Mid term<br>End Term   |
| 14     | Types and representation of surfaces, Analytic surfaces                     | Describe and demonstrate types of geometric and analytic surfaces                          | Lecture/Flip<br>ped<br>classroom | 1660.3        | In class quiz<br>II Mid Term<br>End Term  |
| 15     | Plane, ruled, revolution and tabulated surfaces                             | Describe and demonstrate types of geometric and analytic surfaces                          | Lecture/Flip<br>ped<br>classroom | 1660.3        | In class quiz<br>II Mid Term<br>End Term  |
| 16,17  | Synthetic surfaces, Cubic, Bezier and B-spline                              | Describe and demonstrate types of geometric and                                            | Lecture/Flip                     | 1660.3        | In class quiz                             |

|          | surfaces                                          | analytic surfaces                                  | ped          |               | II Mid Term   |
|----------|---------------------------------------------------|----------------------------------------------------|--------------|---------------|---------------|
|          |                                                   |                                                    | classroom    |               | End Term      |
| 18       | Types and representation of solids, Solid         | Describe and demonstrate types of solids and       | Lecture/Flip | 1660.3        | In class quiz |
|          | representation                                    | display representation of solids                   | ped          |               | II Mid Term   |
|          |                                                   |                                                    | classroom    |               | End Term      |
| 19       | Half spaces, Boundary Representation              | Describe and demonstrate types of solids and       | Lecture/Flip | 1660.3        | In class quiz |
|          |                                                   | display representation of solids                   | ped          |               | II Mid Term   |
|          |                                                   |                                                    | classroom    |               | End Term      |
| 20,21    | Finite Element Modelling and Analysis: Strain,    | Model and analyse engineering problems based on    | Lecture      | 1660.1&1660.4 | In class quiz |
|          | displacement and Stress strain relations, General | strain etc., using FEM principles                  |              |               | II Mid Term   |
|          | procedure of FEM                                  |                                                    |              |               | End Term      |
| 22       | Formulation and solution of typical problems      | Model, analyze solution for automobile solutions   | Lecture/Flip | 1660.1&1660.4 | In class quiz |
|          | with Spring                                       | like springs and suspensions                       | ped          |               | II Mid Term   |
|          |                                                   |                                                    | classroom    |               | End Term      |
| 23       | Numerical Problems                                | Model, analyze solution for automobile solutions   | Lecture/Flip | 1660.4        | In class quiz |
|          |                                                   | like springs and suspensions                       | ped          |               | II Mid Term   |
|          |                                                   |                                                    | classroom    |               | End Term      |
| 24,25    | Truss and Beam elements                           | Model, analyze solution for engineering situations | Lecture/Flip | 1660.1&1660.4 | In class quiz |
|          |                                                   | like trusses and beams                             | ped          |               | End Term      |
|          |                                                   |                                                    | classroom    |               |               |
| 26,27,28 | Element equations, Assembly of elements,          | Describe fundamental equations and implement       | Lecture/Flip | 1660.1&1660.4 | In class quiz |
|          | Boundary conditions and External loads, Solution  | them in boundary conditions, external loads etc.   | ped          |               | End Term      |
|          | of global equations                               |                                                    | classroom    |               |               |
| 29,30    | Numerical Problems                                | Model, analyze solution for truss and beam         | Lecture/Flip | 1660.4        | In class quiz |
|          |                                                   | element                                            | ped          |               | End Term      |
|          |                                                   |                                                    | classroom    |               |               |

| LabLab Module1Introduction of ANSYS.2Modelling and stress analysis of Bar of constant cross section area3Modelling and stress analysis of Bar of tapered cross section area4Modelling and stress analysis of Stepped Bar5Modelling and stress analysis of Truss problem 16Modelling and stress analysis of Truss problem 27Modelling and stress analysis of Truss problem 38Modelling and stress analysis of Simply supported beam9Modelling and stress analysis of Simply supported beam with uniformly varying load10Modelling and stress analysis of Cantilever beam11Modelling and stress analysis of Cantilever beam12Modelling and stress analysis of Beam with angular loads                                                |     |                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------|
| IIntroduction of ANSYS.2Modelling and stress analysis of Bar of constant cross section area3Modelling and stress analysis of Bar of tapered cross section area4Modelling and stress analysis of Stepped Bar5Modelling and stress analysis of Truss problem 16Modelling and stress analysis of Truss problem 27Modelling and stress analysis of Truss problem 38Modelling and stress analysis of Simply supported beam9Modelling and stress analysis of Simply supported beam with uniformly varying load10Modelling and stress analysis of Cantilever beam11Modelling and stress analysis of Cantilever beam12Modelling and stress analysis of Beam with angular loads                                                             | Lab | Lab Module                                                                         |
| 2Modelling and stress analysis of Bar of constant cross section area3Modelling and stress analysis of Bar of tapered cross section area4Modelling and stress analysis of Stepped Bar5Modelling and stress analysis of Truss problem 16Modelling and stress analysis of Truss problem 27Modelling and stress analysis of Truss problem 38Modelling and stress analysis of Simply supported beam9Modelling and stress analysis of Simply supported beam with uniformly varying load10Modelling and stress analysis of Cantilever beam11Modelling and stress analysis of Cantilever beam12Modelling and stress analysis of Beam with angular loads                                                                                    |     | Introduction of ANSYS.                                                             |
| 3       Modelling and stress analysis of Bar of tapered cross section area         4       Modelling and stress analysis of Stepped Bar         5       Modelling and stress analysis of Truss problem 1         6       Modelling and stress analysis of Truss problem 2         7       Modelling and stress analysis of Truss problem 3         8       Modelling and stress analysis of Simply supported beam         9       Modelling and stress analysis of Simply supported beam with uniformly varying load         10       Modelling and stress analysis of Cantilever beam         11       Modelling and stress analysis of Cantilever beam         12       Modelling and stress analysis of Beam with angular loads | 2   | Modelling and stress analysis of Bar of constant cross section area                |
| 4Modelling and stress analysis of Stepped Bar5Modelling and stress analysis of Truss problem 16Modelling and stress analysis of Truss problem 27Modelling and stress analysis of Truss problem 38Modelling and stress analysis of Simply supported beam9Modelling and stress analysis of Simply supported beam with uniformly varying load10Modelling and stress analysis of Beam with moment and overhung11Modelling and stress analysis of Cantilever beam12Modelling and stress analysis of Beam with angular loads                                                                                                                                                                                                             | 3   | Modelling and stress analysis of Bar of tapered cross section area                 |
| 5       Modelling and stress analysis of Truss problem 1         6       Modelling and stress analysis of Truss problem 2         7       Modelling and stress analysis of Truss problem 3         8       Modelling and stress analysis of Simply supported beam         9       Modelling and stress analysis of Simply supported beam with uniformly varying load         10       Modelling and stress analysis of Beam with moment and overhung         11       Modelling and stress analysis of Cantilever beam         12       Modelling and stress analysis of Beam with angular loads                                                                                                                                   | 4   | Modelling and stress analysis of Stepped Bar                                       |
| 6       Modelling and stress analysis of Truss problem 2         7       Modelling and stress analysis of Truss problem 3         8       Modelling and stress analysis of Simply supported beam         9       Modelling and stress analysis of Simply supported beam with uniformly varying load         10       Modelling and stress analysis of Beam with moment and overhung         11       Modelling and stress analysis of Cantilever beam         12       Modelling and stress analysis of Beam with angular loads                                                                                                                                                                                                    | 5   | Modelling and stress analysis of Truss problem I                                   |
| <ul> <li>7 Modelling and stress analysis of Truss problem 3</li> <li>8 Modelling and stress analysis of Simply supported beam</li> <li>9 Modelling and stress analysis of Simply supported beam with uniformly varying load</li> <li>10 Modelling and stress analysis of Beam with moment and overhung</li> <li>11 Modelling and stress analysis of Cantilever beam</li> <li>12 Modelling and stress analysis of Beam with angular loads</li> </ul>                                                                                                                                                                                                                                                                                | 6   | Modelling and stress analysis of Truss problem 2                                   |
| 8       Modelling and stress analysis of Simply supported beam         9       Modelling and stress analysis of Simply supported beam with uniformly varying load         10       Modelling and stress analysis of Beam with moment and overhung         11       Modelling and stress analysis of Cantilever beam         12       Modelling and stress analysis of Beam with angular loads                                                                                                                                                                                                                                                                                                                                      | 7   | Modelling and stress analysis of Truss problem 3                                   |
| 9       Modelling and stress analysis of Simply supported beam with uniformly varying load         10       Modelling and stress analysis of Beam with moment and overhung         11       Modelling and stress analysis of Cantilever beam         12       Modelling and stress analysis of Beam with angular loads                                                                                                                                                                                                                                                                                                                                                                                                             | 8   | Modelling and stress analysis of Simply supported beam                             |
| 10       Modelling and stress analysis of Beam with moment and overhung         11       Modelling and stress analysis of Cantilever beam         12       Modelling and stress analysis of Beam with angular loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9   | Modelling and stress analysis of Simply supported beam with uniformly varying load |
| II       Modelling and stress analysis of Cantilever beam         I2       Modelling and stress analysis of Beam with angular loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10  | Modelling and stress analysis of Beam with moment and overhung                     |
| 12 Modelling and stress analysis of Beam with angular loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11  | Modelling and stress analysis of Cantilever beam                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12  | Modelling and stress analysis of Beam with angular loads                           |

# I. Course Articulation Matrix: (Mapping of COs with POs)

| со     | STATEMENT                                          |    | CORRELATION WITH PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    | CORRELATION WITH<br>PROGRAM SPECIFIC<br>OUTCOMES |       |       |       |
|--------|----------------------------------------------------|----|-----------------------------------|----|----|----|----|----|----|----|----|----|--------------------------------------------------|-------|-------|-------|
|        |                                                    | РО | РО                                | РО | РО | РО | РО | РО | РО | РО | РО | РО | РО                                               | PSO 1 | PSO 2 | PSO 3 |
|        |                                                    | 1  | 2                                 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12                                               |       |       |       |
| AU     | Explain the importance of CAD and FEA in           | 3  | 2                                 | 2  |    | 1  |    | 1  |    |    |    |    | 1                                                | 2     |       |       |
| 1660.1 | engineering with examples.                         |    |                                   |    |    |    |    |    |    |    |    |    |                                                  |       |       |       |
| AU     | Evaluate the geometric transformations for         | 3  | 2                                 | 2  |    | 1  |    |    |    |    |    |    |                                                  | 3     |       |       |
| 1660.2 | CAD/CAM application.                               |    |                                   |    |    |    |    |    |    |    |    |    |                                                  |       |       |       |
| AU     | Represent geometric curves, surfaces and solids.   | 3  | 2                                 | 2  |    | 2  |    |    |    |    |    |    |                                                  | 2     |       |       |
| 1660.3 |                                                    |    |                                   |    |    |    |    |    |    |    |    |    |                                                  |       |       |       |
| AU     | Analyze simple structures using the finite element | 3  | 2                                 | 2  |    | 2  | 1  |    |    | 1  | 1  |    | 2                                                | 3     |       |       |
| 1660.4 | method to improve the practical skills.            |    |                                   |    |    |    |    |    |    |    |    |    |                                                  |       |       |       |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Vehicle Body Engineering | AU 1661 | 3 Credits | 2 0 2 3

Session: Jan 21 – May 21 | Faculty: Dr. Upendra Kulshrestha | Class: 6<sup>th</sup> sem/3<sup>rd</sup> Yrar

- **A. Introduction:** This course offers a knowledge of the students in design of the vehicles body to give maximum comfort for the passengers and exposed to the methods of stream lining the vehicles body to minimize drag and generate the skills of the students in the areas of car body design, bus body design, active and passive safety. This course as a pre-requisite course for other courses in UG and PG programmes, specialized studies and research.
- B. Course Objectives: At the end of the course, students will be able to
- **[1661.1].** Describe driver visibility, safety design equipment and various car body constructions.
  - [1661.2]. Describe vehicle aerodynamics and its effect, interpret it on vehicle body during static and dynamic conditions.
  - [1661.3]. Make scale model of various vehicle bodies to enhance modelling skills with various body building aspects.
  - [1661.4]. Perform various processes on vehicle bodies like denting, painting etc.
  - [1661.5]. Analyse symmetrical and asymmetrical loading on vehicle body.

#### C. Program Outcomes and Program Specific Outcomes

[PO.I].Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an

engineering specialization to the solution of complex engineering problems

- **[PO.2].Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3].Design/development of solutions**: Design solutions for complex engineering problems and <u>design system</u> <u>components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4].Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- **[PO.5].Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and</u> <u>IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations</u>
- [PO.6].The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess societal, health,</u> <u>safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7].Environment and sustainability**: Understand the <u>impact of the professional engineering solutions in societal</u> <u>and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8].Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- **[PO.9].Individual and team work**: Function effectively as an individual, and as a <u>member or leader in diverse teams</u>, and in multidisciplinary settings
- **[PO.10]. Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

- **[PO.II]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
  - **PSO-I:** Analyse, design and diagnose automotive systems to improve performance, safety, service and maintenance.
  - **PSO-2:** Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.
  - **PSO-3:** Demonstrate the use of quality tools for internship projects to solve industrial problems.

## **D.** Assessment Rubrics:

| Criteria                   | Description                                                                 | Maximum Marks                             |  |  |  |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|--|
|                            | Sessional Exam I (Close Book)                                               | 15                                        |  |  |  |  |  |  |  |  |
| Internal Assessment        | Sessional Exam II (Close Book)                                              | 15                                        |  |  |  |  |  |  |  |  |
| (Summative)                | In class Quizzes and Assignments ,                                          | 10                                        |  |  |  |  |  |  |  |  |
|                            | Activity feedbacks (Accumulated and                                         |                                           |  |  |  |  |  |  |  |  |
|                            | Averaged)                                                                   |                                           |  |  |  |  |  |  |  |  |
|                            | Lab assessment                                                              | 15                                        |  |  |  |  |  |  |  |  |
|                            | Lab exam                                                                    | 05                                        |  |  |  |  |  |  |  |  |
| End Term Exam              | End Term Exam (Open Book)                                                   | 40                                        |  |  |  |  |  |  |  |  |
| (Summative)                | Lab exam                                                                    | 05                                        |  |  |  |  |  |  |  |  |
|                            | Total                                                                       | 100                                       |  |  |  |  |  |  |  |  |
| Attendance                 | A minimum of 75% Attendance is require                                      | red to be maintained by a student to be   |  |  |  |  |  |  |  |  |
| (Formative)                | qualified for taking up the End Semest                                      | er examination. The allowance of 25%      |  |  |  |  |  |  |  |  |
|                            | includes all types of leaves including medi                                 | cal leaves.                               |  |  |  |  |  |  |  |  |
| Make up Assignments        | Students who misses a class will have to                                    | report to the teacher about the absence.  |  |  |  |  |  |  |  |  |
| (Formative)                | A makeup assignment on the topic taug                                       | ght on the day of absence will be given   |  |  |  |  |  |  |  |  |
|                            | which has to be submitted within a                                          | week from the date of absence. No         |  |  |  |  |  |  |  |  |
|                            | extensions will be given on this. The atte                                  | ndance for that particular day of absence |  |  |  |  |  |  |  |  |
|                            | will be marked blank, so that the stude                                     | nt is not accounted for absence. These    |  |  |  |  |  |  |  |  |
|                            | assignments are limited to a maximum of                                     | 5 throughout the entire semester.         |  |  |  |  |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student may have to work in home, especially   |                                           |  |  |  |  |  |  |  |  |
| Activity Assignment        | before a flipped classroom. Although these works are not graded with marks. |                                           |  |  |  |  |  |  |  |  |
| (Formative)                | However, a student is expected to par                                       | ticipate and perform these assignments    |  |  |  |  |  |  |  |  |
|                            | with full zeal since the activity/ flipped cla                              | ssroom participation by a student will be |  |  |  |  |  |  |  |  |
|                            | assessed and marks will be awarded.                                         |                                           |  |  |  |  |  |  |  |  |

# E. Syllabus

**Car Body Details**: Types: Saloon, Convertibles, Limousine, Estate Van, Racing & Sports Car Visibility, Regulation, drivers visibility, test for visibility, method of improving visibility & space in cars, safety design equipments for car; car body construction. **Vehicle Aerodynamics**: Objectives, Vehicles drag and types, various types of forces & moments, effect of force & moments, side wind effects on force & moments, various body optimization, technique for minimum drag- Wind tunnel testing: flow visualization techniques, Scale model testing, component balance to measure force & moments. **Bus Body Details**: Types: Mini bus, Single Decker, Double Decker, Spirit Level & Articulated bus- bus body Layout, floor height, Engine location, Entrance & Exit location - Sitting dimensions, Construction details: Frame construction, Double skin construction - Types metals sections used, Regulation, Conventional & integral type construction. **Commercial Vehicle Details**: Types of body: Flat platform, Drop side, Fixed Side, Tipper body, tanker body, light commercial vehicle body types, dimension of driver seat in relation to control, Drivers cab design. **Body Materials**, Trim & Mechanism: Steel sheet, timber, plastic, GRP, Properties of materials corrosion, anticorrosion methods, escalation of paint & painting process; Body trim items; body mechanisms. **Body Loads**: Idealized structure, Structural surface, shear panel method, Symmetric & asymmetrical vertical loads in a car, longitudinal loads and Different Loading situations.

Lab: Perform the visibility test on the vehicle, Study of different types of tool used in body shop, Perform the welding process on vehicle body penal, Assembling and dismantling of Door lock mechanism, Window winding machine mechanism and Passenger seat mechanism, Perform the dent beating process on the metal sheet using different dent beating tools, Perform the various painting process on the vehicle using 2k paint coating, Make the different scale model like Bus body model, mini truck model and car models, perform the wind tunnel test on the models like aerofoil, sphere and cylinder, Study the different vehicle crash analysis process with help of crash analysis software.

## F. Text Books

TI. Andrew Livesey and A. Robinson, The Repair of Vehicle Bodies, Routledge Publication, 2013

## **G.** Reference Books

R1. Julian Happian smith ,A Introduction to Modern vehicle design,Butterworth-Heinemann Publication 2001
 R2. David A. Crolla ,Automobile Engineering, Power train chassis system and vehicle body, Butterworth-Heinemann
 Publication 2009

| Lec No  | Topics                                                                                                                                                                   | Session Objective                                                                     | Mode of<br>Delivery | Corresponding CO | Mode of Assessing the<br>Outcome                           |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------|------------------|------------------------------------------------------------|
| I       | Introduction and Course Hand-out briefing                                                                                                                                | To acquaint and clear teachers<br>expectations and understand student<br>expectations | Lecture             |                  | NA                                                         |
| 2,3     | Introduction , Types: saloon,<br>convertibles, limousine, estate car, racing<br>and sports car                                                                           | Recall various types of car from vintage to present time                              | Flipped Class       | AU1661.1         | In Class Quiz ( Not Accounted)                             |
| 4,5     | Visibility: regulations, driver's visibility,<br>tests for visibility methods of improving<br>visibility                                                                 | Explain importance of visibility with perform its testing                             | Lecture             | AU1661.1         | In Class Quiz. , Midterm-I, End sem Exam                   |
| 6,7     | Space in cars Safety design, safety equipment's for cars.                                                                                                                | Explain body design and feature for safety aspects                                    | Lecture             | AU1661.1         | Home Assignment, Midterm-1, End sem Exam                   |
| 8,9,10, | Car body construction; design criteria,<br>prototype making, initial tests, crash tests<br>on full scale model, Dummies and<br>Instrumentation                           | Explain constructional details of car body<br>and testing of car body                 | Lecture             | AU1661.1         | In Class Quiz, Midterm-I, End sem<br>Exam                  |
| 11,12   | Vehicle drag and types, Various types of forces and moments                                                                                                              | Recall various types of aerodynamic forces and explain its importance                 | Flipped class       | AU1661.2         | Class Quiz, Midterm-11, End sem<br>Exam                    |
| 13      | Effects of forces and moments, Side wind effects on forces and moments                                                                                                   | Explain effect of aerodynamic forces on vehicle body                                  | Lecture             | AU1661.2         | Class Quiz, Midterm-11, End sem<br>Exam                    |
| 14,15   | Various body optimization techniques for<br>minimum drag, wind tunnel testing, Flow<br>visualization techniques, Scale model<br>testing                                  | Explain about the procedure to reduce resistances offered by air on vehicle           | Flipped Class       | AU1661.2         | Home Assignment<br>Class Quiz, Midterm-II, End sem<br>Exam |
| 16      | Component balance to measure forces and moments.                                                                                                                         | Recall various fundamental of force for static and dynamic equilibrium                | Lecture             | AU1661.5         | Class Quiz, Midterm-II, End sem<br>Exam                    |
| 17      | Mini bus, single decker, double-decker,<br>Two level and articulated bus.                                                                                                | Explain types vehicle bodies used for public transport                                | Lecture             | AU1661.2         | Class Quiz, Midterm-11, End sem<br>Exam                    |
| 18      | Bus body layout, Floor height, engine<br>location, entrance and exit location,<br>Seating Dimensions                                                                     | Calculate various dimensions for body layout, entrance and exit location etc.         | Lecture, Activity   | AU1661.3         | Class Quiz, Midterm-II, End sem<br>Exam                    |
| 19,20   | Constructional details: frame<br>construction, double skin construction,<br>types of metal sections used, Regulations,<br>Conventional and integral type<br>construction | Explain various types of skeleton for bus<br>body, materials used                     | Lecture             | AU1661.3         | Class Quiz, End sem Exam                                   |
| 20, 21  | Types of commercial body, Flat platform,<br>Drop side body construction, Fixed side                                                                                      | Describe various commercial bodies with constructional details                        | Flipped Class       | AU1661.3         | Class Quiz, End sem Exam                                   |

|        | body construction, Tipper body                                                          |                                                                                       |               |          |                          |
|--------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------|----------|--------------------------|
|        | construction, Tanker body construction,                                                 |                                                                                       |               |          |                          |
| 22     | Light commercial vehicle body types                                                     | Describe various Light commercial bodies with constructional details                  | Flipped Class | AU1661.6 | Class Quiz, End sem Exam |
| 23     | Dimensions of driver's seat relation to controls, Drivers cab design.                   | Explain dimensioning of drivers cab and driver seats and relate it to driver controls | Flipped Class | AU1661.3 | Class Quiz, End sem Exam |
| 24,25  | Steel sheet Materials ,Timber, Plastic,<br>GRP, Properties of materials                 | Describe types of materials used in vehicle bodies                                    | Flipped Class | AU1661.4 | Class Quiz, End sem Exam |
| 26, 27 | Importance of load on vehicle bodies,<br>load distribution methods on vehicle<br>bodies | Calculate load distribution on vehicle bodies                                         | Lecture       | AU1661.5 | Class Quiz, End sem Exam |
| 28     | Symmetrical and asymmetrical vertical load in car                                       | Various types of load acting on bodies                                                | Lecture       | AU1661.5 | Class Quiz, End sem Exam |
|        | •                                                                                       |                                                                                       | •             | ·        |                          |
| Week   | LAB Module                                                                              |                                                                                       |               |          |                          |
| 1      | Study of various tools are used in Vehicle B                                            | ody Engineering                                                                       |               |          |                          |
| 2      | Dismantling and Assembling of Door lock N                                               | /lechanism                                                                            |               |          |                          |
| 3      | Dismantling and Assembling of Window wi                                                 | nding machine                                                                         |               |          |                          |
| 4      | Study of various sheet-metal process used                                               | in vehicle body Engineering                                                           |               |          |                          |
| 5      | Study of Various Painting Process used in V                                             | ehicle Body Engineering                                                               |               |          |                          |
| 6      | Mini Project-I on fabrication of Scale mode                                             | l of Vehicle bodies (Passenger car/Jeep)                                              |               |          |                          |
| 7      | Mini Project-I on fabrication of Scale mode                                             | l of Vehicle bodies (Passenger car/Jeep)                                              |               |          |                          |
| 8      | Mini Project-I on fabrication of Scale mode                                             | l of Vehicle bodies (Passenger car/Jeep)                                              |               |          |                          |
| 9      | Mini Project-I on fabrication of Scale mode                                             | l of Vehicle bodies (Passenger car/Jeep)                                              |               |          |                          |
| 10     | Mini Project-II on fabrication of Scale mode                                            | el of Vehicle bodies (Commercial Vehicle BUS,                                         | /Truck)       |          |                          |
| 11     | Mini Project-II on fabrication of Scale mode                                            | el of Vehicle bodies (Commercial Vehicle BUS,                                         | /Truck)       |          |                          |
| 12     | Mini Project-II on fabrication of Scale mode                                            | el of Vehicle bodies (Commercial Vehicle BUS,                                         | /Truck)       |          |                          |
| 13     | Mini Project-II on fabrication of Scale mode                                            | el of Vehicle bodies (Commercial Vehicle BUS,                                         | /Truck)       |          |                          |
| 14     | Project Presentation                                                                    |                                                                                       |               |          |                          |
|        |                                                                                         |                                                                                       |               |          |                          |

# I. Course Articulation Matrix: (Mapping of COs with POs)

| <b>CO</b> |                                                     |    |    | CORRELATION WITH PROGRAM OUTCOMES |    |    |    |    |    |    |    |          |    |       | CORRELATION WITH |       |  |
|-----------|-----------------------------------------------------|----|----|-----------------------------------|----|----|----|----|----|----|----|----------|----|-------|------------------|-------|--|
| 0         | STATEMENT                                           |    |    |                                   |    |    |    |    |    |    |    | OUTCOMES |    |       |                  |       |  |
|           |                                                     | РО | РО | РО                                | РО | РО | РО | РО | РО | РО | РО | РО       | РО | PSO 1 | PSO 2            | PSO 3 |  |
|           |                                                     | 1  | 2  | 3                                 | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11       | 12 |       |                  |       |  |
| AU        | Describe driver visibility, safety design equipment | 3  | 1  |                                   |    |    | 2  | 2  |    |    |    |          | 1  | 2     |                  |       |  |
| 1661.1    | and various car body constructions.                 |    |    |                                   |    |    |    |    |    |    |    |          |    |       |                  |       |  |
| AU        | Describe vehicle aerodynamics and its effect,       | 2  | 2  | 2                                 | 2  | 1  |    |    |    |    |    |          |    | 2     |                  |       |  |
| 1661.2    | interpret it on vehicle body during static and      |    |    |                                   |    |    |    |    |    |    |    |          |    |       |                  |       |  |
|           | dynamic conditions.                                 |    |    |                                   |    |    |    |    |    |    |    |          |    |       |                  |       |  |
| AU        | Make scale model of various vehicle bodies.         | 2  |    | 3                                 |    |    |    |    |    | 3  | 1  |          | 2  | 3     |                  |       |  |
| 1661.3    |                                                     |    |    |                                   |    |    |    |    |    |    |    |          |    |       |                  |       |  |
| AU        | Perform various processes on vehicle bodies like    | 1  | 2  |                                   |    |    |    |    |    |    |    |          |    | 2     |                  |       |  |
| 1661.4    | denting, painting etc.                              |    |    |                                   |    |    |    |    |    |    |    |          |    |       |                  |       |  |
| AU        | Analyse symmetrical and asymmetrical loading on     | 2  |    | 2                                 | 2  |    |    |    |    |    |    |          |    | 2     |                  |       |  |
| 1661.5    | vehicle body.                                       |    |    |                                   |    |    |    |    |    |    |    |          |    |       |                  |       |  |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Quality System Management | AU 1662 | 3 Credits | 2 0 2 3

Session: Feb 2021 – May 2021 | Faculty: Dr Avanish Chauhan and Prof Rajesh Solanki | Class: Program Elective

- **A. Introduction:** This course is offered by Dept. of Automobile Engineering for sixth semester students. This course provides knowledge of IATF16949/ISO 9001 quality standards used in automotive industry. Quality standards plays a critical role to balance innovation, affordability, and safety for automotive manufacturers. This course provides an understanding of guidelines for auditors, suppliers, and OEMs.
- B. Course Outcomes: At the end of the course, students will be able to
- [1660.1]. Attain knowledge about different set of standards and guidelines followed in IATF16949/ ISO9001.
- **[1660.2].** Develop an overview of various aspects such as customer specific requirements, manufacturing feasibility, process and product quality monitoring, warranty management etc.
- [1660.3]. Apply above knowledge of IATF16949/ISO 9001 standards to real life case companies
- **[1660.4].** Learn and practice various steps followed by a quality engineer to conduct product and process audits for future employment opportunities.
- **[1660.5].** Develop an understanding of action plans to be taken when targets are missed in any manufacturing process.
- **[1660.6].** Develop an overall knowledge of monitoring and improving any manufacturing system using appropriate quality standard guidelines.

# C. Program Outcomes and Program Specific Outcomes

- **[PO.I]. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **[PO.2].** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **[PO.3]. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **[PO.4]. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **[PO.5]. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **[PO.6].** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7]. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8].** Ethics: Apply ethical principles and commit to professional ethics\_and responsibilities and norms of the engineering practices
- **[PO.9].** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- **[PO.10]. Communication**: Communicate effectively\_on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

- **[PO.II]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12]. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- **[PSO.I].** Analyse, design and diagnose automotive systems to improve performance, safety, service and maintenance.
- [PSO.2]. Apply knowledge of Electric and Autonomous vehicle technologies for smart mobility.

**[PSO.3].** Demonstrate the use of quality tools for internship projects to solve industrial problems.

## **D.** Assessment Rubrics:

| Criteria                   | Description                                                               | Maximum Marks                             |  |  |  |  |  |  |  |
|----------------------------|---------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|
|                            | Sessional Exam I (Open Book)                                              | 15                                        |  |  |  |  |  |  |  |
| Internal Assessment        | Sessional Exam II (Open Book)                                             | 15                                        |  |  |  |  |  |  |  |
| (Summative)                | In class Quizzes and Assignments ,                                        | 30                                        |  |  |  |  |  |  |  |
|                            | Activity feedbacks (Accumulated and                                       |                                           |  |  |  |  |  |  |  |
|                            | Averaged)                                                                 |                                           |  |  |  |  |  |  |  |
| End Term Exam              | End Term Exam (Open Book)                                                 | 40                                        |  |  |  |  |  |  |  |
| (Summative)                |                                                                           |                                           |  |  |  |  |  |  |  |
|                            | Total                                                                     | 100                                       |  |  |  |  |  |  |  |
| Attendance                 | A minimum of 75% Attendance is requir                                     | red to be maintained by a student to be   |  |  |  |  |  |  |  |
| (Formative)                | qualified for taking up the End Semester examination. The allowance of 25 |                                           |  |  |  |  |  |  |  |
|                            | includes all types of leaves including medical leaves.                    |                                           |  |  |  |  |  |  |  |
| Make up Assignments        | Students who misses a class will have to                                  | report to the teacher about the absence.  |  |  |  |  |  |  |  |
| (Formative)                | A makeup assignment on the topic taug                                     | ght on the day of absence will be given   |  |  |  |  |  |  |  |
|                            | which has to be submitted within a                                        | week from the date of absence. No         |  |  |  |  |  |  |  |
|                            | extensions will be given on this. The atte                                | ndance for that particular day of absence |  |  |  |  |  |  |  |
|                            | will be marked blank, so that the stude                                   | nt is not accounted for absence. These    |  |  |  |  |  |  |  |
|                            | assignments are limited to a maximum of                                   | 5 throughout the entire semester.         |  |  |  |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student                                      | may have to work in home, especially      |  |  |  |  |  |  |  |
| Activity Assignment        | before a flipped classroom. Although th                                   | ese works are not graded with marks.      |  |  |  |  |  |  |  |
| (Formative)                | However, a student is expected to par                                     | ticipate and perform these assignments    |  |  |  |  |  |  |  |
|                            | with full zeal since the activity/ flipped cla                            | ssroom participation by a student will be |  |  |  |  |  |  |  |
|                            | assessed and marks will be awarded.                                       |                                           |  |  |  |  |  |  |  |

## E. Syllabus

Quality Management System (QMS) guidelines: IATF 16949:2016/ ISO 9001:2015: , Risk-based thinking, Integration of customer specific requirements, Manufacturing feasibility, Process and product quality monitoring, Non-Conforming (NC) product analysis, Warranty management, Product safety, code of ethics. Control measures for automotive manufacturing and support process inputs, outputs. Key performance indicators and the formulation of action plans when any targets are not met. Web based QMS system knowledge and methodology of information flow. **ISO 19011 Internal auditing and Quality Monitoring/Improvement Systems:** 13 steps of an internal audit, internal auditor's checklist, and certification training.

Lab: Simulate an internal audit for processes and the corresponding products as per ISO/IEC17025 for a QMS based on IATF 16949:2016/ ISO 9001:2015. Develop an audit report and generate CARs

#### F. Text Books

TI. IATF 16949: 2016 - Quality Management System Requirements for Automotive Production and Relevant Service

Parts Organizations, AIAG, 2016

## G. Reference Books

RI. IATF Auditor Guide for ISO/TS 16949, 2nd Edition, AIAG, 2014.

R2. Patrick Ambrose, ISO 9001:2015 and IATF 16949:2016 Rationalized: Making Sense of How the Two Standards Work Together in a Process Based Manufacturing Environment, Create Space Independent Publishing Platform, 2017

| Lec. No. | Topics                                                                                                    | Session Objective                                                                                                                     | Mode of                                         | Corresponding         | Mode of Assessing the                  |
|----------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|----------------------------------------|
| -        |                                                                                                           |                                                                                                                                       | Delivery                                        | CO                    | Outcome                                |
| Ι.       | Introduction and Course Hand-out briefing                                                                 | To acquaint and clear teachers expectations and understand                                                                            | Lecture                                         | NA                    | NA                                     |
|          |                                                                                                           | student expectations                                                                                                                  |                                                 |                       |                                        |
| 2.       | IATF 16949:2016/ ISO 9001:2015: Introduction                                                              | Introduction to IATF 16949 and<br>ISO 9001 standards and their                                                                        | Lecture                                         | AU1662.1              | In Class Quiz (Not Accounted)<br>MTE I |
| 3        | Integration of customer specific requirements                                                             | Identify various customer specific<br>requirements based on ISO 9001                                                                  | Lecture, activity                               | AU1662.2,<br>AU1662.3 | Home Assignment<br>MTE I               |
|          |                                                                                                           | standards.                                                                                                                            |                                                 |                       |                                        |
| 4-5      | Risk-based thinking                                                                                       | Explain the meaning of risk-based<br>thinking and identify key steps to<br>consider risk-based thinking in<br>manufacturing industry. | Lecture, activity                               | AU1662.2,<br>AU1662.3 | In Class Quiz<br>MTE II                |
| 6-7      | Manufacturing feasibility                                                                                 | Unfold multi-disciplinary approaches<br>that enables achievement of<br>performance and timing targets<br>specified by the customer.   | Lecture, activity                               | AU1662.2,<br>AU1662.3 | In Class Quiz<br>MTE II                |
| 8-9      | Process and product quality monitoring<br>EXPERT LECTURE                                                  | Recall various approaches and<br>methods followed to monitor<br>process guality and product guality.                                  | Lecture, Activity<br>(Think Pair Share)         | AU1662.2,<br>AU1662.3 | Class Quiz<br>MTE II                   |
| 11-12    | Non-Conforming (NC) product analysis<br>EXPERT LECTURE                                                    | Illustrate various steps followed to document non-conforming product analysis.                                                        | Lecture, Activity                               | AU1662.2,<br>AU1662.3 | Class Quiz<br>MTE II                   |
| 13-14    | Control measures for automotive<br>manufacturing and support process inputs,<br>outputs<br>EXPERT LECTURE | Study the standards pertaining to<br>control measures in production and<br>service for corrective actions.                            | Lecture, Activity                               | AU1662.4,<br>AU1662.5 | Class Quiz<br>ETE                      |
| 15-16    | Warranty management                                                                                       | Understand the importance of warranty management and relate it to IATF-2016/ISO9001 customer specific requirements.                   | Lecture, activity                               | AU1662.2,<br>AU1662.3 | Class Quiz<br>ETE                      |
| 17-18    | Product safety                                                                                            | Recall the importance of product<br>safety and various approaches and<br>methods used to control product<br>quality.                  | Lecture, Team<br>Activity (Think Pair<br>Share) | AU1662.6              | Class Quiz                             |
| 19-20    | Code of ethics                                                                                            | Understand and identify various code of ethics to be followed to minimize different types of risks.                                   | Lecture                                         | AU1662.6              | Class Quiz                             |

| 21-22      | Performance evaluation and the formulation of   | Identify various methods to trace,    | Lecture, Activity  | AU1662.4, |            |
|------------|-------------------------------------------------|---------------------------------------|--------------------|-----------|------------|
|            | action plans for when any targets are missed    | prevent, control and monitor the      |                    | AU1662.5  |            |
|            |                                                 | key indicators                        |                    |           |            |
| Self-Study | Web based QMS system knowledge and              | To get a brief knowledge standard     | Self-Study         | AU1662.4, | Class Quiz |
|            | methodology of information flow                 | method of information flow.           |                    | AU1662.5  |            |
| 23-24-25   | 13 steps of an internal audit                   | To identify various steps of internal | Lecture, Activity, | AU1662.4, | Class Quiz |
|            | EXPERT LECTURE                                  | audit.                                | Lab                | AU1662.5  |            |
| 26-27-28   | Internal auditor's checklist, and certification | To learn to prepare auditor's         | Lecture            | AU1662.4, | Class Quiz |
|            | training                                        | checklist for different stages of     |                    | AU1662.5  |            |
|            | EXPERT LECTURE                                  | production.                           |                    |           |            |
| 24         | Conclusion and Course Summarization             | NA                                    | NA                 | NA        | NA         |

# I. Course Articulation Matrix: (Mapping of COs with POs)

| со           | STATEMENT                                                                                                                                                                           |         | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |         |         |         |          | CORRELATION WITH<br>PROGRAM SPECIFIC<br>OUTCOMES |          |       |       |       |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|---------|---------|---------|---------|---------|---------|---------|----------|--------------------------------------------------|----------|-------|-------|-------|
|              |                                                                                                                                                                                     | PO<br>1 | РО<br>2                           | PO<br>3 | РО<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | РО<br>9 | РО<br>10 | РО<br>11                                         | PO<br>12 | PSO 1 | PSO 2 | PSO 3 |
| AU<br>1662.1 | Attain knowledge about different set of standards and guidelines followed in IATF16949/ ISO9001.                                                                                    |         |                                   |         |         | 3       | 2       | 2       |         | 2       |          | 2                                                |          |       |       | 2     |
| AU<br>1662.2 | Develop an overview of various aspects such as<br>customer specific requirements, manufacturing<br>feasibility, process and product quality monitoring,<br>warranty management etc. |         |                                   | 3       |         | 2       | 2       | 1       |         | 2       |          | 1                                                |          |       |       | 2     |
| AU<br>1662.3 | Apply above knowledge of IATF16949/ISO 9001 standards to real life case companies.                                                                                                  |         |                                   | 2       | 3       | 2       | 2       | 2       |         | 1       |          | 1                                                |          |       |       | 2     |
| AU<br>1662.4 | Learn and practice various steps followed by a quality engineer to conduct product and process audits.                                                                              |         |                                   | 1       | 2       | 1       | 1       | 1       |         | 2       |          | 2                                                |          |       |       | 2     |
| AU<br>1662.5 | Develop an understanding of action plans to be taken when targets are missed in any manufacturing process.                                                                          |         |                                   | 1       |         |         | 2       | 3       |         | 3       |          | 1                                                |          |       |       | 3     |
| AU<br>1662.6 | Develop an overall knowledge of monitoring and<br>improving any manufacturing system using<br>appropriate quality standard guidelines.                                              |         |                                   | 1       | 1       |         | 2       | 2       | 1       | 1       |          | 1                                                |          |       |       | 3     |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation




School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Vehicle Dynamics and Stability Control | AU 1705 | 4 Credits | 3 0 2 4

Session: July 21 – Nov 21 | Faculty: Dr. Ashish Malik | Class: 4<sup>th</sup> Year / 7<sup>th</sup> Semester

**Introduction:** This course is offered for students of Automobile Engineering 4th year, as a core course that helps students who wish to pursue their career in sales & service automotive sector or higher studies in field of Automotive Engineering. When engineers design vehicles, they are likely to encounter competing demands relating to dynamics and stability. This course will teach you how engineers analyse vehicle dynamics in performance, handling and ride modes. This course offers knowledge of vehicle performance & handling, Aerodynamics of vehicle and road testing. Being an introductory course no prerequisite is expected from students, however knowledge on automotive chassis system and kinematic and dynamics of automotive will help in better learning. This course will also help students those who want to pursue their career in research and development field.

A. Course Objectives: At the end of the course, students will be able to

[1705.1]. Develop physical and mathematical models to predict the dynamic response of vehicles

[1705.2]. Apply vehicle design performance criteria and how to use the criteria to evaluate vehicle dynamic response; [1705.3]. Modify a model of a vehicle to enable it to meet design performance criteria;

[1705.4]. Develop and implement computer models of vehicle dynamics behaviour and critically analyse results from numerical simulations.

[1705.5]. Extend the mathematical analysis of the passenger car to heavy vehicles.

[1705.6]. Characterise changes in vehicle performance and vehicle/roadway interaction.

[1705.7]. Construct specifications for vehicle control systems

#### **B.** Program Outcomes and Program Specific Outcomes:

- [PO.1]. **Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments</u>, <u>analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern</u> <u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. **The engineer and society**: Apply reasoning informed by the <u>contextual knowledge to assess</u> <u>societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. Environment and sustainability: Understand the <u>impact of the professional engineering</u> solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. **Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- [PO.9]. **Individual and team work**: Function effectively as an individual, and as a <u>member or leader</u> <u>in diverse teams</u>, and in multidisciplinary settings

- [PO.10]. **Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change
- [PSO.1]. **Autotronics and Electric Vehicle Technology:** <u>Apply</u> knowledge of electrical and electronics engineering for providing automobile engineering solutions
- [PSO.2]. Alignment to Super Qualification packs of ASDC: <u>Demonstrate knowledge and</u> <u>performance criteria</u> as defined by ASDC super qualification packs for R&D or Quality or Service Engineering
- [PSO.3]. **Application of Lean Six Sigma Methodology:** <u>Demonstrate through an internship</u> <u>project</u>, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

| Criteria                                                         | Description                                                                                                                                                                                                                                                                   | Maximum Marks                                                                                                                                                                                                                               |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  | Sessional Exam I (Open Book)                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                          |
| Internal Assessment                                              | Sessional Exam II (Open Book)                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                          |
| (Summative)                                                      | In class Quizzes and Assignments ,                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                          |
|                                                                  | Activity feedbacks (Accumulated and                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                             |
|                                                                  | Averaged)                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                             |
|                                                                  | In semester practical components                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                          |
| End Term Exam                                                    | End Term Exam (Open Book)                                                                                                                                                                                                                                                     | 50                                                                                                                                                                                                                                          |
| (Summative)                                                      | End Semester Practical Components                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                           |
|                                                                  | Total                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                         |
| Attendance<br>(Formative)                                        | A minimum of 75% Attendance is require<br>qualified for taking up the End Semeste                                                                                                                                                                                             | ed to be maintained by a student to be<br>er examination. The allowance of 25%                                                                                                                                                              |
|                                                                  | includes all types of leaves including medi                                                                                                                                                                                                                                   | cal leaves.                                                                                                                                                                                                                                 |
|                                                                  | This 75% is required individually in both t                                                                                                                                                                                                                                   | heory and practical component.                                                                                                                                                                                                              |
|                                                                  | The Student will be detained if he / she fa                                                                                                                                                                                                                                   | ils to achieve 75% in any one or both.                                                                                                                                                                                                      |
| Make up Assignments<br>(Formative)                               | Students who misses a class will have to n<br>A makeup assignment on the topic taught<br>has to be submitted within a week from the<br>given on this. The attendance for that part<br>blank, so that the student is not accounted<br>limited to a maximum of 5 throughout the | report to the teacher about the absence.<br>on the day of absence will be given which<br>he date of absence. No extensions will be<br>rticular day of absence will be marked<br>ed for absence. These assignments are<br>e entire semester. |
| Homework/ Home Assignment/<br>Activity Assignment<br>(Formative) | There are situations where a student may<br>a flipped classroom. Although these work<br>student is expected to participate and per<br>the activity/ flipped classroom participatio<br>will be awarded.                                                                        | y have to work in home, especially before<br>as are not graded with marks. However, a<br>form these assignments with full zeal since<br>n by a student will be assessed and marks                                                           |

#### SYLLABUS:

**Performance of cars and light trucks:** Vehicle drag-deformation of the wheel, deformation of the ground, Total resistance to a moving vehicle- air, rolling and grade resistance, power for propulsion, traction and tractive effort, Road performance curves- acceleration, gradability and drawbar pull, acceleration time and elasticity, fuel consumption and fuel economy, strategy for lowest fuel consumption, factors affecting fuel economy. **Aerodynamic forces:** Aerodynamic drag, drag components, drag coefficient, aerodynamic aids, aerodynamic side force, lift force, pitching moment, yawing moment, rolling moment, cross wind sensitivity, **Vehicle handling:** Steering angle, cornering force, low speed turning, high speed cornering, suspension effects on cornering, self-righting torque, slip angle, over steer, under steer, steady state cornering, driving torques on steering, effect of camber, camber thrust, transient effects in cornering. Stability of vehicles: Distribution of weight (Three wheeled and four wheeled vehicles), stability of a vehicle on a slope, Dynamics of vehicle running on a banked track, Stability of a vehicle taking a turn, Braking requirements, stopping distance, braking efficiency, work done in braking, tyre adhesion, braking of vehicles. **Road testing methods:** Measurement of aerodynamic drag force in a coast – down test, cross wind tests, engine cooling road test, wind noise measurement on the road.

#### Lecture Plan:

| Lec No | Topics                                                                                                               | Session Objective                                                                                   | Mode of Delivery | Corresponding CO | Mode of Assessing the<br>Outcome  |
|--------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------|------------------|-----------------------------------|
| I      | Introduction and Course Hand-out briefing                                                                            | To acquaint and clear teachers<br>Expectations and understand<br>student expectations               | Lecture          |                  | NA                                |
| 2      | Performance of cars and light trucks:<br>Vehicle drag-deformation of the wheel,<br>deformation of the ground         | Describe vehicle drag and its<br>effect on wheel and road.                                          | Lecture          |                  | In Class Quiz ( Not<br>Accounted) |
| 3      | Total resistance to a moving vehicle- air, rolling and grade resistance                                              | Analyse various resistance on a moving vehicle                                                      | Lecture          |                  | In Class Assignment               |
| 4      | power for propulsion, traction and<br>tractive effort, Relation between Engine<br>Revolution, N and Vehicle Speed, V | Describe and Analyse the<br>power propulsion and force<br>available between drive wheel and road    | Lecture          |                  | In Class Quiz & Assignment        |
| 5      | Road performance curves- acceleration,<br>grad ability and drawbar pull,                                             | Explain the Performance of passenger car based on acceleration and ability to go on up a slope etc. | Lecture          |                  | In Class Quiz                     |
| 6      | Equivalent weight, Gear Ratio for Maximum acceleration                                                               | Examine the equivalent weight of car and maximum                                                    | Lecture          |                  |                                   |

|       |                                                                                                                 | acceleration                                                                          |                 | In Class Assignment |
|-------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------|---------------------|
| 7     | acceleration time and elasticity, fuel consumption and fuel economy                                             | Describe the function of acceleration on fuel economy                                 | Filliped classs | In class Quiz       |
| 8     | strategy for lowest fuel consumption, factors affecting fuel economy                                            | Explain design strategy for fuel<br>Consumption affecting fuel economy                | Lecture         | In class Quiz       |
| 9     | Determination of Centre of Gravity of a vehicle                                                                 | Formulate the position of CG of a vehicle                                             | Lecture         | In Class Assignment |
| 10    | <b>Aerodynamic forces:</b> Aerodynamic drag, drag components, drag coefficient                                  | State the aerodynamic force and drag component                                        | Lecture         | In class Quiz       |
| 11    | aerodynamic aids                                                                                                | Describe the aerodynamics aids such as bumper, spoiler, Air dams,Deck lid spoler etc. | Filliped class  | In class Quiz       |
| 12-13 | aerodynamic side force, lift force<br>pitching moment, yawing moment,<br>rolling moment, cross wind sensitivity | Describe and analysis of aerodynamic force                                            | Lecture         | Home assignment     |
| 14    | Total Road Load                                                                                                 | Show the total road load and fuel consumption based<br>on vehicle load                | Lecture         | In class Quiz       |
| 15    | <b>Vehicle handling:</b> Steering angle, Slip<br>Angle, cornering force                                         | Describe slip angle, steering angle and corning force                                 | Lecture         | In class Quiz       |
| 16-17 | Low speed turning & High speed cornering,                                                                       | Analysis and formulate low speed turning and high speed corning                       | Filliped class  | Home assignment     |

| 18                                      | Suspension effects on cornering               | Analysis the effect of suspension while corning      | Lecture         |                            |
|-----------------------------------------|-----------------------------------------------|------------------------------------------------------|-----------------|----------------------------|
|                                         |                                               |                                                      |                 | Home assignment            |
| 19                                      | self-righting torque, over steer, under       |                                                      |                 |                            |
|                                         |                                               | Describe effect of self-righting torque and under    | Lecture         |                            |
|                                         | steer                                         | steer, over steer on vehicle while turning           |                 | In class Quiz              |
| 20                                      | steady state cornering                        |                                                      |                 |                            |
|                                         |                                               | Formulate corning equation and corning stiffness     | Lecture         | In Class Assignment        |
| 21                                      | driving torques on steering, effect of        |                                                      |                 |                            |
|                                         | camber, camber thrust, transient effects      | Describe driving torque and effect of camber         | Filliped classs |                            |
|                                         | In cornering                                  |                                                      |                 | In class Quiz              |
| 22-24                                   | Stability of vehicles: Distribution of        |                                                      |                 |                            |
|                                         | weight (Two Three wheeled and four            | Describe various forces vehicle during turning       | Lecture         | In class Quiz              |
|                                         | wheeled vehicles                              |                                                      |                 |                            |
| 25                                      | stability of a vahicle on a slope             | Analysis the stability of vehicle while moving on a  | Lecture         |                            |
| 23                                      | stability of a venicle of a slope             | siop                                                 |                 |                            |
| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                                               | Formulate even turning an end of uphials             |                 | In Class Assignment        |
| 26                                      | Dynamics of vehicle running on a banked track | Formulate over turning speed of vehicle              | Lecture         |                            |
|                                         |                                               |                                                      |                 | Home Assignment            |
| 27                                      | Stability of a vehicle taking a turn          | Analysis stability of vahiala when vahiala taka turn | Lecture         |                            |
|                                         |                                               | Analysis stability of vehicle when vehicle take turn |                 | In Class Assignment        |
| 28                                      | Braking requirements, stopping distance       |                                                      |                 |                            |
|                                         |                                               | Describe braking requirements and stopping distance  | Lecture         | In Class Quiz              |
| 29                                      | braking efficiency, work done in braking,     | Explain braking efficiency work done in braking      | Filliped class  |                            |
|                                         | braking of vehicle                            |                                                      |                 |                            |
| 30                                      | Maximum acceleration. maximum                 |                                                      |                 | in Class Quiz & Assignment |
|                                         | tractive effort and reaction for different    | Analysis max acceleration, max tractive effort and   | Filliped class  |                            |

|       |                                                                                                 | reaction for different curves                                                                                                                                          |                          |  |                     |
|-------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|---------------------|
|       | curves                                                                                          |                                                                                                                                                                        | In Class<br>Assignment   |  |                     |
| 31    | Tractive effort for tractor – semitrailer<br>Vehicles                                           | Analysis of max tractive effort for the tractor-<br>semitrailer vehicle                                                                                                | Lecture                  |  |                     |
| 32    | Gyroscopic effect on 2 and 4 wheeled vehicle                                                    | Analysis load due to gyroscopic effect                                                                                                                                 |                          |  | Home Assignment     |
| 33    | <b>Road testing methods:</b> Measurement<br>of aerodynamic drag force in a coast –<br>down test | Describe measurement of aerodynamic drag force<br>in coast-down test                                                                                                   | Lecture<br>In Class Quiz |  |                     |
| 34    | engine cooling road test                                                                        | Describe engine cooling road test                                                                                                                                      |                          |  | In Class Quiz       |
| 35    | wind noise measurement on the road                                                              | Describe wind noise measurement on the road                                                                                                                            |                          |  | In Class Quiz       |
| 36-37 | Vehicle Vibration Analysis                                                                      | Analysis and formulated vibration on motor vehicle<br>degree of freedom, Elasticity centre, vehicle<br>oscillation and effect of vibration on smooth vehicle<br>riding |                          |  | In Class Assignment |
| 38    | Doubt clearing session                                                                          |                                                                                                                                                                        |                          |  |                     |
| 39    | Doubt clearing session                                                                          |                                                                                                                                                                        |                          |  |                     |

Text Book : Automotive Mechanics, N K Giri, Khanna Publication New Dedlhi

**Reference Book:** Fundamental of Vehicle Dynamics by Thomas D Gillespie, SAE

| со        | STATEMENT                                                                                                                                                 |         |         | CORRELATION<br>WITH PROGRAM<br>SPECIFIC<br>OUTCOMES |         |         |         |         |         |         |          |          |          |          |          |          |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-----------------------------------------------------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|----------|----------|
|           |                                                                                                                                                           | PO<br>1 | PO<br>2 | PO<br>3                                             | РО<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
| AU 1705.1 | Develop physical<br>and mathematical<br>models to predict<br>the dynamic<br>response of<br>vehicles                                                       | 2       | 1       | 1                                                   |         | 1       |         |         |         |         |          |          |          |          | 1        |          |
| AU 1705.2 | Apply vehicle<br>design<br>performance<br>criteria and how<br>to use the criteria<br>to evaluate vehicle<br>dynamic response                              |         | 2       | 3                                                   |         | 1       |         |         |         | 1       |          |          |          | 2        | 1        |          |
| AU 1705.3 | Modify a model of<br>a vehicle to enable<br>it to meet design<br>performance<br>criteria                                                                  |         | 2       | 2                                                   |         | 1       |         |         |         | 2       |          |          |          | 2        | 1        |          |
| AU 1705.4 | Develop and<br>implement<br>computer models<br>of vehicle<br>dynamics<br>behaviour and<br>critically analyse<br>results from<br>numerical<br>simulations. |         | 1       |                                                     |         | 2       | 1       | 2       |         |         |          |          |          |          |          |          |
| AU 1705.5 | Extend the<br>mathematical<br>analysis of the<br>passenger car to<br>heavy vehicles                                                                       | 2       |         | 1                                                   |         | 1       |         |         |         |         |          |          |          |          | 1        |          |
| AU 1705.6 | Characterise<br>changes in vehicle<br>performance and<br>vehicle/roadway<br>interaction                                                                   | 1       |         |                                                     |         | 1       |         |         |         |         |          |          |          |          | 1        |          |
| AU 1705.7 | Construct<br>specifications for<br>vehicle control<br>systems                                                                                             |         | 2       |                                                     |         | 3       |         |         |         |         |          |          |          |          |          |          |

### I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

| со       | STATEMENT                                                                                                                                                 |         | ATTAINMENT OF PROGRAM OUTCOMES<br>THRESHOLD VALUE: 40% |         |         |         |         |         |         | ATTAINMENT OF<br>PROGRAM<br>SPECIFIC<br>OUTCOMES |          |          |          |          |          |          |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------|---------|---------|---------|---------|---------|---------|--------------------------------------------------|----------|----------|----------|----------|----------|----------|
|          |                                                                                                                                                           | PO<br>1 | PO<br>2                                                | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9                                          | PO<br>10 | PO<br>11 | PO<br>12 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
| AU1705.1 | Develop<br>physical and<br>mathematical<br>models to<br>predict the<br>dynamic<br>response of<br>vehicles                                                 | -       |                                                        |         |         |         |         |         |         |                                                  |          |          |          | -        |          | 5        |
| AU1705.2 | Apply vehicle<br>design<br>performance<br>criteria and how<br>to use the<br>criteria to<br>evaluate vehicle<br>dynamic<br>response                        |         |                                                        |         |         |         |         |         |         |                                                  |          |          |          |          |          |          |
| AU1705.3 | Modify a model<br>of a vehicle to<br>enable it to<br>meet design<br>performance<br>criteria                                                               |         |                                                        |         |         |         |         |         |         |                                                  |          |          |          |          |          |          |
| AU1705.4 | Develop and<br>implement<br>computer<br>models of<br>vehicle dynamics<br>behaviour and<br>critically analyse<br>results from<br>numerical<br>simulations. |         |                                                        |         |         |         |         |         |         |                                                  |          |          |          |          |          |          |
| AU1705.5 | Extend the<br>mathematical<br>analysis of the<br>passenger car to<br>heavy vehicles                                                                       |         |                                                        |         |         |         |         |         |         |                                                  |          |          |          |          |          |          |
| AU1705.6 | Characterise<br>changes in<br>vehicle<br>performance<br>and                                                                                               |         |                                                        |         |         |         |         |         |         |                                                  |          |          |          |          |          |          |

|          | vehicle/roadway<br>interaction                                |  |  |  |  |  |  |  |  |
|----------|---------------------------------------------------------------|--|--|--|--|--|--|--|--|
| AU1705.7 | Construct<br>specifications<br>for vehicle<br>control systems |  |  |  |  |  |  |  |  |



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out Electrical And Hybrid Vehicle | Code: AU-1707 | 4 Credits | 3 0 2 4 Session: Jul. 20 – Nov. 20 | Faculty: Dr Dalip Singh | Class: VII semester

## A. Introduction:

This course is offered by Dept. of Automobile Engineering as a core subject, targeting students who wish to pursue research & development in industries or higher studies in field of Electric and Hybrid Vehicles and upcoming market for retrofit of existing IC engine vehicles with electric motors. Offers in depth knowledge about working of an Electric Vehicle by covering study of Vehicle Fundamentals of EVs and its various components. Lithium-ion batteries are covered in detail in relevance to EVs. The course gives an introductory level knowledge on working fundamentals of different electric motors (AC and DC machines, 3 phase induction motors, SRMs), motor controllers and control techniques, electric vehicle drive train, regenerative braking and different types of hybrid vehicles. Students are expected to have background knowledge on basic vehicle working fundamentals for a better learning.

B. Course Outcomes: At the end of the course, students will be able to-

**[1707.1].** Understand the vehicle mechanics and effects of different forces acting on a moving vehicle.

**[1707.2].** Describe the working of an EV and its components and differentiate it from an IC engine based vehicle.

**[1707.3].** Understand the differences between various types of batteries and choose most optimum battery for an EV based on design parameters.

[1707.4]. Interpret and illustrate the working of different types of electrical machines and motors.

**[1707.5].** Recognize different configurations of Hybrid vehicles and the working and performance based on different powertrains in a hybrid vehicle.

**[1707.6].** Fabricate Electric vehicle with retro fitment and become an entrepreneur and measure its performance enhancing their employability skills.

| Criteria                                | Description                                          | Maximum Marks              |
|-----------------------------------------|------------------------------------------------------|----------------------------|
|                                         | Sessional Exam I (Closed Book)                       | 15                         |
| Internal Assessment<br>(Summative)      | Sessional Exam II (Closed Book)                      | 15                         |
| (************************************** | In class Quizzes and Assignments , Activity          | 30                         |
|                                         | feedbacks (Accumulated and Averaged)                 |                            |
| End Term Exam                           | End Term Exam (Closed Book)                          | 40                         |
| (Summative)                             |                                                      |                            |
|                                         | Total                                                | 100                        |
| Attendance                              | A minimum of 75% Attendance is required to be        | maintained by a student to |
| (Formative)                             | be qualified for taking up the End Semester exa      | mination. The allowance of |
|                                         | 25% includes all types of leaves including medical l | eaves.                     |

## C. Assessment Plan:

| Make up              | Students who misses a class will have to report to the teacher about the        |
|----------------------|---------------------------------------------------------------------------------|
| Assignments          | absence. A makeup assignment on the topic taught on the day of absence will     |
| (Formative)          | be given which has to be submitted within a week from the date of absence.      |
|                      | No extensions will be given on this. The attendance for that particular day of  |
|                      | absence will be marked blank, so that the student is not accounted for          |
|                      | absence. These assignments are limited to a maximum of 5 throughout the         |
|                      | entire semester.                                                                |
| Homework/ Home       | There are situations where a student may have to work in home, especially       |
| Assignment/ Activity | before a flipped classroom. Although these works are not graded with marks.     |
| Assignment           | However, a student is expected to participate and perform these assignments     |
| (Formative)          | with full zeal since the activity/ flipped classroom participation by a student |
|                      | will be assessed and marks will be awarded.                                     |

## **D.** Syllabus:

**Electric Vehicles fundamentals** - Introduction, Vehicle dynamics – Roadway fundamentals, vehicle kinetics, Dynamics of vehicle motion - Propulsion System Design. IC engine versus EVs. **Battery Basics:** - Types, Parameters – Capacity, C-rate, State of Charge (SOC), Depth of Discharge (DOD). Technical characteristics of Lithium Ion and Lead-Acid batteries. Battery pack Design, Thermal issues in batteries.

**Electrical Machines** (DC & AC): Motor and Engine rating, Requirements, DC machines (BLDC & BDC), Three phase A/c machines, Induction machines, permanent magnet machines, switched reluctance machines. Motor Power controllers. Thermal issues in motors.

**Solar Powered & Hybrid Electric Vehicles**: Layout, advantage, limitations, Specifications and System component. Hybrid Types – series, parallel and mild parallel configuration – Design – Drive train, sizing of components

**Electric Vehicle Drive Train** -Transmission configuration, Components – gears, differential, clutch, brakes regenerative braking, motor sizing.

**Fuel Cell Powered Vehicles:** Introduction, Open Circuit voltage, Operational cell voltages, Types-PEM fuel cells, Alkaline Electrolyte, Direct Methanol fuel cell, Medium and high temperature and fuel types, fuel cell stacks, Delivering fuel cell power, Integrated Air supply and humidification concepts for fuel cell systems, Fuel cell Auxiliary systems. Automotive Application of Fuel Cells

**LAB EXPERIMENTS:** Battery Monitoring System, Battery Charger for Lead Acid battery and Li-ion Battery, BLDC Motor Torque and Load testing on a dyano. Design a Motor Controller, Series and parallel Hybrid Powertrain. Analysis of EV driving parameters, driving uphill/ downhill, different gear lever positions, energy consumption by electric motor, regenerative braking scenarios, etc. using De Lorenzo DL AM22 Hybrid and Electric Simulator. Thermal simulation, capacity fade analysis using COMSOL Multiphysics software.

## E. Text Book:

• M. Ehsani, Y. Gao and Ali Emadi, *Modern Electric, Hybrid Electric and Fuel Cell Vehicles*, 2<sup>nd</sup> Edition, CRC Press, London, 2010.

## F. Reference Books:

- C. Glaize and S. Genies, *Lithium Batteries and Other Electrochemical Storage Systems*, 1<sup>st</sup> Edition, Wiley, New York, 2013.
- Hughes, *Electric Motors and Drives*, 3<sup>rd</sup> Edition, Elsevier Publication, Great Britain, 2006.
- J. Larminie and J. Lowry, *Electric Vehicle Technology Explained*, Wiley, England, 2012.

# G. Lecture Plan:

| Lec  | Topics                                          | Session Outcome                    | Mode of               | Mode of                               |
|------|-------------------------------------------------|------------------------------------|-----------------------|---------------------------------------|
| No   | -                                               |                                    | Delivery              | Assessing the                         |
|      |                                                 |                                    | -                     | Outcome                               |
| 1    | Introduction and                                | To acquaint and clear teachers     | Lecture               | NA                                    |
|      | Course Hand-out                                 | expectations and understand        |                       |                                       |
|      | briefing                                        | student expectations               |                       |                                       |
| 2    | Components of a                                 | Recall working of a vehicle (cars, | Flipped               | In Class Quiz                         |
|      | common Vehicle                                  | trucks, etc)                       | Classroom             | (Not Accounted)                       |
|      |                                                 |                                    |                       | · · · · · · · · · · · · · · · · · · · |
|      |                                                 |                                    |                       |                                       |
| 3.4  | Vehicle mechanics and                           | Identify different forces acting   | Lecture               | In Class Quiz                         |
| -, - | Roadway fundamentals                            | on a vehicle                       |                       |                                       |
|      | ······································          |                                    |                       |                                       |
|      |                                                 |                                    |                       |                                       |
| 56   | Vehicle kinetics and                            | Explain the effects of different   | Lecture               | In Class Quiz                         |
| 5,0  | Dynamics of vehicle                             | forces on different components     | Lecture               |                                       |
|      | motion                                          | of vehicle                         |                       |                                       |
|      |                                                 |                                    |                       |                                       |
|      |                                                 |                                    |                       |                                       |
|      |                                                 |                                    |                       |                                       |
| 78   | Power train design                              | Recall the powertrain design in    | Lecture               | Home                                  |
| 7,0  | considerations (normal                          | existing IC engine vehicles and    | Lecture               | Assignment                            |
|      | vehicle vs electric                             | comparison with electric           |                       | 7 1001611111111                       |
|      | vehicle)                                        | vehicles                           |                       |                                       |
|      |                                                 |                                    |                       |                                       |
|      |                                                 |                                    |                       |                                       |
|      |                                                 |                                    |                       |                                       |
| 9    | Battery types and basics                        | Recall the different batteries     | Activity              | Class Quiz                            |
| 1    | Battery types and basies                        | used in electronic gadgets.        | (Think Pair           |                                       |
|      |                                                 |                                    | (Think I un<br>Share) |                                       |
|      |                                                 |                                    | /                     |                                       |
|      | Dettem:                                         |                                    | 1 a atum -            |                                       |
| 10   | Battery Design                                  | Explain the different design       | Lecture               | Class Quiz                            |
|      | Discharge rate State of                         | parameters for various types of    |                       |                                       |
|      | charge rate, state of                           | Dallelles.                         |                       |                                       |
|      | Discharge Depth of                              |                                    |                       |                                       |
|      | Discharge, Depth Of                             |                                    |                       |                                       |
| 11   | Technical characteristics                       | Recall Lead acid batteries being   | Flipped Class         | Class Quiz                            |
| 12   | of Lead Acid                                    | used in vehicles and interpret     | . inpres Class        |                                       |
|      |                                                 | the technical characteristics.     |                       |                                       |
|      |                                                 |                                    |                       |                                       |
|      |                                                 |                                    |                       |                                       |
| 13,  | Technical characteristics                       | Explain the detail about Lithium   | Lecture               | Class Quiz                            |
| 14,  | of Lithium Ion Batteries                        | Ion batteries and their            |                       |                                       |
| 15   | (Li-polymer, LiFePO4,                           | characteristics                    |                       |                                       |
|      | Li-Titanate, LiMn <sub>2</sub> O <sub>4</sub> ) |                                    |                       |                                       |
|      | , <u> </u>                                      |                                    |                       |                                       |
|      |                                                 |                                    |                       |                                       |

| 16         | Design Considerations<br>of Battery Pack –<br>Thermal Management,<br>BMS | Designing the battery pack on<br>basis of requirements ad design<br>of cells available in the market                                     | Activity<br>(Think Pair<br>Share) | Home<br>Assignment |
|------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------|
| 17         | Dc & Ac Electrical<br>Machines and their<br>types.                       | Recall the different type of electrical machines used.                                                                                   | Lecture                           | Class Quiz         |
| 18,<br>19  | Electric Motors and their working.                                       | Explain the working of electric<br>motors and Analyse their<br>performanc                                                                | Lecture                           | Class Quiz         |
| 20         | DC machines,                                                             | Explain the characteristics of<br>different direc current motors<br>used in EVs. Locate different DC<br>motos in different brands of EVs | Lecture,<br>Activity              | Class Quiz         |
| 21,<br>22  | Three phase A/c<br>machines,                                             | Explain the characteristics of<br>Alternating Current motors<br>used in EVs. Locate different DC<br>motos in different brands of EVs     | Lecture,<br>Activity              | Class Quiz         |
| 23,<br>24  | permanent magnet<br>machines,                                            | Recall the working of PM machines being commonly used and explain their characteristics                                                  | Lecture                           | Class Quiz         |
| 25         | Switched reluctance machines.                                            | Recall the working of SRM machines being commonly used and explain their characteristics                                                 | Lecture                           | Class Quiz         |
| 26         | Induction machines,                                                      | Recall the working of Induction<br>Motors being commonly used<br>and explain their characteristics                                       | Lecture                           | Home<br>Assignment |
| 27         | Electric Vehicle Drive<br>Train -                                        | Locate the drive train<br>components in existing EVs and<br>explain the characteristics of<br>drive train                                | Lecture,<br>Activity              | Class Quiz         |
| 28,<br>29  | Transmission<br>configurations and<br>components                         | Explain the working of a transmission ad characteristics of various gears and differentials                                              | Lecture                           | Class Quiz         |
| 30         | gears & differential                                                     | Explain the working and design of clutches used in EVs.                                                                                  | Lecture                           | Class Quiz         |
| 31,<br>32  | Clutches and Brakes                                                      | Recall the components and working of clutches and braking components                                                                     | Lecture                           | Class Quiz         |
| 33         | Regenerative braking                                                     | Explain the characteristics of regenerative braking.                                                                                     | Lecture                           | Home<br>Assignment |
| 34         | Hybrid Electric Vehicles                                                 | Recall the various types of<br>Hybrid Electric vehicles.                                                                                 | Activity<br>(Think Pair<br>Share) | Class Quiz         |
| 35         | Types of Hybrid Electric<br>Vehicles                                     | Explain the working of different types of configuration in hybrid vehicles                                                               | Lecture                           | Class Quiz         |
| 36,<br>37, | Hybrid Configurations-<br>series, parallel and                           | Explain the characteristics and components in series and                                                                                 | Lecture                           | Class Quiz         |

| 38 | mixed                                                               | parallel configurations                                                                               |         |                                   |
|----|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------|-----------------------------------|
| 39 | Design of Drive train components                                    | Explain the characteristics of<br>drive train involved hybrid<br>vehicles                             | Lecture | Class Quiz                        |
| 40 | Sizing for hybrid<br>vehicles components for<br>varied applications | Recall and Explain the sizing<br>criteria and design of<br>components based on varied<br>applications | Lecture | Home<br>Assignment, Class<br>Quiz |

## H. Course articulation matrix: -

| со           | STATEMENT                                                                                                                                                       |        | CORRELATION WITH PROGRAM OUTCOMES |    |    |    |    |    |    |    |    | CORRELATION<br>WITH<br>PROGRAM<br>SPECIFIC<br>OUTCOMES |    |     |     |     |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------|----|----|----|----|----|----|----|----|--------------------------------------------------------|----|-----|-----|-----|
|              |                                                                                                                                                                 | PO     | PO                                | PO | PO | PO | PO | PO | PO | PO | PO | PO                                                     | PO | PSO | PSO | PSO |
|              | Understand the                                                                                                                                                  | ।<br>२ | 2                                 | 3  | 4  | 5  | 6  | /  | 8  | 9  | 10 | 11                                                     | 12 | 2   | 2   | 3   |
| 1707.1       | vehicle mechanics<br>and effects of<br>different forces<br>acting on a moving<br>vehicle.                                                                       | 5      |                                   |    |    |    |    |    |    | •  |    |                                                        |    | 2   |     |     |
| AU<br>1707.2 | Describe the<br>working of an EV<br>and its components<br>and differentiate it<br>from an IC engine<br>based vehicle.                                           |        | 2                                 | 2  | 2  |    |    |    |    | 2  |    |                                                        |    | 2   | 1   |     |
| AU<br>1707.3 | Understand the<br>differences between<br>various types of<br>batteries and choose<br>most optimum<br>battery for an EV<br>based on design<br>parameters         |        | 2                                 |    | 2  |    |    |    |    | 2  |    |                                                        |    | 2   |     |     |
| AU<br>1707.4 | Interpret and<br>illustrate the<br>working of different<br>types of electrical<br>machines and<br>motors.                                                       | 2      | 2                                 |    |    |    |    |    | I  | 2  |    |                                                        |    | 2   | I   |     |
| AU<br>1707.5 | Recognize different<br>configurations of<br>Hybrid vehicles and<br>the working and<br>performance based<br>on different<br>powertrains in a<br>hybrid vehicle   | 2      | 2                                 |    |    |    |    |    | Ι  | 2  |    |                                                        |    | 2   | 1   |     |
| AU<br>1707.6 | Fabricate Electric<br>vehicle with retro<br>fitment and become<br>an entrepreneur and<br>measure its<br>performance<br>enhancing their<br>employability skills. |        | 2                                 | 3  | 2  |    |    |    |    | 2  |    |                                                        |    | 2   | 1   |     |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

#### Earth Moving Equipment | AU 1760 | 3 Credits | 2 0 2 3

Session: Aug 20 – Dec 20 | Faculty: Rakesh Kumar | Class: IV Year VII Semester

- A. Introduction: This course is offered as an elective course to the students of IV Year B Tech Automobile Engineering. This course offers in depth knowledge including various off road vehicles, transport equipment, Tractors, Earth moving machines etc. Students are expected to have background knowledge on automobile engineering, IC engines, two and three wheelers, chassis system and transmission system, and be familiar with Vehicle body engineering for better learning.
- B. Course Outcomes: At the end of the course, students will be able to
  - [1760.1] Classify types of off road vehicles.
  - [1760.2] Describe various types of transport equipment, their principles and uses in industry.
  - [1760.3] Describe various types of tractors, their principle, system and their uses.

**[1760.4 ]** Describe various types of earth moving machines, their principle, system and their uses which leads to employability.

#### C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. **Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments</u>, <u>analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern</u> <u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. **The engineer and society**: Apply reasoning informed by the <u>contextual knowledge to assess</u> <u>societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. Environment and sustainability: Understand the <u>impact of the professional engineering</u> solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- [PO.9]. **Individual and team work**: Function effectively as an individual, and as a <u>member or leader</u> in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

- [PO.11]. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change
- [PSO.1]. **Autotronics and Electric Vehicle Technology:** <u>Apply</u> knowledge of electrical and electronics engineering for providing automobile engineering solutions
- [PSO.2]. Alignment to Super Qualification packs of ASDC: <u>Demonstrate knowledge and</u> <u>performance criteria</u> as defined by ASDC super qualification packs for R&D or Quality or Service Engineering
- [PSO.3]. **Application of Lean Six Sigma Methodology:** <u>Demonstrate through an internship</u> <u>project</u>, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

#### D. Assessment Plan:

| Criteria                  | Description                                                                          | Maximum Marks                             |  |  |  |
|---------------------------|--------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
|                           | Sessional Exam I (Open Book)                                                         | 15                                        |  |  |  |
| Internal Assessment       | Sessional Exam II (Open Book)                                                        | 15                                        |  |  |  |
| (Summative)               | In class Quizzes and Assignments                                                     | 10                                        |  |  |  |
|                           | (Accumulated and Averaged)                                                           |                                           |  |  |  |
|                           | Application based project (internal)                                                 | 15                                        |  |  |  |
|                           | Project Assessment                                                                   | 5                                         |  |  |  |
| End Term Exam             | End Term Exam (Open Book)                                                            | 40                                        |  |  |  |
| (Summative)               |                                                                                      |                                           |  |  |  |
|                           | Total 100                                                                            |                                           |  |  |  |
| Attendance                | A minimum of 75% Attendance is requir                                                | ed to be maintained by a student to be    |  |  |  |
| (Formative)               | qualified for taking up the End Semest                                               | er examination. The allowance of 25%      |  |  |  |
|                           | includes all types of leaves including med                                           | ical leaves.                              |  |  |  |
| Make up Assignments       | Students who misses a class will have to                                             | report to the teacher about the absence.  |  |  |  |
| (Formative)               | A makeup assignment on the topic taug                                                | ght on the day of absence will be given   |  |  |  |
|                           | which has to be submitted within a                                                   | week from the date of absence. No         |  |  |  |
|                           | extensions will be given on this. The atter                                          | ndance for that particular day of absence |  |  |  |
|                           | will be marked blank, so that the stude                                              | ent is not accounted for absence. These   |  |  |  |
|                           | assignments are limited to a maximum of                                              | 5 throughout the entire semester.         |  |  |  |
| Homework/ Home Assignment | There are situations where a student                                                 | may have to work in home, especially      |  |  |  |
| (Formative)               | before a flipped classroom. Although the                                             | nese works are not graded with marks.     |  |  |  |
|                           | However, a student is expected to participate and perform these assignments          |                                           |  |  |  |
|                           | with full zeal since the activity/ flipped classroom participation by a student will |                                           |  |  |  |
|                           | be assessed and marks will be awarded.                                               |                                           |  |  |  |

#### E. SYLLABUS:

**Classification and requirements of off road vehicles:** Land clearing machines Earth moving machines Scrapers and graders Shovels and ditcher's Power plants, chassis and transmission, multi axle vehicles. **Transport equipment;** Powered equipment, Tractors and Trollies, Trailers, Platform lift trucks, Fork lift trucks, containers and Supports. Hauling equipment: Types of dump trucks, On-high way vehicles, off high way vehicles. Hoisting equipment: Jacks, truck mounted crane, Crawler crane, Outriggers. **Tractors and tractors units:** Tractors in earth moving Applications of tractors, Rating of Tractors, Wheeled and Crawler tractor, recent trends in tractor design, power shift transmission and final drive in caterpillar tractor. Motor grader, recent trends, control mechanism of a caterpillar motor grader. **Earth moving machines:** Bulldozers, cable and hydraulic dozers. Crawler track, running and steering gears, scrapers, drag and self-Powered types - dump trucks and dumpers - loaders, single bucket, multi bucket and rotary types - power and Capacity of earth moving machines.

**Lab:** Hydraulic trainer explains the hydraulic principle used in crawler tractor, power shift transmission and final drive. Pneumatic trainer explains the circuit used in pneumatic brake system used in heavy vehicle.

## F. Text Book:

1. Abrosimov. K. Bran berg.A. And Katayer.K., Road making Machinery, MIR Publishers, Moscow, 1971.

## G. Refrences:

- 1. Wang.J.T. Theory of Grand vehicles, John Wiley & Sons, New York, 1987.
- 2. Off the road wheeled and combined traction devices Ashgate Publishing Co. Ltd. 1998
- 3. R.L. Peurifoy, Construction Planning Equipment and Methods, McGraw Hill Publishers, 1956

4. Mahesh Varma, Construction Equipment and its Planning and Applications, Metropolitan Books Co., Delhi, 2004

#### H. Lecture Plan:

| Lecture<br>No. | Topics                                                                                        | Session Objective                                                                               | Mode of<br>Delivery             | Corresponding<br>CO | Mode of<br>Assessing the<br>Outcome |
|----------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------|---------------------|-------------------------------------|
| 1              | Introduction                                                                                  | To acquaint and clear<br>teachers expectations<br>and understand student<br>expectations        | Lecture                         | NA                  |                                     |
| 2              | Classificationandrequirementsofoffroadvehicles:Landclearing machines                          | Classify off road vehicles<br>Describe land clearing<br>machines                                | Lecture                         | [1760.1]            | Home<br>Assignment<br>Class Quiz    |
| 3              | chassis and transmission                                                                      | Describe chassis and<br>transmission system of<br>off road vehicles                             | Lecture                         | [1760.1]            | Mid term                            |
| 4              | multi axle vehicles                                                                           | Describe various multi<br>axle vehicles                                                         | Lecture<br>Flipped<br>Classroom | [1760.1]            | End term                            |
| 5              | Transport<br>equipment; Powered<br>equipment                                                  | Classify transport<br>equipment                                                                 | Lecture                         | [1760.2]            | Home<br>Assignment                  |
| 6              | Tractors and Trollies                                                                         | Describe Tractors and<br>Trollies and their<br>principle, uses etc.                             | Lecture                         | [1760.2]            | Class Quiz<br>Mid term              |
| 7,8            | Trailers, Platform lift<br>trucks, Fork lift trucks,<br>containers and Supports               | Describe Trailers,<br>Platform lift trucks, Fork<br>lift trucks, containers<br>and Supports     | Lecture<br>Flipped<br>Classroom | [1760.2]            | End term                            |
| 9,10           | Hauling equipment: Types<br>of dump trucks, On-high<br>way vehicles, off high way<br>vehicles | Classify Hauling<br>equipment<br>Describe dump truck,<br>on highway and off<br>highway vehicles | Lecture<br>Flipped<br>Classroom | [1760.2]            |                                     |
| 11,12          | Hoisting equipment: Jacks,<br>truck mounted crane,<br>Crawler crane, Outriggers               | Classify Hoisting<br>equipment<br>Describe jack mounted<br>crane, crawler crane,<br>outriggers  | Lecture<br>Flipped<br>Classroom | [1760.2]            |                                     |
| 13             | Tractors and tractors<br>units: Tractors in earth                                             | Describe role of tractors<br>in earth moving,<br>application and rating of                      | Lecture                         | [1760.3]            | Home<br>Assignment                  |
|                | of tractors, Rating of<br>Tractors                                                            | tractors Bernoulli's equation                                                                   |                                 |                     | Class Quiz                          |

| 14    | Wheeled and Crawler                | Describe Wheeled and       | Lecture      | [1760.3]        | Mid term                               |  |  |
|-------|------------------------------------|----------------------------|--------------|-----------------|----------------------------------------|--|--|
|       | tractor                            | Crawler tractor            |              |                 | End term                               |  |  |
| 15,16 | recent trends in tractor           | Recall tractors, and       | Lecture      | [1760.3]        |                                        |  |  |
|       | design                             | describe recent trends     | Flipped      |                 |                                        |  |  |
|       |                                    |                            | Classi UUIII |                 |                                        |  |  |
| 17,18 | Power shift transmission           | Recall tractors, and       | Lecture      | [1760.3]        |                                        |  |  |
|       | and final drive in                 | describe transmission      | Flipped      |                 |                                        |  |  |
|       | caterpillar tractor                | and final drive of         | Classroom    |                 |                                        |  |  |
|       |                                    |                            |              |                 |                                        |  |  |
| 19,20 | Motor grader, recent               | Describe grader and its    | Lecture      | [1760.3]        |                                        |  |  |
|       | trends, control mechanism          | control mechanism          | Classroom    |                 |                                        |  |  |
|       | of a caterpillar motor             |                            | Classicon    |                 |                                        |  |  |
| 21    | grader.                            | classify Earth moving      | Locturo      | [1760 4]        | Home                                   |  |  |
| 21    | Bulldozers                         | machines. describe         | Lecture      | [1700.4]        | Assignment                             |  |  |
|       |                                    | Bulldozers                 |              |                 |                                        |  |  |
| 22,23 | Cable and hydraulic dozers         | Describe Cable and         | Lecture      | [1760.4]        | Class Quiz                             |  |  |
|       |                                    | hydraulic dozers           |              |                 |                                        |  |  |
| 24,25 | Crawler track, running and         | Describe Crawler track,    | Lecture      | [1760.4]        | End term                               |  |  |
|       | steering gears, scrapers           | running and steering       |              |                 |                                        |  |  |
| 26.27 | drag and colf Doworod              | gears, scrapers            | Locturo      | [1760.4]        |                                        |  |  |
| 20,27 | types - dump trucks and            | Powered types dump         | Flipped      | [1700.4]        |                                        |  |  |
|       | dumpers - loaders                  | trucks and dumpers,        | Classroom    |                 |                                        |  |  |
|       | -                                  | loaders                    |              |                 |                                        |  |  |
| 28,29 | Single bucket, multi bucket        | Describe Single bucket,    | Lecture      | [1760.4]        |                                        |  |  |
|       | and rotary types                   | type's earth moving        |              |                 |                                        |  |  |
|       |                                    | machines.                  |              |                 |                                        |  |  |
| 30    | Power and Capacity of              | Describe Power and         | Lecture      | [1760.4]        |                                        |  |  |
|       | earth moving machines.             | Capacity of earth          |              |                 |                                        |  |  |
|       |                                    | moving machines.           |              |                 |                                        |  |  |
| 1     | Hydraulic principle used in va     | arious off road vehicles   |              | [1760.1]        |                                        |  |  |
| 2     | Hydraulic principle used in va     | arious transport equipment | t, tractors  | [1760.2]; [1760 | 0.3]; [1760.4]                         |  |  |
|       | and earth moving machines          |                            | ,            |                 | ,,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , |  |  |
| 3     | Pneumatic principle used in v      | various off road vehicles  |              | [1760.1]        |                                        |  |  |
| 4,    | Pneumatic principle used in        | various transport equipme  | nt, tractors | [1760.2]; [1760 | 0.3]; [1760.4]                         |  |  |
|       | and earth moving machines          |                            |              |                 |                                        |  |  |
| 5     | Mini project based on hydra        | ulic and pneumatic princip | le used in   | [1760.1]; [1760 | ).2]; [1760.3];                        |  |  |
|       | various earth moving machi         | nes                        |              | [1760.4]        |                                        |  |  |
| 6     | Mini project based on hydra        | ulic and pneumatic princip | le used in   |                 |                                        |  |  |
|       | various earth moving machi         |                            | 4            |                 |                                        |  |  |
| 7     | Mini project based on hydra        |                            |              |                 |                                        |  |  |
|       | various earth moving machi         | _                          |              |                 |                                        |  |  |
| 8     | <b>Wini project</b> based on hydra |                            |              |                 |                                        |  |  |
|       | various earth moving machines      |                            |              |                 |                                        |  |  |
| 9     | various oarth maying mach          | unc and pheumatic principl | ie usea în   |                 |                                        |  |  |
|       | various earth moving machi         | 1165                       |              |                 |                                        |  |  |

| 10 | Mini project based on hydraulic and pneumatic principle used in |
|----|-----------------------------------------------------------------|
|    | various earth moving machines                                   |
| 11 | Mini project based on hydraulic and pneumatic principle used in |
|    | various earth moving machines                                   |
| 12 | Mini project based on hydraulic and pneumatic principle used in |
|    | various earth moving machines                                   |
| 13 | Mini project based on hydraulic and pneumatic principle used in |
|    | various earth moving machines                                   |
| 14 | Mini project based on hydraulic and pneumatic principle used in |
|    | various earth moving machines                                   |

# I. Course articulation matrix ;- (Mapping of COs and POs)

| со             | STATEMENT                                                                                            |         | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |         |             |             |              |              | CORRELATION<br>WITH<br>PROGRAM<br>SPECIFIC<br>OUTCOMES |           |           |           |
|----------------|------------------------------------------------------------------------------------------------------|---------|-----------------------------------|---------|---------|---------|---------|---------|-------------|-------------|--------------|--------------|--------------------------------------------------------|-----------|-----------|-----------|
|                |                                                                                                      | PO<br>1 | PO<br>2                           | PO<br>3 | PO<br>4 | PO<br>5 | РО<br>6 | PO<br>7 | Р<br>О<br>8 | Р<br>О<br>9 | P<br>O<br>10 | P<br>O<br>11 | P<br>O<br>12                                           | PS<br>O 1 | PS<br>O 2 | PS<br>O 3 |
| AU<br>[1760.1] | Classify types of off road vehicles.                                                                 |         | 2                                 |         |         |         |         |         | 1           | 2           |              | 1            |                                                        |           |           |           |
| AU<br>[1760.2] | Describe various types<br>of transport<br>equipment their<br>principles and uses in<br>industry      |         | 2                                 | 2       | 3       |         |         | 1       | 2           | 2           |              | 1            |                                                        |           |           |           |
| AU<br>[1760.3] | Describe various types<br>of tractors, their<br>principle, system and<br>their uses.                 |         | 2                                 | 2       | 3       |         |         | 1       | 2           | 2           |              | 1            |                                                        |           |           |           |
| AU<br>[1760.4] | Describe various types<br>of earth moving<br>machines, their<br>principle, system and<br>their uses. |         | 2                                 | 2       | 3       |         |         | 1       | 2           | 2           |              | 1            |                                                        |           |           |           |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Manufacturing Quality Management | AU 1761 | 3 Credits | 2 0 2 3

Session: Jul 20 – Nov 20 | Faculty: Dr. Avanish Singh Chauhan | Class: Final Year (Program Elective)

- **A. Introduction:** This course is offered by Dept. of Automobile Engineering for seventh semester students as a program elective course. This course provides knowledge of various quality systems for monitoring and managing process and product quality. It discusses the concepts of inspection and audits conducted for ensuring quality. This course focuses on practical skills required for working in industries/organization. It also provides knowledge of standards and guidelines to be followed for testing and calibration for maintaining manufacturing quality.
- B. Course Objectives: At the end of the course, students will be able to
- [1761.1]. Understand the ISO standards defining the requirements pertaining to testing and calibration.
- [1761.2]. Develop skills to conduct audits for inspection of processes and products to monitor process and product quality.
- [1761.3]. Understand the methods for improving final product quality using FMEA, QFD, etc.
- [1761.4]. Implement the quality management measures in automotive industry applications.

#### C. Program Outcomes and Program Specific Outcomes

- **[PO.1].** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **[PO.2]. Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **[PO.3].** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **[PO.4].** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **[PO.5].** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **[PO.6].** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7].** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8].** Ethics: Apply ethical principles and commit to professional ethics\_and responsibilities and norms of the engineering practices
- **[PO.9].** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- **[PO.10].** Communication: Communicate effectively\_on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.11]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

- **[PSO.1].** Autotronics and Electric Vehicle Technology: Apply knowledge of electrical and electronics engineering for providing automobile engineering solutions
- [PSO.2]. Alignment to Super Qualification packs of ASDC: Demonstrate knowledge and performance criteria as defined by ASDC super qualification packs for R&D or Quality or Service Engineering
- [PSO.3]. Application of Lean Six Sigma Methodology: Demonstrate through an internship project, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

#### **D.** Assessment Rubrics:

| Criteria                   | Description                                                                              | Maximum Marks                              |  |  |  |  |  |
|----------------------------|------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|
|                            | Sessional Exam I (Close Book)                                                            | 15                                         |  |  |  |  |  |
| Internal Assessment        | Sessional Exam II (Close Book)                                                           | 15                                         |  |  |  |  |  |
| (Summative)                | In class Quizzes and Assignments,                                                        | 10                                         |  |  |  |  |  |
|                            | Activity feedbacks                                                                       |                                            |  |  |  |  |  |
|                            | Lab Exercises                                                                            | 20                                         |  |  |  |  |  |
| End Term Exam              | End Term Exam (Open Book)                                                                | 40                                         |  |  |  |  |  |
| (Summative)                |                                                                                          |                                            |  |  |  |  |  |
|                            | Total                                                                                    | 100                                        |  |  |  |  |  |
| Attendance                 | A minimum of 75% Attendance is require                                                   | red to be maintained by a student to be    |  |  |  |  |  |
| (Formative)                | qualified for taking up the End Semester                                                 | er examination. The allowance of 25%       |  |  |  |  |  |
|                            | includes all types of leaves including medie                                             | cal leaves.                                |  |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student may h                                               | have to work in home, especially before a  |  |  |  |  |  |
| Activity Assignment        | flipped classroom. Although these works                                                  | are not graded with marks. However, a      |  |  |  |  |  |
| (Formative)                | student is expected to participate and perfo                                             | orm these assignments with full zeal since |  |  |  |  |  |
|                            | the activity/ flipped classroom participation by a student will be assessed for internal |                                            |  |  |  |  |  |
|                            | evaluation.                                                                              |                                            |  |  |  |  |  |

#### E. Syllabus

**Monitor Process and Product Quality:** Process validation methodology followed. Inspection checkpoints for product and process audits. ISO/IEC17025 standard; General requirements for the competence of testing and calibration laboratories. Calibration certificate contents, Standards room parameters and requirements, Dimension validation and testing methods for product. Layout inspection methodology for dimension validation. **Customer Quality Management**: Monitor final product quality; Dock audit checklist, Pre Delivery Inspection, Information flow system followed at customer's end , Improving quality standards of final product, Failure testing done for validation, Inspection check points for NPD, Production, and Dock Audit etc. Testing equipment operational knowledge. Tests performed for product and process parameters maintenance. Failure testing done for validation.

**Lab:** Prepare a quality plan and comprehensive checklists for product and process audit. Simulate an internal audit for processes and the corresponding products as per ISO/IEC17025. Develop a Control Plan from a PFMEA.

#### F. Text Books

T1. F.M. Gryna, R. Chua, J.A. Defeo, Juran's Quality Planning and Analysis, McGraw Hill Education.

T2. Cianfrani, Charles A., and Jack West. Cracking the case of ISO 9001: 2008 for manufacturing: A simple guide to implementing quality management in manufacturing. Quality Press

#### G. Reference Books

R1. D. Hoyle, Automotive Quality Systems Handbook, Butterworth-Heinemann Ltd.

## H. Lecture Plan:

| Lec. No. | Topics                             | Session Outcome                              | Mode of Delivery     | Corresponding CO | Mode of Assessing the   |
|----------|------------------------------------|----------------------------------------------|----------------------|------------------|-------------------------|
|          |                                    |                                              |                      |                  | Outcome                 |
| 1        | Introduction to Course and Hand-   | To acquaint and clear teachers expectations  | Discussion           | NA               | NA                      |
|          | out briefing                       | and understand student expectations          |                      |                  |                         |
| 2        | Introduction to concept of quality | Recall concept of quality and its            | Lecture              | AU1761.1         | MTE-I, ETE, Assignments |
|          | and its importance in              | importance in engineering                    |                      | AU1761.2         |                         |
|          | manufacturing                      |                                              |                      | AU1761.3         |                         |
|          |                                    |                                              |                      | AU1761.4         | -                       |
| 3        | Monitoring product and process     | Understand the monitoring and inspection     | Lecture              | AU1761 1         |                         |
|          | quality- inspection checkpoints    | activities for ensuring product and process  |                      | AU1761 2         |                         |
|          | and process validation method      | quality                                      |                      |                  | _                       |
| 4, 5     | ISO/IEC 17025 standard -           | Explain the usage and applicability of       | Lecture              |                  |                         |
|          | General requirements for the       | ISO/IEC 17025 standard for calibration       |                      |                  |                         |
|          | competence of testing and          | requirements                                 |                      | AU1761.1         |                         |
|          | calibration laboratories: Scope    |                                              |                      |                  |                         |
|          | and normative references           |                                              |                      |                  |                         |
| 6,7      | ISO/IEC 17025 standard:            | Understand the managerial requirements of    | Lecture, Activity    |                  | 1                       |
| ,        | Management requirements            | ISO/IEC 17025 standard                       |                      | AU1/61.1         |                         |
| 8,9      | ISO/IEC 17025 standard:            | Understand and explain the technical         | Lecture, Activity    |                  | 1                       |
|          | Technical requirements             | requirements of ISO/IEC 17025 standard       |                      | AU1/61.1         |                         |
| 10       | Implementing ISO/IEC 17025         | Apply ISO/IEC 17025 standard to              | Flipped Class, Group | AU1761.1         |                         |
|          |                                    | calibration processes                        | Discussion           | AU1761.3         |                         |
|          |                                    | -                                            |                      | AU1761.4         |                         |
| 11       | Calibration certificate and its    | Understand and create calibration            | Lecture, Activity    | AU1761.2         |                         |
|          | contents                           | certificate as per international standards   |                      | AU1761.4         |                         |
| 12       | Product and process audit          | Explain the importance and procedure of      | Lecture, Activity    | AU1761.2         |                         |
|          |                                    | product and process audit                    |                      | AU1761.4         |                         |
| 13       | Standards room parameters and      | Understand and analyse various               | Flipped Class, Group |                  | MTE-II, ETE,            |
|          | requirements                       | requirements of standards room and the       | Discussion           | AU1761.2         | Assignments             |
|          |                                    | relevant parameters                          |                      |                  |                         |
| 14, 15   | Dimension validation and testing   | Analyse and apply layout inspection          | Lecture              |                  |                         |
|          | methods for product; Layout        | method                                       |                      | AU1761.2         |                         |
|          | inspection methodology for         |                                              |                      | AU1761.4         |                         |
|          | dimension validation               |                                              |                      |                  | _                       |
| 16, 17   | Customer quality management-       | Understand the monitoring and audit          | Lecture              |                  |                         |
|          | monitoring final product quality,  | activities for ensuring customer quality for |                      | AU1761.2         |                         |
|          | Product audit, Dock audit, Layout  | final product                                |                      | AU1761.4         |                         |
|          | audit                              |                                              |                      |                  |                         |
| 18       | Pre delivery inspection            | Prepare Pre delivery inspection checksheet   | Group Discussion     | AU1761.2         |                         |
|          |                                    | and conduct PDI for given product            |                      | AU1761.4         |                         |

| 19     | Information flow system at<br>customer's end, Improving<br>quality standards of final product       | Understand the information flows at<br>customer's end for improving quality<br>system                               | Lecture                | AU1761.2<br>AU1761.3                         |                  |
|--------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------|------------------|
| 20, 21 | Failure testing, testing equipment<br>operational knowledge, Failure<br>testing done for validation | Explain various testing equipments for<br>failure testing with their working<br>knowledge                           | Lecture, Flipped class | AU1761.2<br>AU1761.3                         | ETE, Assignments |
| 22     | Tests performed for product and process parameters maintenance                                      | Understand the tests required for<br>maintenance of product and process<br>parameters                               | Lecture                | AU1761.2<br>AU1761.3                         |                  |
| 23     | Inspection checkpoints for NPD and production                                                       | Analyse various checkpoints during new<br>product development process for ensuring<br>quality of outgoing product   | Lecture                | AU1761.2                                     |                  |
| 24     | Quality function deployment                                                                         | Understand and Apply QFD method for<br>converting voice of customer into the<br>technical parameters of the product | Lecture, Activity      | AU1761.3<br>AU1761.4                         |                  |
| 25     | Conclusion and Course<br>Summarization                                                              | Recall and review the manufacturing quality concepts                                                                | NA                     | AU1761.1<br>AU1761.2<br>AU1761.3<br>AU1761.4 | NA               |

# I. Course Articulation Matrix: (Mapping of COs with POs)

| СО        | STATEMEN                                                                                                                               |      | CORRELATION WITH PROGRAM OUTCOMES |      |      |      |      |             |      | CORRELATION WITH PROGRAM SPECIFIC<br>OUTCOMES |       |       |       |       |       |       |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------|------|------|------|------|-------------|------|-----------------------------------------------|-------|-------|-------|-------|-------|-------|
|           | T                                                                                                                                      | PO 1 | PO 2                              | PO 3 | PO 4 | PO 5 | PO 6 | <b>PO 7</b> | PO 8 | PO 9                                          | PO 10 | PO 11 | PO 12 | PSO 1 | PSO 2 | PSO 3 |
| AU 1761.1 | Understand the<br>ISO standards<br>defining the<br>requirements<br>pertaining to<br>testing and<br>calibration.                        | 2    | 0                                 | 0    | 0    | 0    | 0    | 0           | 0    | 0                                             | 0     | 0     | 0     | 0     | 3     | 0     |
| AU 1761.2 | Develop skills to<br>conduct audits for<br>inspection of<br>processes and<br>products to<br>monitor process<br>and product<br>quality. | 2    | 2                                 | 0    | 0    | 0    | 0    | 0           | 2    | 2                                             | 0     | 1     | 0     | 0     | 3     | 0     |
| AU 1761.3 | Understand the<br>methods for<br>improving final<br>product quality<br>using FMEA,<br>QFD, etc.                                        | 3    | 3                                 | 3    | 1    | 2    | 0    | 0           | 0    | 0                                             | 0     | 0     | 0     | 0     | 3     | 1     |
| AU 1761.4 | Implement the<br>quality<br>management<br>measures in<br>automotive<br>industry<br>applications.                                       | 3    | 3                                 | 2    | 0    | 1    | 0    | 0           | 0    | 2                                             | 0     | 2     | 0     | 0     | 3     | 2     |

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering Department of Automobile Engineering Course Hand-out Computational Fluid Dynamics | AU-1762 | 4 Credits | 3 0 2 4 Session: Aug.20 – Nov.20 | Course Coordinator: Dr. Ashish Malik | Class: VII sem. Dept.Elect.

**Introduction:** This course is offered as a department elective course to VII<sup>th</sup> semester students of B. Tech programme in Automobile Engineering interested in R&D vertical. This course offers detailed knowledge at introductory level including various fundamental equations governing the fluid flow and their conservative / non-conservative formulations. The course will cover existing discretisation methods and numerical techniques widely used for solution of equations. Different solution algorithms, time marching and space marching, explicit and implicit methods will be covered. Students are expected to have background knowledge on Engineering Mathematics, Numerical Methods, Heat Transfer and Fluid Dynamics and be familiar with any programming language (C, Fortran) for better learning.

- A. Course Outcomes: At the end of the course, students shall be able to-
  - [1762.1]. Explain the fundamental equations and their boundary conditions of fluid flow.
  - **[1762.2].** Develop algebraic equations from partial differential equations using different discretisation strategies.
  - **[1762.3].** Choose the algorithms and compute the numerical solutions.
  - [1762.4]. Employ commercial software to solve fluid flow problems in automotive domain.

# B. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. Engineering knowledge: <u>Apply the knowledge of mathematics, science, engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to</u> <u>assess societal</u>, <u>health</u>, <u>safety</u>, <u>legal</u>, <u>and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the <u>impact of the professional</u> <u>engineering solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. **Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices

- [PO.9]. Individual and team work: Function effectively as an individual, and as a <u>member or</u> <u>leader in diverse teams</u>, and in multidisciplinary settings
- [PO.10]. **Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change
- [PSO.I]. Autotronics and Electric Vehicle Technology: <u>Apply</u> knowledge of electrical and electronics engineering for providing automobile engineering solutions
- [PSO.2]. Alignment to Super Qualification packs of ASDC: <u>Demonstrate knowledge</u> <u>and performance criteria</u> as defined by ASDC super qualification packs for R&D or Quality or Service Engineering
- [PSO.3]. **Application of Lean Six Sigma Methodology:** <u>Demonstrate through an</u> <u>internship project</u>, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

| Description                                  | Maximum Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sessional Exam I (Open Book)                 | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Sessional Exam II (Open Book)                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| In class Quizzes and Assignments 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| (Accumulated and Averaged)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Practical performance (internal)             | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| End Term Exam (Open Book)                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Practical Assessment                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Total                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| A minimum of 75% Attendance is requ          | uired to be maintained by a student to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| be qualified for taking up the End Seme      | ster examination. The allowance of 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| includes all types of leaves including me    | edical leaves.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Students who misses a class will have        | e to report to the teacher about the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| absence. A makeup assignment on the          | topic taught on the day of absence will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| be given which has to be submitted wi        | thin a week from the date of absence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| No extensions will be given on this. The     | ne attendance for that particular day of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| absence will be marked blank, so that th     | e student is not accounted for absence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| These assignments are limited to a r         | maximum of 5 throughout the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| There are situations where a student         | may have to work in home especially                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| before a flipped classroom Although th       | have to work in nome, especially                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| However, a student is expected to par        | ticipate and perform these assignments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| with full zeal since the activity/ flipped c | lassroom participation by a student will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| be assessed and marks will be awarded        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                              | DescriptionSessional Exam I (Open Book)Sessional Exam II (Open Book)In class Quizzes and Assignments<br>(Accumulated and Averaged)Practical performance (internal)End Term Exam (Open Book)Practical AssessmentTotalA minimum of 75% Attendance is require<br>be qualified for taking up the End Semesi<br>includes all types of leaves including mediatesStudents who misses a class will have<br>absence. A makeup assignment on the<br>be given which has to be submitted with<br>No extensions will be given on this. The<br>absence will be marked blank, so that the<br>These assignments are limited to a resemester.There are situations where a student<br>before a flipped classroom. Although the<br>However, a student is expected to part<br>with full zeal since the activity/ flipped colored be assessed and marks will be awarded |  |  |

#### C. Assessment Plan:

## D. SYLLABUS

**Introduction to CFD**: Objectives of the course, motivation, and course plan, evaluation method, references, application of CFD in automobile engineering.

**Governing Equations and boundary conditions:** Introduction to models of flow, conservation laws of physics, derivations of Continuity, Momentum and Energy equations in Cartesian coordinate system, Transformation of these equations from Non conservative form to conservative; Implementation of boundary conditions- Inlet, outlet, wall boundary conditions

**Numerics:-** Discretization Process- concept and structure, , Explicit Taylor series expansion, Methods of deriving the discretized equations, Finite Difference, Finite Volume methods. Stability criteria, errors in calculations, Mathematical behaviour of PDEs, Structured grid, staggered grid, Mesh less techniques.

**Solution algorithms**: One-way and two-way co-ordinates, The Four basic rules in control volume formulation. Staggered Grid, Pressure corrections as Poisson's Pressure equation, QUICK, SIMPLE, PISO algorithms, TDMA, Point Iterative Methods, Explicit methods- Crank Nicolson, Implicit methods,

**Result Visualization:** - Usage of plotting software (open source, commercial), contour plots, velocity vectors, heat maps, etc.

#### E. References:

- H K Verseteeg and W Malalasekra, An Introduction to Computational Fluid Dynamics- Finite Volume Method, Second Edition, Pearson, England, 2007
- K.Muralidhar and T.Sundararajan, *Computational Fluid Flow and Heat Transfer*, Narosa Publishing House, New Delhi, 2003.
- D.A. Anderson, J.C. Tannehill, and R.H. Pletcher, *Computational Fluid Mechanics and Heat Transfer*, Taylor and Francis Group, New York, 1997.
- J.D. Anderson Jr., *Computational Fluid Dynamics- The Basics with Applications*, International Edition, McGraw Hill, New York., 1995

| Lect<br>ure<br>No. | Topics                                     | Session Outcomes                                                                           | Mode of<br>Delivery                 | Course<br>outcome | Mode of<br>Assessing<br>the<br>Outcome                   |
|--------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------|-------------------|----------------------------------------------------------|
| 1                  | Introduction                               | To acquaint and clear teachers'<br>expectations and understand<br>student expectations     | Lecture                             |                   | N/A                                                      |
| 2                  | CFD applications in automobile engineering | Explain the applications of CFD<br>in vehicle design, software<br>commercial & open source | Lecture<br>Flipped<br>Class<br>room | [AU<br>1762.1]    | Class Quiz<br>Mid term<br>End term                       |
| 3,                 | <b>Governing Equations:</b><br>Continuity  | Introduction to governing laws of physics: Derivation of continuity                        | Lecture                             | [AU<br>1762.1]    | Class Quiz<br>Mid term<br>End term                       |
| 4,5                | Flow in a Lid-driven cavity                | Setup and solution of the 2D<br>laminar fluid flow for a lid driven<br>cavity.             | CFD LAB session                     | [AU<br>1762.1]    | Hand On<br>practical                                     |
| 6                  | Momentum Equation                          | Derivation of Energy Eqn.                                                                  | Lecture                             | [AU<br>1762.6]    | Home<br>Assignment<br>Mid term<br>End term               |
| 7                  | Energy Equation                            | Transformation of governing<br>eqns from Non conservative form<br>to conservative;         | Lecture                             | [AU<br>1762.1]    | Home<br>Assignment<br>Class Quiz<br>Mid term<br>End term |

## F. Lecture Plan:

| 8      | Transformation of Equations                                                    | Implementation of boundary<br>conditions- Inlet, outlet, wall<br>boundary conditions                                   | Lecture                         | [AU<br>1762.2] | Class Quiz<br>Mid term<br>End term                       |
|--------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|----------------------------------------------------------|
| 9,10   | Flow in an Intake<br>Manifold                                                  | Modelling turbulent flow in a simple intake manifold geometry.                                                         | CFD LAB session                 | [AU<br>1762.2] | Hand On<br>practical                                     |
| 11     | Classification of<br>Equations & their<br>behaviour                            | Understanding the Concepts of<br>Discretization Process- concept<br>and structure,                                     | Lecture<br>Flipped<br>Classroom | [AU<br>1762.6] | Home<br>Assignment<br>Class Quiz<br>Mid term<br>End term |
| 12     | Classification of<br>Equations & their<br>behaviour                            | Methods of deriving discretised equations                                                                              | Lecture                         | [AU<br>1762.2] | Assignment<br>Class Quiz<br>Mid term<br>End term         |
| 13     | Boundary conditions                                                            | Understanding & Deriving Finite<br>Difference formulation<br>Understanding & Deriving Finite<br>Difference formulation | Lecture                         | [AU<br>1762.2] | Class Quiz<br>Mid term<br>End term                       |
| 14, 15 | Flow and Heat Transfer over a Flat Plate                                       | Setup and solution of the 2D<br>laminar fluid flow over a flat<br>plate                                                | CFD LAB session                 | [AU<br>1762.2] | Hand On<br>practical                                     |
| 16     | Numeric:- Introduction<br>to Discretization Process-<br>concept and structure, | Stability criteria, and estimation of errors in numerical calculations                                                 | Lecture<br>Flipped<br>Classroom | [AU<br>1762.2] | Home<br>Assignment<br>Class Quiz<br>Mid term<br>End term |
| 17     | Taylor Series Expansion                                                        | Mathematical behaviour of PDEs and impact on CFD                                                                       | Lecture                         | [AU<br>1762.6] | Home<br>Assignment<br>Class Quiz<br>Mid term<br>End term |
| 18     | Finite Difference<br>Methods                                                   | Understanding Structured and<br>Unstructured grids used for<br>calculations.                                           | Lecture                         | [AU<br>1762.3] | Class Quiz<br>Mid term<br>End term                       |
| 19,20  | Simulation of Flow<br>Development in a Pipe                                    | Setup and solution of a 3D turbulent fluid flow in a pipe.                                                             | CFD LAB session                 | [AU<br>1762.3] | Hand On<br>practical                                     |
| 21     | Finite Volume method                                                           | Solution of discretised equations by marching in space and time                                                        | Lecture                         | [AU<br>1762.3] | Class Quiz<br>Mid term<br>End term                       |
| 22     | Finite Volume method                                                           | Solution of discretised equations by marching in space                                                                 | Lecture                         | [AU<br>1762.3] | Home<br>Assignment<br>Class Quiz<br>Mid term<br>End term |
| 23     | 1-D steady State<br>Diffusion Problems                                         | Understanding the usage of<br>Iterative schemes, ADI, TDMA<br>schemes,                                                 | Lecture                         | [AU<br>1762.3] | Home<br>Assignment<br>Class Quiz<br>Mid term<br>End term |
| 24, 25 | Modelling Compressible<br>Flow over an Airfoil                                 | Setup and solution of an external compressible flow                                                                    | CFD LAB session                 | [AU<br>1762.6] | Hand On<br>practical                                     |
| 26     | Boundary Condition<br>Implementation,<br>Unsteady Problems                     | Understanding the usage of<br>boundary condition in solutions<br>of PDEs                                               | Lecture                         | [AU<br>1762.4] | Home<br>Assignment<br>Class Quiz<br>End term             |
| 27     | Numerical Stability<br>issues in Unsteady<br>Problems                          | Understanding the usage of Explicit and Implicit schemes                                                               | Lecture                         | [AU<br>1762.4] | Home<br>Assignment<br>Class Quiz<br>End term             |
| 28     | Types of Grids                                                                 | Contour Plots, Stream Lines,<br>Maps, Fluid Flow visualisation                                                         | Lecture                         | [AU<br>1762.5] | Home<br>Assignment<br>Class Quiz                         |

|        |                                                                             |                                                                                                         |                      |                | End term                                     |
|--------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------|----------------|----------------------------------------------|
| 29, 30 | Flow Past a Circular<br>Cylinder                                            | setup and solution of an unsteady<br>flow past a circular cylinder and<br>study vortex shedding process | CFD LAB session      | [AU<br>1762.5] | Hand On<br>practical                         |
| 31     | Solution Algorithms:<br>Space marching (1 way &<br>2 way coordinates)       | Understanding the usage of different upwind schemes                                                     | Lecture,             | [AU<br>1762.5] | Home<br>Assignment<br>Class Quiz<br>End term |
| 32     | Time Marching<br>Time advancements                                          | Understanding the time marching concept for parabolic equations                                         | Lecture,             | [AU<br>1762.5] | Home<br>Assignment<br>Class Quiz<br>End term |
| 33     | Upwind Schemes                                                              | QUICK, SIMPLE, PISO                                                                                     | Lecture,             | [AU<br>1762.6] | Class Quiz<br>Mid term<br>End term           |
| 34, 35 | Inviscid and Compressible<br>Flow through a Converging-<br>Diverging Nozzle | setup and solution of an axisymmetric fluid flow through a nozzle.                                      | CFD LAB session      |                | Hand On<br>practical                         |
| 36,37  | Pressure Velocity coupling                                                  | QUICK, SIMPLE, PISO                                                                                     | Lecture              | [AU<br>1762.6] | Class Quiz<br>Mid term<br>End term           |
| 38     | CFD Codes in Fortran                                                        | open-source CFD codes                                                                                   | Lecture              |                |                                              |
| 39, 40 | Modeling Turbulent Flow in a Mixing Tank                                    | setup and solution of a 3D turbulent<br>fluid flow for periodic section of a<br>mixing tank             | CFD LAB session      |                | Hand On<br>practical                         |
| 41,    | CFD Libraries                                                               | LAPACK Subroutines,                                                                                     | flipped<br>classroom | [AU<br>1762.5] |                                              |
| 42     | CFD Codes in C                                                              | Open Source CFD codes in C                                                                              | Lecture              |                |                                              |
| 43     | Code compilation                                                            | Use of Intel Compilers                                                                                  | flipped<br>classroom |                |                                              |
| 44,45  | CFD Code in Fortran                                                         | Running a CFD in Fortran language                                                                       | CFD LAB session      |                | Hand On<br>practical                         |
| 47     | Result Visualisation                                                        | Contour Plots, Stream Lines,                                                                            | Lecture              |                |                                              |
| 48     | Result Visualisation                                                        | Iso-surface Maps, Fluid Flow visualisation                                                              | Lecture              | [AU<br>1762.6] |                                              |
| 49,50  | CFD Code in Fortran                                                         | Running a CFD in Fortran language                                                                       | CFD LAB session      |                | Hand On<br>practical                         |
| 51     | Doubt Session                                                               | Question & answers / doubts                                                                             |                      |                |                                              |

| G. | <b>Course articulation matri</b> | x (Mapping of COs with POs): - |
|----|----------------------------------|--------------------------------|
|----|----------------------------------|--------------------------------|

| СО           | STATEMENT                                                                                                                         |         | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |         |         |         | CORI<br>WITH<br>PROO<br>SPEC<br>OUTO | RELAT<br>H<br>GRAM<br>EIFIC<br>COME | TION<br>S |          |          |          |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|---------|---------|---------|---------|---------|---------|---------|--------------------------------------|-------------------------------------|-----------|----------|----------|----------|
|              |                                                                                                                                   | PO<br>1 | PO<br>2                           | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10                             | PO<br>11                            | PO<br>12  | PSO<br>1 | PSO<br>2 | PSO<br>3 |
| AU<br>1762.1 | Explain the<br>fundamental<br>equations and<br>their boundary<br>conditions of<br>fluid flow.                                     | 2       | 2                                 |         |         |         |         |         |         |         |                                      |                                     |           | 2        |          |          |
| AU<br>1762.2 | Develop<br>algebraic<br>equations from<br>partial<br>differential<br>equations using<br>different<br>discretisation<br>strategies |         | 2                                 | 3       | 2       |         |         |         |         |         |                                      |                                     |           | 2        |          |          |
| AU<br>1762.3 | Choosethealgorithmsandcomputethenumericalsolutions                                                                                |         | 2                                 | 3       | 2       | 3       |         |         |         |         |                                      |                                     |           | 2        |          |          |
| AU<br>1762.4 | Employ<br>commercial<br>software to solve<br>fluid flow<br>problems in<br>automotive<br>domain                                    |         | 2                                 | 1       |         | 3       |         |         |         | 2       |                                      |                                     |           | 2        |          |          |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering Department of Automobile Engineering Course Hand-out Autotronics and Automotive Safety Systems | AU 1763 | 3 Credits | 3 0 2 4 Session: Aug- Dec 2021 | Faculty: Dharmesh Yadav | Class: 4th Yr/7<sup>th</sup> Sem

**Introduction:** This course is offered as program elective for final year students of Automobile Engineering, who wish to pursue their career in automotive sales & service domain. Vehicle final year. Through this course, students will understand the concepts of Automotive Electronics, sensors and sensor monitoring mechanisms aligned to automotive systems. Also gain knowledge of Safety standards, advances in autonomous vehicles, safety systems employed in today's automobile with an overview of automotive safety components, subsystems, interfacing techniques and actuator mechanisms. Students will be able to identify problems related to vehicle safety systems like, Airbags, ABS, ESP, Seat belt etc.

A. Course Objectives: At the end of the course, students will be able to

- AU 1763.1 : Understand the concept of vehicle safety system
- AU 1763.2 : Gain the knowledge of vehicle comfort and convenient system
- **AU 1763.3 :** Get familiar with advanced electronic powertrain control.
- AU 1763.4 : Diagnose various faults in vehicle safety systems and electronic controls to Enhance employability and entrepreneurship skills.

## B. Program Outcomes and Program Specific Outcomes:

[PO.1]. **Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering fundamentals</u>, and an engineering specialization to the solution of complex engineering problems

[PO.2]. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering

- problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and <u>design</u> <u>system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern</u> <u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess</u> <u>societal</u>, <u>health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- [PO.9]. **Individual and team work**: Function effectively as an individual, and as a <u>member or leader</u> in <u>diverse</u> <u>teams</u>, and in multidisciplinary settings
- [PO.10]. **Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

- [PO.11]. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change
- [PSO.1]. Autotronics and Electric Vehicle Technology: <u>Apply</u> knowledge of electrical and electronics engineering for providing automobile engineering solutions
- [PSO.2]. Alignment to Super Qualification packs of ASDC: <u>Demonstrate knowledge and performance</u> <u>criteria</u> as defined by ASDC super qualification packs for R&D or Quality or Service Engineering
- [PSO.3]. Application of Lean Six Sigma Methodology: <u>Demonstrate through an internship project</u>, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

# Criteria

**C.** Assessment Rubrics:

| Criteria                                                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Maximum Marks |  |  |  |  |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|
|                                                                  | Sessional Exam I (Open Book)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15            |  |  |  |  |
| Internal Assessment                                              | Sessional Exam II (Open Book)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15            |  |  |  |  |
| (Summative)                                                      | In class Quizzes and Assignments ,                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10            |  |  |  |  |
|                                                                  | Activity feedbacks (Accumulated and                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |  |  |  |  |
|                                                                  | Averaged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |  |  |  |  |
|                                                                  | In semester practical components                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12            |  |  |  |  |
| End Term Exam                                                    | End Term Exam (Open Book)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40            |  |  |  |  |
| (Summative)                                                      | End Semester Practical Components                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8             |  |  |  |  |
|                                                                  | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100           |  |  |  |  |
| Attendance<br>(Formative)                                        | A minimum of 75% Attendance is required to be maintained by a student to be<br>qualified for taking up the End Semester examination. The allowance of 25%<br>includes all types of leaves including medical leaves.<br>This 75% is required individually in both theory and practical component.<br>The Student will be detained if he / she fails to achieve 75% in any one or both.                                                                                                         |               |  |  |  |  |
| Make up Assignments<br>(Formative)                               | Students who misses a class will have to report to the teacher about the absence.<br>A makeup assignment on the topic taught on the day of absence will be given<br>which has to be submitted within a week from the date of absence. No<br>extensions will be given on this. The attendance for that particular day of absence<br>will be marked blank, so that the student is not accounted for absence. These<br>assignments are limited to a maximum of 5 throughout the entire semester. |               |  |  |  |  |
| Homework/ Home Assignment/<br>Activity Assignment<br>(Formative) | There are situations where a student may have to work in home, especially<br>before a flipped classroom. Although these works are not graded with marks.<br>However, a student is expected to participate and perform these assignments<br>with full zeal since the activity/ flipped classroom participation by a student will be<br>assessed and marks will be awarded.                                                                                                                     |               |  |  |  |  |

#### D. Syllabus:

AUTOMOTIVE SAFETY AND SECURITY SYSTEMS: Seat belt, automatic seat belt lightener system, Anti-theft systems, Automatic door locks (ADL), Electronic active and passive safety, Antilock braking system, air bags, electronic system for activating air bags, supplementary restraint systems (SRS), Collision warning system, causes of rear end collision, frontal object detection, rear vehicle object detection system, object detection system with braking system interactions, Electronic chassis control system. **COMFORT AND CONVENIENCE SYSTEM:** Steering and mirror adjustment, central locking system, tire pressure monitoring system, rain sensor system, environment information system, Head up display, Driver information systems, On board navigation system, Electronic climate control, Electronic cruise control, electronically controlled sunroof, Electronically controlled headlight systems, Electronically controlled mirrors. **ADVANCED ELECTRONIC POWERTRAIN CONTROL:** Gasoline direct injection, Electronic Diesel Control, Unit Injector System, Common Rail System, Data processing, Fuel-injection control, Electronic transmission control, Special adaptations for Internal and external modification using digital computer management system, utilizing electronic circuit design and reprogramming. **FAULT DIAGNOSIS**: OBD II, On-board diagnosis, Organic light emitting displays for diagnosis, anti-lock braking system/air bag scan tools, automotive scanners, graphing scanners, different diagnosis tools, Testing equipments, Test benches, Diagnosis in the workshop

#### **Text Book:**

1. Robert Bosch Gmbh, "BOSCH: Automotive Electrics and Automotive Electronics", 5th edition, Springer 2007

#### **References:**

1. William B. Ribbens, "Understanding Automotive Electronics", Seventh Edition, Elsevier, 2012.

2. K. Reif, "BOSCH: Diesel Engine Management", John Wiley & Sons, 2003.

3. Ljubo Vlacic, Michel Parent and Fumio Harashima, "Intelligent Vehicle Technologies", First Edition, Butterworth Heinemann, 2001

#### E. Lecture Plan:

|         |                                                         |                                                                             |                  | Corresponding CO | Mode of assessing the |
|---------|---------------------------------------------------------|-----------------------------------------------------------------------------|------------------|------------------|-----------------------|
| Lec No. | Topics                                                  | Session Objective                                                           | Mode of delivery |                  | outcome               |
|         |                                                         | To acquaint and clear teacher expectation and understand                    |                  |                  |                       |
| 1       | Introduction and course out briefing                    | student's expectation                                                       | lecture          | AU1763.1         | NA                    |
| 2       | Overview of passive and active safety device in vehicle | To understate basic<br>knowledge and types of passive<br>and active devices | lecture          | AU1763.1         | Quiz                  |
| 3       | Seat belt, automatic seat belt<br>lighting system       | Basics of seat belt principle and its working                               | lecture          | AU1763.1         | Quiz                  |
| 4       | Anti-theft systems, automatic door locking              | Importance of ATS and its working layout                                    | lecture          | AU1763.1         | Quiz                  |
| 5       | Ant locking braking system (ABS), Air bag               | Importance of ABS as comparison of ordinary braking                         | lecture          | AU1763.1         | Quiz                  |

|    |                                                                | system, working principle of air bag                                                 |              |          |                 |
|----|----------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------|----------|-----------------|
| 6  | Electronics system for activating air bags                     | Understanding of basic activation process of air bag                                 | lecture      | AU1763.1 | Quiz            |
| 7  | Supplementary restraint<br>systems (SRS)                       | Application of SRS                                                                   | lecture      | AU1763.1 | Home assignment |
| 8  | Collision warning system, causes of rear end collision         | Importance of collision<br>repairing system                                          | lecture      | AU1763.1 | Quiz            |
| 9  | frontal object detection, rear vehicle object detection system | Front and rear object detection system working and principle                         | lecture      | AU1763.1 | Home assignment |
| 10 | Object detection system with braking system interactions       | Knowledge of braking system<br>interactions through object<br>detection              | lecture      | AU1763.1 | Quiz            |
| 11 | Electronic chassis control system                              | Understanding of electronic<br>chassis control in Morden<br>vehicle                  | lecture      | AU1763.1 | Quiz            |
| 12 | Comfort and convenience system                                 | Working of convenience system                                                        | lecture      | AU1763.2 |                 |
| 13 | Steering and mirror adjustment                                 | Importance of steering and mirror adjustment system.                                 | lecture      | AU1763.2 | Home assignment |
| 14 | central locking system                                         | Importance of central clocking<br>system as comparison of<br>ordinary locking system | lecture      | AU1763.2 | Quiz            |
| 15 | Students Presentation based on allotted topics                 | Students presentation                                                                | Presentation | NA       | Quiz            |
| 16 | Students Presentation based on allotted topics                 | Students presentation                                                                | Presentation | NA       | Quiz            |
| 17 | Students Presentation based on allotted topics                 | Students presentation                                                                | Presentation | NA       | Quiz            |
| 18 | environment information system, rain sensor system             | Working principle of rain<br>sensor ,environment<br>information system               | lecture      | AU1763.2 | Home assignment |
| 19 | Driver information systems, On board navigation system         | Importance of Driver<br>information system and on<br>board navigation system         | lecture      | AU1763.2 |                 |
| 20 | Quiz-I                                                         | Quiz-I                                                                               | Quiz         |          | Quiz            |
| 21 | electronically controlled sunroof                              | Working of electronic control sunroof                                                | lecture      | AU1763.2 |                 |
| 22 | Electronically controlled                                      | Application of head up display                                                       | lecture      | AU1763.2 | Home assignment |

|    | headlight systems, Head up<br>display                                                              |                                                            |            |          |                 |
|----|----------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------|----------|-----------------|
| 23 | Electronically controlled mirrors                                                                  | Working of electronic control mirror                       | lecture    | AU1763.2 | Quiz            |
| 24 | Introduction of advanced<br>electronic powertrain control                                          | Knowledge of electronic powertrain control                 | lecture    | AU1763.3 | Quiz            |
| 25 | Gasoline direct injection                                                                          | Working and layout of GDI system                           | lecture    | AU1763.3 | Home assignment |
| 26 | Electronic Diesel Control                                                                          | Knowledge of electronic diesel control system              | lecture    | AU1763.3 | Quiz            |
| 27 | Unit Injector System                                                                               | Application and working of unit injector system of vehicle | lecture    | AU1763.3 | Home assignment |
| 28 | Common Rail System, Data<br>processing                                                             | Working and advantage of<br>CRDI system                    | lecture    | AU1763.3 | Home assignment |
| 29 | Fuel-injection control                                                                             | Working principle of fuel injection control                | lecture    | AU1763.3 | Quiz            |
| 30 | Electronic transmission control                                                                    | Working anf trouble shooting of ETC                        | lecture    | AU1763.3 |                 |
| 32 | Assignment                                                                                         | Assignment based on above chapters                         | assignment |          |                 |
| 33 | Quiz -2                                                                                            | Subject knowledge evaluation through quiz                  | Quiz       |          |                 |
| 34 | Tire pressure monitoring system                                                                    | Knowledge of basic concept and parts of TPMS               | lecture    | AU1763.3 | Home assignment |
| 35 | Electronic climate control,<br>Electronic cruise control                                           | Understanding of working of ECC                            | lecture    | AU1763.3 | Quiz            |
|    | Special adaptations for Internal<br>and external modification using<br>digital computer management | Knowledge of Computer<br>management system of vehicle      |            | AU1763.3 |                 |
| 36 | system                                                                                             |                                                            | lecture    | ALUTZO 0 |                 |
| 37 | Electronic transmission control                                                                    | Application of ETC through                                 | lecture    | AU1763.3 | Home assignment |
|    | and external modification using digital computer management                                        | Computer management system                                 |            | AU1763.3 |                 |
| 38 | system                                                                                             |                                                            | lecture    |          |                 |
| 39 | utilizing electronic circuit design<br>and reprogramming                                           | Familiar with electronic circuit design and reprogramming  | lecture    | AU1763.3 | Quiz            |
# F. Course Articulation Matrix: (Mapping of COs with POs)

| со       | STATEMENT                                                                                                                                                               |         | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |         |         |         |    |    |    | CORRELATION WITH<br>PROGRAM SPECIFIC<br>OUTCOMES |       |       |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|---------|---------|---------|---------|---------|---------|---------|----|----|----|--------------------------------------------------|-------|-------|
|          |                                                                                                                                                                         | PO<br>1 | PO<br>2                           | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>a | PO | PO | PO | PSO<br>1                                         | PSO 2 | PSO 3 |
| [1763.1] | Understanding the concept of vehicle safety system                                                                                                                      | 3       | 2                                 | 5       | 4       | 5       | 0       | /       | 1       | 5       | 10 |    | 12 | 1                                                |       |       |
| [1763.2] | Knowledge of vehicle comfort and convenient system                                                                                                                      |         | 2                                 | 2       |         |         |         |         |         |         |    | 2  |    |                                                  |       |       |
| [1763.3] | Familiar with advance electronic train control.                                                                                                                         |         |                                   |         | 2       | 2       |         |         |         |         |    |    |    |                                                  |       |       |
| [1763.4] | Enhancement of employment and<br>entrepreneurship skill through hands on practice on<br>different concept of various faults in vehicle safety<br>and electronic control |         |                                   |         |         |         | 2       |         | 2       | 3       |    |    |    |                                                  |       |       |

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering Department of Automobile Engineering Course Hand-out Vehicle Ergonomics and Styling | AU-1765 | 3 Credits | 3 0 0 3 Session: Jul.20 – Nov.20 | Faculty: Dr. Ashish Malik | Class: VII sem. Dept.Elect.

- **A. INTRODUCTION:** This course is offered as a department elective course to the students of Automobile Engineering department. This course offers in depth knowledge about human machine interaction issues and underlying principles. It will enable a student to understand why a vehicle is comfortable and other is not based on ergonomic principles. This course will help the student to enhance his employability skills in vehicle packaging and interior design domain. Students are expected to have background knowledge on generic automotive interior for better learning.
- B. COURSE OUTCOMES: At the end of the course, students will be able to-
  - [1765.1]. Interpret and illustrate the vehicle styling process based on design parameters, car proportions, customer segment and market geography.
  - **[1765.2].** Describe the role of human factors in vehicle design and corresponding ergonomic principles based on anthropometric data, percentile curves and models.
  - [1765.3]. Describe the theoretical aspects and explain various design tools and analysis techniques used in automotive industry for occupant packaging and design of vehicle interior.
  - **[1765.4].** Explain the ergonomics engineer's work and coordination in new vehicle development program and automotive design studios, thereby enhancing their employability skills.
  - **[1765.5].** Can pursue advanced courses in Ergonomics domain.

## C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. **Engineering knowledge**: <u>Apply the knowledge of mathematics, science, engineering</u> <u>fundamentals</u>, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. **Design/development of solutions**: Design solutions for complex engineering problems and <u>design system components or processes</u> that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including <u>design of experiments, analysis and interpretation of data</u>, and synthesis of the information to provide valid conclusions
- [PO.5]. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and <u>modern</u> <u>engineering and IT tools</u> including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the <u>contextual knowledge to assess</u> <u>societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. **Environment and sustainability**: Understand the <u>impact of the professional engineering</u> <u>solutions in societal and environmental contexts</u>, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. **Ethics**: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices

- [PO.9]. Individual and teamwork: Function effectively as an individual, and as a <u>member or leader</u> in diverse teams, and in multidisciplinary settings
- [PO.10]. **Communication**: <u>Communicate effectively</u> on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change
- [PSO.1]. Autotronics and Electric Vehicle Technology: <u>Apply</u> knowledge of electrical and electronics engineering for providing automobile engineering solutions
- [PSO.2]. Alignment to Super Qualification packs of ASDC: <u>Demonstrate knowledge and</u> <u>performance criteria</u> as defined by ASDC super qualification packs for R&D or Quality or Service Engineering
- [PSO.3]. Application of Lean Six Sigma Methodology: <u>Demonstrate through an internship</u> <u>project</u>, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

| Criteria             | Description                                                                                                                                     | Maximum Marks                             |  |  |  |  |  |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|--|
|                      | Sessional Exam I (Open Book)                                                                                                                    | 15                                        |  |  |  |  |  |  |  |  |
| Internal Assessment  | Sessional Exam II (Open Book)                                                                                                                   | 15                                        |  |  |  |  |  |  |  |  |
| (Summative)          | In class Quizzes and Assignments                                                                                                                | 30                                        |  |  |  |  |  |  |  |  |
|                      | (Accumulated and Averaged)                                                                                                                      |                                           |  |  |  |  |  |  |  |  |
| End Term Exam        | End Term Exam (Open Book)                                                                                                                       | 40                                        |  |  |  |  |  |  |  |  |
| (Summative)          |                                                                                                                                                 |                                           |  |  |  |  |  |  |  |  |
|                      | Total                                                                                                                                           | 100                                       |  |  |  |  |  |  |  |  |
| Attendance           | A minimum of 75% Attendance is required to be maintained by a studer qualified for taking up the End Semester examination. The allowance of 25% |                                           |  |  |  |  |  |  |  |  |
| (Formative)          |                                                                                                                                                 |                                           |  |  |  |  |  |  |  |  |
|                      | all types of leaves including medical leaves.                                                                                                   |                                           |  |  |  |  |  |  |  |  |
| Make up Assignments  | Students who misses a class will have to rep                                                                                                    | ort to the teacher about the absence. A   |  |  |  |  |  |  |  |  |
| (Formative)          | makeup assignment on the topic taught on the                                                                                                    | he day of absence will be given which has |  |  |  |  |  |  |  |  |
|                      | to be submitted within a week from the date                                                                                                     | of absence. No extensions will be given   |  |  |  |  |  |  |  |  |
|                      | on this. The attendance for that particular of                                                                                                  | day of absence will be marked blank, so   |  |  |  |  |  |  |  |  |
|                      | that the student is not accounted for abser                                                                                                     | nce. These assignments are limited to a   |  |  |  |  |  |  |  |  |
|                      | maximum of 5 throughout the entire semes                                                                                                        | ter.                                      |  |  |  |  |  |  |  |  |
| Homework/ Home       | There are situations where a student may have to work in home, especially before                                                                |                                           |  |  |  |  |  |  |  |  |
| Assignment/ Activity | flipped classroom. Although these works a                                                                                                       | re not graded with marks. However, a      |  |  |  |  |  |  |  |  |
| Assignment           | student is expected to participate and perform                                                                                                  | rm these assignments with full zeal since |  |  |  |  |  |  |  |  |
| (Formative)          | the activity/ flipped classroom participation by a student will be assessed and marks                                                           |                                           |  |  |  |  |  |  |  |  |
|                      | will be awarded.                                                                                                                                |                                           |  |  |  |  |  |  |  |  |

## D. ASSESSMENT RUBRIC:

## E. SYLLABUS

**Introduction to styling** Car Design, Fundamentals of perspective drawing, Automotive Sketching, Styling process, Car proportions, Aerodynamics, Crashworthiness and its influence on body design, Designing of Interiors Form studies Form studies, Speed Forms, Clay Modeling, 2D systems, 3D systems

**Fundamentals of Ergonomics** Dimension Determination, Anthropometry – Need, Data collection methodology, Different postural considerations, Measuring Procedures Subject and Sampling size selection, Measurement of Hands/Feet/Full posture, Applying Anthropometry data, Application of percentile curves

**Vehicle Ergonomics** Passenger Compartment, Floor Pan, Technical requirements, Dash board equipments arrangement, Positioning of operational controls, Force Analysis, Seating and position(ECE Regulations), s Human Factors, Navigation systems, pedal positioning

**Vehicle Packaging** R-Point, AHP, Manikin positioning of 2-D pattern, car entry/exit, Sight – All round visibility, View of Instruments, Mirror design, Logical formation of cockpit, Boot lid packaging, Loading/Unloading analysis.

## **F.** TEXT BOOK:

- Vivek D Bhise, *Ergonomics in the Automotive Design Process*, 1<sup>st</sup> Edition, CRC Press, 2012
- Thom Tylor and Lisa Hallet, *How to Draw Cars like a Pro*, 2<sup>nd</sup> Edition, Motorbooks International, 2003.

## **G.** REFERENCES:

- Sougata Karmakar, Ergonomics in Automotive Design, IIT Guwahati.
- P. Prasad and J.E. Belwafa, *Vehicle Crashworthiness and Occupant Protection*, American Iron and Steel Institute, Michigan, 2004.
- J.B. Peacock and W. Karwowski, Automotive Ergonomics, Taylor & Francis ltd, 1993
- Nikolaos Gkikas, Automotive Ergonomics Driver-Vehicle Interaction, CRC Press, 2013
- Steven Ford and Leslie Dierks, Creating With Polymer Clay, Lark Books, 1996

## **H.** LECTURE PLAN:

| Lect<br>ure<br>No. | Topics                                                                | Session Outcomes                                                                          | Mode of<br>Delivery             | Course<br>outcome | Mode of<br>Assessing the<br>Outcome        |
|--------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------|-------------------|--------------------------------------------|
| 1                  | Introduction                                                          | To acquaint and clear teachers<br>expectations and understand<br>student expectations     | Lecture                         | 1765.1            | N/A                                        |
| 2                  | Car design                                                            | Learn the process involved in designing a car                                             | Lecture                         | 1765.1            | Class Quiz<br>Mid term<br>End term         |
| 3,4                | Fundamentals of perspective drawing,                                  | Learn about the fundamentals involved in drawing perspectives                             | Lecture                         | 1765.1            | Class Quiz<br>Mid term<br>End term         |
| 5,6                | Automotive Sketching,<br>Styling process                              | Aquire knowledge about automotive sketching                                               | Lecture                         | 1765.1            | Home<br>Assignment<br>Mid term<br>End term |
| 7                  | Car proportions                                                       | Concept of proportions of visual elements in a car design                                 | Lecture                         | 1765.1            | Class Quiz<br>Mid term<br>End term         |
| 8-9                | Influence of<br>Aerodynamics and<br>Crashworthiness on<br>body design | Able to understand the effect of<br>car design on aerodynamics and<br>safety ratings      | Lecture                         | 1765.1            | Class Quiz<br>Mid term<br>End term         |
| 10-11              | Form studies -Speed<br>Forms                                          | Understanding the Concepts of<br>Form studies in a product design                         | Lecture<br>Flipped<br>Classroom | 1765.1            | Class Quiz<br>Mid term<br>End term         |
| 12                 | Clay Modelling                                                        | Learn how to make protype car<br>models using clay and underlying<br>fundamental concepts | Lecture                         | 1765.1            | Home<br>Assignment<br>End term             |
| 13                 | Fundamentals<br>ErgonomicsofUnderstand the concept<br>ergonomics      |                                                                                           | Lecture                         | 1765.2            | Class Quiz<br>Mid term<br>End term         |
| 14                 | Anthropometry – data collection methodology,                          | Learn how to use anthropometric data in designing vehicles                                | Lecture                         | 1765.2            | Class Quiz<br>Mid term<br>End term         |

| 15    | Measuring Procedures<br>Subject and Sampling<br>size selection,                                               | Learn to measure key dimensions<br>of human body for vehicle design                        | Lecture  | 1765.2 | Home<br>Assignment<br>Class Quiz<br>Mid term<br>End term |
|-------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------|--------|----------------------------------------------------------|
| 16-17 | Measurement of<br>Hands/Feet/Full posture,<br>Different postural<br>considerations                            | Learn to measure key dimensions<br>of human body for vehicle design                        | Lecture  | 1765.3 | Class Quiz<br>Mid term<br>End term                       |
| 18-20 | Vehicle Packaging R-<br>Point, AHP, Manikin<br>positioning of 2-D<br>pattern,                                 | Learn about key vehicle<br>dimensions and reference points<br>with reference to human body | Lecture  | 1765.2 | Class Quiz<br>Mid term<br>End term                       |
| 21-22 | Applying<br>Anthropometry data,<br>Application of<br>percentile curves                                        | Apply the Indian population data<br>to verify Indian vehicles                              | Lecture  | 1765.3 | Home<br>Assignment<br>Class Quiz<br>Mid term<br>End term |
| 23    | VehicleErgonomicsPassenger Compartment,FloorPan,Technicalrequirements,                                        | Differentiate a comfortable and safe car from uncomfortable car                            | Lecture  | 1765.2 | Class Quiz<br>Mid term<br>End term                       |
| 24-25 | Force Analysis, Seating,<br>and position (ECE<br>Regulations)                                                 | Understand the force requirement expected from a safe vehicle seat.                        | Lecture  | 1765.3 | Home<br>Assignment<br>Class Quiz<br>Mid term<br>End term |
| 26-27 | Human Factors,<br>Navigation systems,<br>pedal positioning                                                    | Understand the factors affecting<br>Driver Information Acquisition<br>and processing       | Lecture  | 1765.2 | Home<br>Assignment<br>Class Quiz<br>Mid term<br>End term |
| 28-31 | View of Dash board<br>Instruments, Logical<br>formation of cockpit,<br>Positioning of<br>operational controls | Learn about ergonomics<br>involved in Controls, Displays<br>and Interior Layout            | Lecture  | 1765.2 | Home<br>Assignment<br>Class Quiz<br>End term             |
| 32-33 | Sight – All round<br>visibility, Mirror design,                                                               | Learn about field of view considerations and evaluations                                   | Lecture  | 1765.2 | Home<br>Assignment<br>Class Quiz<br>End term             |
| 34    | Visibility – Automotive<br>Lighting                                                                           | Understand the ergonomic issues in vehicle headlights                                      | Lecture  | 1765.2 | Class Quiz<br>Mid term<br>End term                       |
| 35-36 | Car Entry - Exit                                                                                              | Understand vehicle<br>dimensions and features<br>related to entry & exit                   | Lecture, | 1765.2 | Home<br>Assignment<br>Class Quiz<br>End term             |
| 37-38 | Boot lid packaging,<br>Loading/Unloading<br>analysis                                                          | Understand about exterior<br>design guidelines for loading<br>& unloading tasks            | Lecture  | 1765.3 | Class Quiz<br>Mid term<br>End term                       |
| 39    | Role of Ergonomics<br>Engineer                                                                                | Role of Ergonomics engineer<br>in Automotive Design process                                | Lecture  | 1765.4 | Class Quiz<br>Mid term<br>End term                       |
| 40    | Doubt session and summary                                                                                     |                                                                                            |          |        |                                                          |

# I. COURSE ARTICULATION MATRIX (Mapping of COs with POs): -

| СО           | STATEMENT                                                                                                                                                                                              | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |         |         |         |         | CORRELATION<br>WITH<br>PROGRAM |          |          |              |               |          |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|--------------------------------|----------|----------|--------------|---------------|----------|
|              |                                                                                                                                                                                                        |                                   |         |         |         |         |         |         |         |         |                                |          |          | SPEC<br>OUT( | IFIC<br>COMES | 5        |
|              |                                                                                                                                                                                                        | PO<br>1                           | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10                       | PO<br>11 | PO<br>12 | PSO<br>1     | PSO<br>2      | PSO<br>3 |
| AU<br>1765.1 | Interpret and<br>illustrate the<br>vehicle styling<br>process based on<br>design parameters,<br>car proportions,<br>customer segment<br>and market<br>geography                                        | 3                                 |         | 3       |         |         |         |         |         | 2       |                                |          |          |              | 2             |          |
| AU<br>1765.2 | Describe the role<br>of human factors in<br>vehicle design and<br>corresponding<br>ergonomic<br>principles based on<br>anthropometric<br>data, percentile<br>curves and models                         |                                   | 3       |         | 2       |         |         |         |         |         |                                |          |          |              | 2             |          |
| AU<br>1765.3 | Describe the<br>theoretical aspects<br>and explain various<br>design tools and<br>analysis techniques<br>used in automotive<br>industry for<br>occupant packaging<br>and design of<br>vehicle interior |                                   |         | 2       |         | 3       |         |         |         |         |                                |          |          |              |               |          |
| AU<br>1765.4 | Explain the<br>ergonomics<br>engineer's work<br>and coordination in<br>new vehicle<br>development<br>program and<br>automotive design<br>studios, thereby<br>enhancing their<br>employability skills   |                                   |         | 2       |         |         | 2       |         |         | 3       |                                | 1        |          |              |               |          |
| AU<br>1765.5 | Can pursue<br>advanced courses<br>in Ergonomics<br>domain                                                                                                                                              |                                   |         |         |         |         |         |         |         |         |                                |          | 3        |              | 2             |          |

I. Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

Statistical Process Control and Statistical Quality Control | AU 1767 | 3 Credits | 3 0 0 3

Session: Jul 20 – Nov 20 | Faculty: Dr. Avanish Singh Chauhan | Class: Final Year (Program Elective)

**A. Introduction:** This course is offered by department of Automobile Engineering for seventh semester students as program elective course. This course provides knowledge of various statistical tools and techniques used in quality engineering along with their application. Quality plays a critical role in the growth of any industry or organisation and is the key to competitive success in the increasingly globalized business environment. This course will help students in analysing the quality of product and/or process using statistical tools.

#### B. Course Objectives: At the end of the course, students will be able to

[1767.1]. Express the knowledge about various methods used in process control and quality control.

[1767.2]. Understand and apply control charts in various engineering applications developing practical skills.

[1767.3]. Understand importance of sampling in quality and process control along with its application.

[1767.4]. Analyse variations encountered in manufacturing processes and understand the causes for these variations.

[1767.5]. Understand process capability and apply the knowledge in process and quality control.

#### C. Program Outcomes and Program Specific Outcomes

- **[PO.1].** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **[PO.2]. Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **[PO.3].** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **[PO.4].** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **[PO.5].** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **[PO.6].** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7].** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8].** Ethics: Apply ethical principles and commit to professional ethics\_and responsibilities and norms of the engineering practices
- **[PO.9].** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- **[PO.10].** Communication: Communicate effectively\_on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.11]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

- **[PSO.1].** Autotronics and Electric Vehicle Technology: Apply knowledge of electrical and electronics engineering for providing automobile engineering solutions
- [PSO.2]. Alignment to Super Qualification packs of ASDC: Demonstrate knowledge and performance criteria as defined by ASDC super qualification packs for R&D or Quality or Service Engineering
- [PSO.3]. Application of Lean Six Sigma Methodology: Demonstrate through an internship project, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

#### **D.** Assessment Rubrics:

| Criteria                   | Description                                                                           | Maximum Marks                                |  |  |  |  |  |  |  |
|----------------------------|---------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|--|--|--|
|                            | Sessional Exam I (Close Book)                                                         | 15                                           |  |  |  |  |  |  |  |
| Internal Assessment        | Sessional Exam II (Close Book)                                                        | 15                                           |  |  |  |  |  |  |  |
| (Summative)                | In class Quizzes and Assignments,<br>Activity feedbacks                               | 30                                           |  |  |  |  |  |  |  |
| End Term Exam              | End Term Exam (Open Book)                                                             | 40                                           |  |  |  |  |  |  |  |
| (Summative)                |                                                                                       |                                              |  |  |  |  |  |  |  |
|                            | Total                                                                                 | 100                                          |  |  |  |  |  |  |  |
| Attendance<br>(Formative)  | A minimum of 75% Attendance is required available for taking up the End Semest        | red to be maintained by a student to be      |  |  |  |  |  |  |  |
| (i ormative)               | includes all types of leaves including media                                          | cal leaves.                                  |  |  |  |  |  |  |  |
| Homework/ Home Assignment/ | There are situations where a student may h                                            | have to work in home, especially before a    |  |  |  |  |  |  |  |
| Activity Assignment        | flipped classroom. Although these works                                               | are not graded with marks. However, a        |  |  |  |  |  |  |  |
| (Formative)                | student is expected to participate and perform these assignments with full zeal since |                                              |  |  |  |  |  |  |  |
|                            | the activity/ flipped classroom participation                                         | n by a student will be assessed for internal |  |  |  |  |  |  |  |
|                            | evaluation.                                                                           |                                              |  |  |  |  |  |  |  |

#### E. Syllabus

Introduction: Statistical Methods for Quality Control and Improvement; Methods and Philosophy of Statistical Process Control: Variation, cause of variation, Chance and assignable causes, Statistical Basis of the Control Charts - basic principles, choices of control limits, sample size and sampling frequency, rational subgroups, analysis of pattern on control charts, warning limits, ARL, sensitizing rules for control charts. Implementing SPC: An Application of SPC, Nonmanufacturing application of SPC. Control Charts for Variables: Control Charts for X bar and R, X bar and S, Individual Measurements - development and use, estimating process capability; interpretation and average run length; Applications of Variables Control Charts. Control Charts For Attributes: Control Chart for Fraction - p, np c and u chart, Nonconforming - OC curve of the control chart, variable sample size, nonmanufacturing application, the OC function and ARL calculation; Control Charts for Nonconformities or Defects; Choices between Attribute and Variable Control Charts, ImR and XbarR charts, Guideline for Implementing Control charts. Lot-By-Lot Acceptance Sampling For Attributes: Concept of sampling inspection and acceptance Sampling, Comparison with 100% Inspection, Cost of inspection, sampling by attributes - Single, Double and Multiple sampling plans, Operating characteristic curve, AOQ curve, AOQL, Producer's and Consumer's risks, Dodge-Romig and MIL-STD acceptance sampling tables. Process Capability Analysis: PCA analysis using a histogram or a probability plot, process capability ratios, Cpk, Cp, Ppk, Pp, confidence interval for process-capability ratio, PCA using a control chart, estimating natural tolerance limits of a process.

#### F. Text Books

T2. E.L. Grant, Statistical Quality Control, 6th Edition, McGraw Hill Publications

- T3. A.J. Duncan, Quality Control and Industrial statistics, Irwin Press, New York, 1970.
- T4. M. Mahajan, Statistical Quality Control, Dhanpat Rai and Co, 2016

#### G. Reference Books

T1. F.M. Gryna, R. Chua, J.A. Defeo, Juran's Quality Planning and Analysis, McGraw Hill Education.

- R2. B. L. Hansen, Quality Control-theory and applications Prentice Hall India, Delhi, 1987.
- R3. C. Douglas, Introduction to Statistical Quality Control, 1, 2nd Edition, John Wiley and Sons, New York, 2000.
- R4. A. Mitra, Fundamentals of Quality Control and Improvement, Wiley.

## H. Lecture Plan:

| Lec. No. | Topics                                  | Session Outcome                            | Mode of Delivery     | Mode of Delivery Corresponding CO |                         |  |  |
|----------|-----------------------------------------|--------------------------------------------|----------------------|-----------------------------------|-------------------------|--|--|
|          |                                         |                                            |                      |                                   | Outcome                 |  |  |
| 1        | Introduction and Course Hand-out        | To acquaint and clear teachers             | Lecture              | NA                                | NA                      |  |  |
|          | briefing                                | expectations and understand student        |                      |                                   |                         |  |  |
|          | ~                                       | expectations                               |                      |                                   |                         |  |  |
| 2        | Introduction to Statistical Methods     | Define and introduce various concepts      | Lecture              | [AU1767.1]                        | MTE-I, ETE, Assignments |  |  |
|          | for Quality Control and                 | of TQM, quality control and quality        |                      | [AU1/6/.2]                        |                         |  |  |
|          | Improvement.                            | improvement, quality costs.                |                      |                                   | -                       |  |  |
| 3        | Variation, cause of variation, Chance   | Define the concepts of variation in        | Lecture              | [AU1/6/.1]                        |                         |  |  |
|          | and assignable causes                   | process and infer the meaning of           |                      | [AU1/6/.4]                        |                         |  |  |
| 4.5      |                                         | different types of process variation.      |                      |                                   | -                       |  |  |
| 4,5      | Implementing SPC: An Application        | Identify and work on a case study to       | Lecture              | [AU1/6/.1]                        |                         |  |  |
|          | of SPC in manufacturing domain          | understand the application of SPC and      |                      | [AU1767.2]                        |                         |  |  |
| 6.7      |                                         | related concepts.                          |                      | [AU1/6/.4]                        | -                       |  |  |
| 6, /     | Implementing SPC:                       | Understand various types of control        | Lecture              | [AU1/6/.1]                        |                         |  |  |
|          | Nonmanufacturing application of         | charts and their application in different  |                      | [AU1767.2]                        |                         |  |  |
|          | SPC                                     | types of process along with their use in   |                      | [AU1/6/.4]                        |                         |  |  |
|          |                                         | problem solving.                           |                      |                                   | _                       |  |  |
| 8,9      | Statistical Basis of the Control Charts | Introduce to the basic principle of        | Lecture, activity    | [AU1767.1]                        |                         |  |  |
|          | - basic principles, choices of control  | control charts and introduce the           |                      | [AU1767.2]                        |                         |  |  |
|          | limits, sample size and sampling        | terminology of sampling                    |                      | [AU1767.3]                        |                         |  |  |
| 10.11    | frequency                               |                                            |                      |                                   | _                       |  |  |
| 10,11    | Rational subgroups, analysis of         | Guideline for Implementing Control         | Lecture              | [AU1/67.1]                        |                         |  |  |
|          | pattern on control charts, warning      | charts, identification of warning lists on |                      | [AU1767.3]                        |                         |  |  |
|          | limits, ARL calculation, sensitizing    | control charts                             |                      |                                   |                         |  |  |
| 10.10    | rules for control charts.               |                                            |                      |                                   | _                       |  |  |
| 12,13    | Control Charts for Variables            | X bar and R Control Charts: Individual     | Lecture, Activity    | [AU1/67.1]                        |                         |  |  |
|          |                                         | measurements- development and use          |                      | [AU1767.2]                        | _                       |  |  |
| 14,15    | Control Charts for Variables            | Control Charts for X bar and S             | Lecture, Activity    | [AU1767.1]                        |                         |  |  |
|          |                                         |                                            |                      | [AU1767.2]                        |                         |  |  |
| 16,17    | Control Charts for Variables            | ImR chart, Understand the concept and      |                      | [AU1767.1]                        | MTE-II, ETE,            |  |  |
|          |                                         | application of control chart for           |                      | [AU1767.2]                        | Assignments             |  |  |
|          |                                         | variables.                                 |                      |                                   |                         |  |  |
| 18,19    | Control Charts For Attributes:          | Control Chart for Fraction - p, np c and   | Lecture              | [AU1767.1]                        |                         |  |  |
|          |                                         | u chart. Understand the concept and        |                      | [AU1767.2]                        |                         |  |  |
|          |                                         | application of control chart for           |                      |                                   |                         |  |  |
|          |                                         | attributes.                                |                      |                                   | _                       |  |  |
| 20,21    | Control Chart for non-conformation      | Understand how to read non-                | Flipped Class, Group | [AU1767.1]                        |                         |  |  |
|          |                                         | conformance from control charts            | Discussion           | [AU1767.2]                        |                         |  |  |
|          |                                         |                                            |                      |                                   |                         |  |  |

| 22,23 | Acceptance Sampling for attributes                                                                             | Lot-By-Lot Acceptance Sampling for<br>Attributes: Concept of sampling<br>inspection and acceptance Sampling.<br>Comparison with 100% Inspection, Cost<br>of Inspection | Lecture, Activity | [AU1767.1]<br>[AU1767.3]                             |                  |
|-------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------|------------------|
| 24,25 | OC Curve                                                                                                       | Define and understand the concept of OC curve: introduction                                                                                                            | Lecture, activity | [AU1767.1]<br>[AU1767.3]                             |                  |
| 26,27 | Single, Double and Multiple sampling plans                                                                     | Understand and differentiate between<br>single, double and multiple sampling<br>plans.                                                                                 | Lecture           | [AU1767.1]<br>[AU1767.3]                             | ETE, Assignments |
| 28,29 | AOQ curve, AOQL, Producer's and<br>Consumer's risks, Dodge-Romig and<br>MIL-STD acceptance sampling<br>tables. | Understand how to plot the OC curve<br>and identify AOQL on the same.<br>Understand producer's risk and<br>consumer's risk                                             | Lecture, activity | [AU1767.1]<br>[AU1767.3]                             |                  |
| 30,31 | Process capability ratios, Cpk, Cp                                                                             | Define process capability, introduce<br>process capability ratios, Develop a<br>strong understanding of CpK and Cp                                                     | Lecture, activity | [AU1767.1]<br>[AU1767.4]                             |                  |
| 32,33 | Ppk, Pp, confidence interval for process-capability ratio                                                      | Extend the above understanding to<br>understand process performance, and<br>process capability ratio.                                                                  | Lecture, activity | [AU1767.1]<br>[AU1767.4]                             |                  |
| 34    | PCA using a control chart                                                                                      | Understand how to perform process capability analysis                                                                                                                  | Lecture, activity | [AU1767.1]<br>[AU1767.3]<br>[AU1767.4]               |                  |
| 35    | Estimating natural tolerance limits of a process                                                               | Understand how to estimate the tolerance limit of a given process.                                                                                                     | Lecture           | [AU1767.1]<br>[AU1767.3]<br>[AU1767.4]               |                  |
| 36    | Conclusion and Course<br>Summarization                                                                         | Recall and review the concepts of<br>statistical process control and statistical<br>quality control                                                                    | NA                | [AU1761.1]<br>[AU1761.2]<br>[AU1761.3]<br>[AU1761.4] | NA               |

# I. Course Articulation Matrix: (Mapping of COs with POs)

| СО        | STATEMENT                                                                                                 |         | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |                |         |         |          |          | CORRELATION WITH<br>PROGRAM SPECIFIC<br>OUTCOMES |       |       |       |
|-----------|-----------------------------------------------------------------------------------------------------------|---------|-----------------------------------|---------|---------|---------|---------|----------------|---------|---------|----------|----------|--------------------------------------------------|-------|-------|-------|
|           |                                                                                                           | PO<br>1 | <b>PO</b><br>2                    | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | <b>PO</b><br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12                                         | PSO 1 | PSO 2 | PSO 3 |
| AU 1767.1 | Express the knowledge about various methods used in process control and quality control.                  | 2       | 1                                 | 0       | 0       | 2       | 0       | 0              | 0       | 0       | 1        | 0        | 2                                                | 0     | 1     | 2     |
| AU 1767.2 | Understand and apply control charts in various engineering applications developing practical skills.      | 2       | 2                                 | 1       | 3       | 2       | 0       | 0              | 0       | 2       | 1        | 1        | 2                                                | 0     | 1     | 2     |
| AU 1767.3 | Understand importance of sampling in quality and process control along with its application.              | 3       | 3                                 | 0       | 2       | 2       | 0       | 0              | 0       | 2       | 1        | 2        | 2                                                | 0     | 1     | 3     |
| AU 1767.4 | Analyse variations encountered in manufacturing processes and understand the causes for these variations. | 2       | 1                                 | 0       | 3       | 2       | 0       | 0              | 0       | 2       | 1        | 2        | 2                                                | 0     | 1     | 2     |
| AU 1767.5 | Understand process capability and apply the knowledge in process<br>and quality control.                  | 3       | 3                                 | 0       | 2       | 2       | 0       | 0              | 0       | 1       | 1        | 2        | 2                                                | 0     | 1     | 3     |

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

School of Automobile Mechanical and Mechatronics Engineering

Department of Automobile Engineering Course Hand-out

#### LEAN SIX SIGMA GREEN BELT PREWORK | AU 1733 | | Credit | 0 0 2 |

Session: August 2020 – December 2020 | Faculty: Prof. Rajesh Solanki

**Introduction:** This course prepares students to develop their critical thinking abilities by defining and proposing a solution to mitigate root cause of a live problem using 8D methodology.

Secondly, students will be introduced to Lean Six Sigma methodology for their VIII semester internship project. Using this methodology, they will be able to define a project for improving a process at their dream internship company or for developing a solution in a research project floated by our department or of their choice.

**Course Outcomes:** At the end of the course, students will be able to

[1733.1] Interpret and apply Lean Six Sigma methodology for a process improvement project

[1733.2] Recognize different Lean Six Sigma techniques and link strategy to a project for judging the best way to select the right tools needed to achieve their project goals

[1733.3] Develop and practice their problem-solving capability by using a structured methodology for a live problem in a team-based environment.

[1733.4] Experiment with defining a problem for a live problem and analyzing it to identify the root cause for developing countermeasures that will be validated for effectiveness to improve employability.

[1733.5] Effectively communicate by reporting out their problem-solving project using standard formats used by businesses/organizations

[1733.6] Develop and present an industry standard project charter for their dream internship company by collecting VOC data, business needs/requirements from surveys, internet/company websites.

#### C. Program Outcomes and Program Specific Outcomes

[PO.1]. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems

[PO.2]. Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

[PO.3]. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

[PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions

[PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations

[PO.6]. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice

[PO.7]. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

[PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices

[PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

[PO.10]. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

[PO.11]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

[PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

[PSO.1]. Autotronics and Electric Vehicle Technology: Apply knowledge of electrical and electronics engineering for providing automobile engineering solutions

[PSO.2]. Alignment to Super Qualification packs of ASDC: Demonstrate knowledge and performance criteria as defined by ASDC super qualification packs for R&D or Quality or Service Engineering

[PSO.3]. Application of Lean Six Sigma Methodology: Demonstrate through an internship project, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

#### **Assessment Rubrics:**

| Criteria                        | Description                                                                   | Maximum Marks                             |  |  |  |  |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|
|                                 | Practical Sessional Exam I (Open Book)                                        | 20                                        |  |  |  |  |  |  |  |
| Internal Assessment             | In class Quizzes and Assignments, Team                                        | 20                                        |  |  |  |  |  |  |  |
| (Summative)                     | Activity report outs (Accumulated and                                         |                                           |  |  |  |  |  |  |  |
|                                 | Averaged)                                                                     |                                           |  |  |  |  |  |  |  |
|                                 | 8D Project Report                                                             | 40                                        |  |  |  |  |  |  |  |
| End Term Exam                   | Project Charter                                                               | 20                                        |  |  |  |  |  |  |  |
| (Summative)                     |                                                                               |                                           |  |  |  |  |  |  |  |
|                                 | Total                                                                         | 100                                       |  |  |  |  |  |  |  |
| Attendance                      | A minimum of 75% Attendance is required                                       | to be maintained by a student to be       |  |  |  |  |  |  |  |
| (Formative)                     | ormative) qualified for taking up the End Semester examination. The allowance |                                           |  |  |  |  |  |  |  |
|                                 | includes all types of leaves including medical                                | leaves.                                   |  |  |  |  |  |  |  |
| Make up Assignments             | Students who miss a class will have to repo                                   | ort to the teacher about their absence    |  |  |  |  |  |  |  |
| (Formative)                     | in advance. A makeup assignment on the t                                      | opic taught on day of absence will be     |  |  |  |  |  |  |  |
|                                 | given which has to be submitted within a                                      | week from the date of absence. No         |  |  |  |  |  |  |  |
|                                 | extensions will be given on this. The attend                                  | ance for that particular day of absence   |  |  |  |  |  |  |  |
|                                 | will be marked blank, so that the student                                     | is not accounted for absence. These       |  |  |  |  |  |  |  |
|                                 | assignments are limited to a maximum of 5                                     | throughout the entire semester.           |  |  |  |  |  |  |  |
| Homework/ Home Assignment/ Team | There are situations where a student ma                                       | y have to work outside class hours        |  |  |  |  |  |  |  |
| Activity Assignment             | individually or in teams, especially before a                                 | a flipped classroom or a team project     |  |  |  |  |  |  |  |
| (Formative)                     | report out. A student is expected to partic                                   | cipate as a team member and perform       |  |  |  |  |  |  |  |
|                                 | these assignments with full zeal. This team a                                 | activity/ flipped classroom participation |  |  |  |  |  |  |  |
|                                 | by a student will be assessed and marks from                                  | m internal sessional component will be    |  |  |  |  |  |  |  |
|                                 | awarded.                                                                      |                                           |  |  |  |  |  |  |  |

#### SYLLABUS:

Introduction to Six Sigma, Lean, Lean Six Sigma and DMAIC (Define, Measure, Analysis, Improve & Control); Linking Lean Six Sigma to Strategy and Project Selection as it pertains to the Internship program, Understand the Lean Six Sigma Roadmap – Define, Measure, Improve, Control; Actions required for completing the Define Phase – Project Definition, Prioritize projects based on value, resources required, timing, Select projects with buy in from Industry sponsoring internship. Establish accountability between business and student intern. Develop and present project charter.

Utilize 8 Disciplines (8D) problem solving team based methodology for a live problem and report out using industry standard methods

#### **Text Book:**

Michael L. George, John Maxey, David T. Rowlands, Malcolm Upton, Lean Six Sigma, McGraw-Hill Education India, 2004

#### Handout:

8D Problem Solving Workbook and LSS Workbook (DMAIC and DMADV)

#### Course Plan:

| Module | Module<br>Title | Lecture<br>#  | Topics                                                          | Session Objective                                                                                                                                        | Mode of<br>Delivery            | Corresponding<br>CO | Mode of Assessing<br>Outcome                      |
|--------|-----------------|---------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|---------------------------------------------------|
| 0      | Intro           | 0             | Course Overview                                                 | Review course learning outcomes to meet student expectations                                                                                             | Lecture                        | NA                  | NA                                                |
| 1      | Six<br>Sigma    | 1             | Introduction to Lean Six<br>Sigma                               | <ol> <li>Learning outcomes from LSS Pre-Work in VII<br/>Semester and LSS Training in VIII Semester</li> <li>Lean Six Sigma Demystified</li> </ol>        | Lecture                        | [1733.1]            | NA                                                |
|        |                 | 2, 3          | Six Sigma Overview                                              | Application of process variation analysis for<br>reducing defects and detecting hidden factories by<br>applying concept of Rolled Throughput Yield (RTY) | Lecture and team activity      | [1733.2]            | Individual Assignment<br>1<br>MTE1/ETE            |
| 2      | Lean            | 4. 5          | Lean Principles 1 and 2                                         | Analyze what a customer values vs what a<br>customer doesn't value to meet customer<br>requirements                                                      | Lecture and<br>team activity   | [1733.2]            | Team Assignment 1,<br>MTE1/ETE                    |
|        |                 | 6. 7          | Lean Principles 3 to 5                                          | Analyze Waste in a process that slows down its flow                                                                                                      | Lecture and team activity      | [1733.2]            | Team Assignment<br>2,MTE1/ETE                     |
|        |                 | 8             | Why Lean + Six Sigma?                                           | Synthesize Lean and Six Sigma concepts to combine them into Lean Six Sigma methodology                                                                   | Lecture and team activity      | [1733.1]            | Team Report Out                                   |
| 3      | 8D              | 9             | Introduction to<br>Structured Problem<br>Solving - 8D Process   | Understand problem solving process and workbook                                                                                                          | Lecture and team activity      | [1733.3]            | Problem Selection by<br>Team                      |
|        |                 | 10, 12        | 1. Problem Description<br>and Definition 2.<br>Problem Analysis | Select a problem your team will work on and<br>develop a problem definition using IS/IS NOT<br>analysis                                                  | Flipped Class<br>Team Activity | [1733.4]            | Team Assignment 3<br>Team Report Out.<br>MTE1/ETE |
|        |                 | 13, 14        | Process Mapping                                                 | Map the process value stream through identifying<br>suppliers, inputs, process steps, outputs and<br>customers (SIPOC)                                   | Flipped Class<br>Team Activity | [1733.4]            | Team Assignment 3<br>Team Report Out,<br>MTE1/ETE |
|        |                 | 15, 16        | Root Cause Analysis                                             | Determine, Identify, and Verify Specific, Detection and Systemic Root Causes                                                                             | Flipped Class<br>Team Activity | [1733.4]            | Team Assignment 4<br>Team Report Out,<br>MTE1/ETE |
|        |                 | 17, 18        | Generating Solutions and prioritization                         | Choose and prioritize Solutions / Countermeasures for Problem/Non-Conformity                                                                             | Team Activity                  | [1733.4]            | Team Assignment 5<br>Team Report Out,<br>MTE1/ETE |
|        |                 | 19, 20        | Control Plan                                                    | Control Plan to Sustain & Prevent Recurrence                                                                                                             | Flipped Class<br>Team Activity | [1733.4]            | Team Assignment 6<br>Team Report<br>Out, MTE1/ETE |
|        |                 | 21, 22,<br>23 | Reporting Project<br>Results                                    | Developing an A3 report and presenting in class                                                                                                          | Flipped Class<br>Team Activity | [1733.4]            | Team Assignment 6<br>Team Report Out,<br>MTE1/ETE |
|        |                 |               |                                                                 | PRS I (23 Sessions)                                                                                                                                      |                                |                     |                                                   |
| 4      | LSS             | 24            | Linking Strategy to LSS<br>Projects                             | Linking strategy to LSS project                                                                                                                          | Lecture, Team<br>Activity      | [1733.2]            | MTE 2/ETE                                         |
|        | Strategy        | 25            | Lean Six Sigma Road<br>Map                                      | Select the right tool for your DMAIC project                                                                                                             | Lecture                        | [1733.2]            | MTE 2/ETE                                         |
| 5      | LSS<br>Phases   | 26, 27        | Define Road Map                                                 | Develop a Project Charter for your dream<br>internship company                                                                                           | Lecture,<br>Activity           | [1733.6]            | Individual<br>Assignment 2                        |

|        |                  | PRE (12 Sessions)                                                      |                      |          |           |
|--------|------------------|------------------------------------------------------------------------|----------------------|----------|-----------|
| 35     | Course Review    | Summarize learnings                                                    | Activity             | [1733.1] | MTE 2/ETE |
| 33, 34 | CONTROL Road Map | Develop a Control Plan to sustain project gains                        | Lecture,<br>Activity | [1733.3] | MTE 2/ETE |
| 31, 32 | IMPROVE Road Map | Select Improvement Techniques to eliminate root cause and reduce waste | Lecture,<br>Activity | [1733.3] | MTE 2/ETE |
| 29, 30 | ANALYZE Road Map | Root Cause analysis using Pareto Analysis and FMEA                     | Lecture,<br>Activity | [1733.3] | MTE 2/ETE |
| 28     | MEASURE Road Map | Evaluate project baseline using Process Assessment<br>- 5S             | Lecture,<br>Activity | [1733.6] | MTE 2/ETE |

# Course Articulation Matrix: (Mapping of COs with POs)

|              | STATEMENT                                                                                                                                                                                | CORRELATION WITH PROGRAM OUTCOMES |         |         |         |         |         |         |         |         |          |          |          |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|--|
|              | STATEMENT                                                                                                                                                                                | PO 1                              | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12 |  |
| AU<br>1733.1 | Interpret and apply Lean Six Sigma methodology for a process improvement project                                                                                                         |                                   |         |         |         | 3       | 2       | 2       |         | 2       |          | 2        |          |  |
| AU<br>1733.2 | Recognize different Lean Six Sigma techniques and link strategy to a project for judging the best way to select the right tools needed to achieve their project goals                    |                                   |         | 3       |         | 2       | 2       | 1       |         | 2       |          | 1        |          |  |
| AU<br>1733.3 | Develop and practice their problem-solving capability by using a<br>structured methodology for a live problem in a team-based environment.                                               |                                   |         | 2       | 3       | 2       | 2       | 2       |         | 1       |          | 1        | 2        |  |
| AU<br>1733.4 | Experiment with defining a problem for a live problem and analyzing it to identify the root cause for developing countermeasures that will be validated for effectiveness.               |                                   |         | 1       | 2       | 1       | 1       | 1       |         | 2       |          | 2        |          |  |
| AU<br>1733.5 | Effectively communicate by reporting out their problem-solving project using standard formats used by businesses/organizations                                                           |                                   |         | 1       |         |         | 2       | 3       |         | 3       |          | 1        | 3        |  |
| AU<br>1733.6 | Develop and present an industry standard project charter for their dream internship company by collecting VOC data, business needs/requirements from surveys, internet/company websites. |                                   |         | 1       | 1       |         | 2       | 2       | 1       | 1       |          | 1        |          |  |

# I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



School of Automobile Mechanical and Mechatronics Engineering

#### Department of Automobile Engineering Course Plan

Industrial Internship and Lean Six Sigma Green Belt Training | AU 1881 | 3 Credits | 3 0 0 3

Session: Jan 2021 – June 2021 | Faculty: Prof. Rajesh Solanki, Dr Vinod Yadav

- **A. Introduction:** This course is divided across two weeks to provide Lean Six Sigma training for students doing their VIII semester project
  - a. Pre-Internship/Dept. Project Week: Students will participate in a 5-day online workshop before going on internship or working on a Departmental R&D Project to learn about applying Lean Six Sigma methods pertaining to Define and Measure phase during their internship project.
  - b. Mid-Internship Week: Students will participate in a 5-day online workshop after completing 4 weeks of internship to present progress made in the Define and Measure phases of their project. After first day of presentations, they will learn about applying Analyse, Improve and Control tools/methods to complete their Internship/Departmental LSS project.
- **B.** Course Outcomes: At the end of the course, students will be able to
  - **[1881.1].** Develop problem solving capability using a structured methodology.
  - **[1881.2].** Experiment with defining a problem and identifying its root cause.
  - [1881.3]. Recognize different Lean Six Sigma techniques to link strategy to a project.
  - [1881.4]. Judge best way to select the right tools needed to achieve their project goals in a team based environment.
  - **[1881.5].** Recall different methods for different type's problems, chose and test them for a live problem with a team to improve employability.
  - **[1881.6].** Report out their project using standard Lean Six Sigma formats.

#### C. Program Outcomes and Program Specific Outcomes

- **[PO.1].** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- **[PO.2].** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3].** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4].** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- **[PO.5].** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
- **[PO.6].** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7].** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8].** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- **[PO.9].** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

- **[PO.10].** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12].** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
- **[PSO.I].** Autotronics and Electric Vehicle Technology: Apply knowledge of electrical and electronics engineering for providing automobile engineering solutions
- **[PSO.2].** Alignment to Super Qualification packs of ASDC: Demonstrate knowledge and performance criteria as defined by ASDC super qualification packs for R&D or Quality or Service Engineering
- **[PSO.3].** Application of Lean Six Sigma Methodology: Demonstrate through an internship project, the knowledge and understanding of lean six sigma methodology based on Define, Measure, analyse, improve/develop and control/validate phases (DMAIC/ DMADV).

#### **D.** Assessment Rubrics:

| Criteria            | Description                                                                 | Maximum Marks                                                               |  |  |  |  |  |  |  |
|---------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                     | Sessional Exam I (Open Book) +                                              | 20 (10+10)                                                                  |  |  |  |  |  |  |  |
| Internal Assessment | Minitab Projects                                                            |                                                                             |  |  |  |  |  |  |  |
| (Summative)         | Sessional Exam II (Open Book) +                                             | 20 (10+10)                                                                  |  |  |  |  |  |  |  |
|                     | Minitab Projects                                                            |                                                                             |  |  |  |  |  |  |  |
|                     | Week 2 Project Presentation                                                 | 20                                                                          |  |  |  |  |  |  |  |
|                     |                                                                             |                                                                             |  |  |  |  |  |  |  |
| End Term Exam       | End Term Exam (Open Book)                                                   | 40                                                                          |  |  |  |  |  |  |  |
| (Summative)         |                                                                             |                                                                             |  |  |  |  |  |  |  |
|                     | Total                                                                       | 100                                                                         |  |  |  |  |  |  |  |
| Attendance          | A minimum of 75% Attendance is required                                     | A minimum of 75% Attendance is required to be maintained by a student to be |  |  |  |  |  |  |  |
| (Formative)         | qualified for taking up the End Semester exa                                | mination.                                                                   |  |  |  |  |  |  |  |
|                     | The allowance of 25% includes all types of leaves including medical leaves. |                                                                             |  |  |  |  |  |  |  |

#### E. Syllabus

**Pre-Internship/Dept. Project Week :** Students will participate in a 5 days on campus workshop before going on internship or working on a departmental Project to learn about applying Lean Six Sigma methods pertaining to Define, Measure and Analysis phase during their internship project. The tools that will covered are – Project Chartering, Project Planning and Management, Establishing baseline to measure improvement, Process Mapping, SIPOC Value Stream Mapping to identify Value Add and Non-Value Add, Spaghetti diagrams, Cause & Effect analysis, FMEA, Measurement System Analysis (MSA), Gage R&R, Process capability analysis and process control (SPC) using Minitab, Presentation Skills. This workshop will be attended by the student's faculty advisor to ensure continuity during periodic progress review throughout their internship program.

**Mid-Internship Week:** Students will participate in a 5 days On Campus workshop after completing 4 weeks of internship to present progress made in Define, Measure and Analysis phases of their project. After first day of presentations, they will learn about applying Improve and Control tools and methods to complete their Internship LSS project. The Improve Phase methods will verify critical inputs using DOE by practicing use of Minitab; Improvement tools such as – Establishing single piece flow using Kanban / Pull methods that are trigged by customer demand, Mistake Proofing, Quick Changeover, Workplace Organization, Process Mapping, Process Documentation, Piloting a new process to test for improvement. The Control Phase tools and methods will develop a control system to ensure long term sustainability using - Control Plans, Process Documentation, Training Plans, Statistical Process Control and Process Capability. This workshop will be attended by their faculty advisors to ensure benefits are being delivered to the company/departmental research project sponsoring their internship.

#### F. Text Books

T1. Michael L. George, John Maxey, David T. Rowlands, Malcolm Upton, Lean Six Sigma, McGraw-Hill Education India, 2004

## G. Reference Books

R1. Issa Bush and Barbara Lawton, Lean Six Sigma using Sigma XL Minitab, McGraw-Hill Education India, 2010

## H. Lecture Plan:

| Lec No | Topics                       | Session Objective                                                                                                                                                                                                                                                                            | Mode of Delivery         | Corresponding              | Mode of Assessing<br>Outcome                                                                                                                                 |  |  |  |  |
|--------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1      | Course Hand out briefing and | To acquaint teacher's expectations and understand                                                                                                                                                                                                                                            | Lecture                  |                            | NIA                                                                                                                                                          |  |  |  |  |
| •      | Toom assignments             | student expectations                                                                                                                                                                                                                                                                         | Lecture                  |                            |                                                                                                                                                              |  |  |  |  |
| 2      |                              | Define phase tool selection                                                                                                                                                                                                                                                                  | Lecture                  |                            |                                                                                                                                                              |  |  |  |  |
| Z      |                              | Denne phase tool selection                                                                                                                                                                                                                                                                   |                          | 1881.2                     |                                                                                                                                                              |  |  |  |  |
| 3      | Project Chartering           | Show how Chartering fits into the DMAIC roadmap<br>Develop a charter that clearly documents:<br>What is to be accomplished<br>Why it is necessary<br>Who will work on the effort<br>When it is needed<br>How does it link with strategy                                                      | Lecture<br>Activity      | 1881.1<br>1881.3           | <ul> <li>Activity with Project<br/>Sponsor</li> <li>Week II Define and<br/>Measure Phase<br/>Presentation</li> <li>Final Project<br/>Presentation</li> </ul> |  |  |  |  |
| 4      | MEASURE Road Map             | Understand the Process<br>Measure phase tool selection                                                                                                                                                                                                                                       | Lecture<br>Activity      | 1881.1<br>1881.4           | <ul> <li>MTE I</li> <li>Week II Define and<br/>Measure Phase<br/>Presentation</li> <li>Final Project<br/>Presentation</li> </ul>                             |  |  |  |  |
| 4, 5   | Process Mapping              | Understand the iterative nature of process mapping<br>Discriminate between different flow chart symbols<br>Demonstrate use of map formats<br>SIPOC<br>Basic Flow Chart<br>Swimlane (Cross Functional) Map<br>Introduce other map formats<br>Value Stream Map<br>Spaghetti Diagram            | Lecture<br>Team Activity | 1881.4<br>1881.5           | <ul> <li>MTE I</li> <li>Week II Define and<br/>Measure Phase<br/>Presentation</li> <li>ETE</li> <li>Final Project<br/>Presentation</li> </ul>                |  |  |  |  |
| 6, 7   | Establishing Customer Needs  | Understand the process of identifying services and key<br>customer requirements<br>Establish business and customer needs<br>Understand demand needs for your product / process<br>Calculate required takt time for your process<br>Calculate number of workers required to meet takt<br>time | Lecture<br>Team Activity | 1881.1<br>1881.4<br>1881.5 | <ul> <li>MTE I</li> <li>Week II Define and<br/>Measure Phase<br/>Presentation</li> <li>ETE</li> <li>Final Project<br/>Presentation</li> </ul>                |  |  |  |  |
| 8      | Process Assessment – 5S      | Introduce process assessment tools<br>- 5S                                                                                                                                                                                                                                                   | Lecture<br>Team Activity | 1881.1<br>1881.4<br>1881.5 | Week II Define and<br>Measure Phase<br>Presentation                                                                                                          |  |  |  |  |

|            |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                            | • ETE                                                                                                                          |
|------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 9, 10      | Cause & Effect Analysis                                 | Understand Relationship Of Input And Output Variables<br>Introduce Cause and Effect Diagram<br>Introduce Cause and Effect matrix (C&E)<br>Link the cause and effects matrix to the process map<br>Review steps to create C&E matrix<br>Link C&E matrix to further steps in the LSS<br>Methodology<br>- Create a C&E matrix                                                                                                            | Lecture<br>Team Activity | 1881.4<br>1881.5           | <ul> <li>Week II Define and<br/>Measure Phase<br/>Presentation</li> <li>ETE</li> <li>Final Project<br/>Presentation</li> </ul> |
| 11, 12     | Basic Statistical Analysis                              | Understand Current Process Performance<br>- Introduce the concepts of<br>Stability, Shape, Center<br>and Variability (Spread) distributions<br>- Learn about the normal distribution<br>- Explain the concept of the Central Limit Theorem                                                                                                                                                                                            |                          | 1811.1<br>1881.4<br>1881.5 | <ul> <li>MTE I</li> <li>Minitab Project</li> <li>ETE</li> <li>Final Project<br/>Presentation</li> </ul>                        |
| 13, 14, 15 | Baseline Measurement – Run<br>Charts and Control Charts | <ul> <li>Understand Current Process Performance</li> <li>Collect and review historical data to establish baseline<br/>measurements</li> <li>Link Control Chart methods to the LSS Methodology</li> <li>Discuss different types of variation</li> <li>Introduce various types of Control Charts</li> <li>Discuss interpretation of Control Charts</li> <li>Introduce Basic Minitab Functions</li> </ul>                                | Lecture<br>Team Activity | 1881.1<br>1881.4<br>1881.5 | <ul> <li>MTE I</li> <li>Minitab Project</li> <li>ETE</li> <li>Final Project<br/>Presentation</li> </ul>                        |
| 16, 17     | Baseline Measurement –<br>Process capability            | Understand Current Process Performance<br>- Introduce "Traditional" process capability indexes<br>- Perform Attribute and Variable Capability Studies<br>- Discuss Short Term and Long Term Process<br>Capability<br>- Review capability assessment for Single-sided<br>specifications and non-normal data<br>- Overview transformation of non-normal data<br>- Introduce capability index Cpm<br>- Introduce basic Minitab functions |                          | 1881.1<br>1881.4<br>1881.5 | <ul> <li>MTE I</li> <li>Minitab Project</li> <li>ETE</li> <li>Final Project<br/>Presentation</li> </ul>                        |
| 18, 19, 20 | Measurement System Analysis                             | <ul> <li>Introduce measurement systems analysis –</li> <li>Continuous &amp; Attribute</li> <li>Define basic measurement terms</li> <li>Outline procedure for performing a gage study<br/>(measurement systems analysis)</li> <li>Perform a measurement study using Minitab</li> </ul>                                                                                                                                                 | Lecture<br>Team Activity | 1881.1<br>1881.4<br>1881.5 | <ul> <li>MTE I</li> <li>Minitab Project</li> <li>ETE</li> <li>Final Project<br/>Presentation</li> </ul>                        |
| 21, 22     | Data Collection                                         | <ul> <li>Tie measurements into process mapping</li> <li>Outline procedure for creating a measurement system</li> <li>Develop a simple measurement system</li> </ul>                                                                                                                                                                                                                                                                   |                          | 1881.1<br>1881.4<br>1881.5 | <ul> <li>MTE I</li> <li>ETE</li> <li>Final Project<br/>Presentation</li> </ul>                                                 |

| 23, 24, 25        | Data Mining<br>Pre-Internship (Week 1) wrap | Introduce 7 Basic Quality Tools<br>I. Dotplots / Histograms / Normal Plots; 2. Run charts /<br>Time Series;<br>3. Pareto Diagrams; 4. Stratification (2nd Level Pareto);<br>5. Boxplots; 6. Scatter Plots; 7. Checksheets<br>/Concentration Diagrams<br>- Show application of these techniques for Data Mining<br>using Minitab<br>Presentation techniques using LSS Standard template for                                                                                                                                 |                          | 1881.1<br>1881.4<br>1881.5                   | Minitab Project     ETE     Final Project     Presentation                                               |
|-------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                   | up                                          | Define and Measure Phases<br>Presentation during Week II                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                              | <ul> <li>Phase Presentation<br/>during Week II</li> <li>Final Project<br/>Presentation</li> </ul>        |
| -                 | MTE - I                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | 1881.1, 1881.2,<br>1881.3, 1881.4,<br>1881.5 | Sessional I<br>Comprehensive Exam                                                                        |
| 27                | ANALYZE Road Map                            | Analyze phase tool selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lecture<br>Activity      | 1881.1<br>1881.2                             | NA                                                                                                       |
| 27, 28            | Failure Mode and Effect<br>Analysis         | Understand Potential Risks/Failures<br>- Provide insight to the uses of FMEA<br>- Identification of risk sources<br>- Define the different types of FMEA<br>- To learn the steps in developing a Process FMEA<br>- Create an FMEA                                                                                                                                                                                                                                                                                          | Lecture<br>Team Activity | 1881.1<br>1881.4<br>1881.5                   | <ul> <li>MTE II</li> <li>ETE</li> <li>Final Project<br/>Presentation</li> </ul>                          |
| 29, 30            | Multi-Vari Studies                          | Identify Causes of Variation<br>- Overview Multi-Vari studies<br>- Review noise variables and their analysis<br>- Describe planning of Multi-Vari studies<br>- Identify methods for data collection<br>- Explore examples of data analysis using Minitab<br>- Review the format for a Final Report                                                                                                                                                                                                                         | Lecture<br>Team Activity | 1881.1<br>1881.4<br>1881.5                   | <ul> <li>MTE II</li> <li>Minitab Project</li> <li>ETE</li> <li>Final Project<br/>Presentation</li> </ul> |
| 31, 32, 33,<br>34 | Hypothesis Testing                          | <ul> <li>Determine Largest Sources of Variation</li> <li>Introduce basic concepts of hypothesis testing</li> <li>Link hypothesis testing to upcoming DMAIC topics</li> <li>T-Test &amp; Chi Square Test practice on Minitab</li> <li>Introduce t-Test and its importance in comparison of means</li> <li>Introduce basic concepts of Means / Medians testing</li> <li>Introduce the basic concepts of Chi-Square – Test for Independence</li> <li>Link Chi-Square – Test for Independence to the DMAIC Roadmap.</li> </ul> | Lecture<br>Team Activity | 1881.1<br>1881.4<br>1881.5                   | <ul> <li>MTE II</li> <li>Minitab Project</li> <li>ETE</li> <li>Final Project<br/>Presentation</li> </ul> |
| 35, 36            | Correlation and Regression                  | Determine Largest Sources of Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lecture                  | 1881.1                                       | MTE II                                                                                                   |

| 27         |                                     | <ul> <li>Define correlation and correlation coefficients</li> <li>Introduce basic concepts of regression</li> <li>Develop mathematical predictive models using<br/>regression techniques</li> <li>Study concepts of residual diagnostics</li> <li>Discuss uses and abuses of regression</li> <li>Minitab practice</li> </ul>                      | Team Activity            | 1881.4<br>1881.5           | <ul> <li>Minitab Project</li> <li>ETE</li> <li>Final Project<br/>Presentation</li> </ul> |
|------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|------------------------------------------------------------------------------------------|
| 57         |                                     |                                                                                                                                                                                                                                                                                                                                                   | Activity                 | 1881.2                     | <ul> <li>MTE II</li> <li>ETE</li> <li>Final Project<br/>Presentation</li> </ul>          |
| 37, 38     | Improvement Techniques              | <ul> <li>Explain different patterns that may be used to<br/>improve/redesign a process and when they may be<br/>useful</li> <li>Use improvement techniques such as Setup<br/>Reduction, 5S, Workplace Layout, Mistake Proofing,<br/>Pull Systems, Standard Work,</li> <li>Understand how to facilitate Improvement Events -<br/>Kaizen</li> </ul> | Lecture<br>Activity      | 1881.1<br>1881.4<br>1881.5 | <ul> <li>MTE II</li> <li>Final Project<br/>Presentation</li> </ul>                       |
| 39, 40, 41 | Design of Experiments               | <ul> <li>Determine Best Process Performance</li> <li>Concept of designed experiments</li> <li>key terminology in experimental design</li> <li>Dealing with noise variables</li> <li>Roadmap for conducting and analysing an experiment<br/>using Minitab</li> </ul>                                                                               | Lecture<br>Activity      | 1881.1<br>1881.2           | <ul> <li>MTE II</li> <li>Minitab Project</li> <li>ETE</li> </ul>                         |
| 42         | Improvement Plan                    | Develop an improvement plan to pilot and implement solutions                                                                                                                                                                                                                                                                                      | Lecture<br>Activity      | 1881.1<br>1881.2           | <ul> <li>MTE II</li> <li>Minitab Project</li> <li>ETE</li> </ul>                         |
| 43         | CONTROL Road Map                    | Finalize the Process Control Plan<br>- Control Phase tool selection<br>- Control Methods, Poka-Yoke, Visual Workplace,<br>Standard Work, TPM, Demand Telescope                                                                                                                                                                                    | Lecture<br>Activity      | 1881.1<br>1881.4<br>1881.5 | <ul> <li>MTE II</li> <li>Final Project<br/>Presentation</li> </ul>                       |
| 43, 44, 45 | Control Methods                     | Present Control roadmap<br>Review the tools / deliverables of the Control phase<br>Introduce common pitfalls encountered in the Control<br>phase                                                                                                                                                                                                  | Lecture<br>Activity      | 1881.1<br>1881.4<br>1881.5 | <ul> <li>MTE II</li> <li>Final Project<br/>Presentation</li> </ul>                       |
| 46, 47     | Monitor the Process                 | Verify Performance to ensure that the process<br>improvements are real<br>- Long Term Capability using Minitab<br>- Statistical Tests to verify performance using Minitab                                                                                                                                                                         | Lecture<br>Team Activity | 1881.1<br>1881.4<br>1881.5 | <ul> <li>MTE II</li> <li>Minitab Project</li> <li>ETE</li> </ul>                         |
| 48         | Mid-Internship (Week II) wrap<br>up | Presentation techniques using LSS Standard template for<br>Analyze, Improve and Control Phases                                                                                                                                                                                                                                                    |                          | 1881.6                     | Final Project     Presentation                                                           |
|            | Mid Term II Exam                    |                                                                                                                                                                                                                                                                                                                                                   |                          | 1881.1                     | Comprehensive                                                                            |

|                            |            | 1881.4 | Assessment of Week II    |
|----------------------------|------------|--------|--------------------------|
|                            |            | 1881.5 |                          |
| End Term Exam              |            | 1881.1 | Comprehensive            |
|                            |            | 1881.2 | Assessment of Week I     |
|                            |            | 1881.3 | and Week II              |
|                            |            | 1881.4 |                          |
|                            |            | 1881.5 |                          |
| Final Project Presentation | Internship | 1881.6 | Final Internship Project |
|                            |            |        | Presentation             |

## I. Course Articulation Matrix: (Mapping of COs with POs)

| со     | STATEMENT                                             |    | CORRELATION WITH PROGRAM OUTCOMES |    |    |    |    |    |    |    | CORRELATION WITH<br>PROGRAM SPECIFIC<br>OUTCOMES |    |    |       |       |       |
|--------|-------------------------------------------------------|----|-----------------------------------|----|----|----|----|----|----|----|--------------------------------------------------|----|----|-------|-------|-------|
|        |                                                       | РО | РО                                | РО | РО | РО | РО | РО | РО | РО | РО                                               | РО | РО | PSO 1 | PSO 2 | PSO 3 |
|        |                                                       | 1  | 2                                 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10                                               | 11 | 12 |       |       |       |
| AU     | Develop problem solving capability using a            |    | 3                                 | 2  | 3  | 2  |    |    |    |    |                                                  |    |    |       | 3     | 3     |
| 1881.1 | structured methodology.                               |    |                                   |    |    |    |    |    |    |    |                                                  |    |    |       |       |       |
| AU     | Experiment with defining a problem and identifying    |    | 3                                 | 3  |    |    |    |    |    |    |                                                  |    |    |       | 3     | 3     |
| 1881.2 | its root cause.                                       |    |                                   |    |    |    |    |    |    |    |                                                  |    |    |       |       |       |
| AU     | Recognize different Lean Six Sigma techniques to link |    |                                   |    |    |    | 1  | 2  |    |    |                                                  | 3  | 2  |       | 3     | 3     |
| 1881.3 | strategy to a project                                 |    |                                   |    |    |    |    |    |    |    |                                                  |    |    |       |       |       |
| AU     | Judge best way to select the right tools needed to    |    | 2                                 | 2  |    |    |    |    |    | 3  |                                                  |    | 2  |       | 2     | 3     |
| 1881.4 | achieve their project goals in a team based           |    |                                   |    |    |    |    |    |    |    |                                                  |    |    |       |       |       |
|        | environment.                                          |    |                                   |    |    |    |    |    |    |    |                                                  |    |    |       |       |       |
| AU     | Recall different methods for different types of       |    | 3                                 | 3  | 2  |    | 2  | 2  |    | 3  |                                                  |    |    |       | 2     | 3     |
| 1881.5 | problems, chose and test them for a live problem      |    |                                   |    |    |    |    |    |    |    |                                                  |    |    |       |       |       |
|        | with a team                                           |    |                                   |    |    |    |    |    |    |    |                                                  |    |    |       |       |       |
| AU     | Report out their problem solving project using        |    |                                   |    |    |    |    |    |    |    |                                                  |    | 3  |       | 2     | 3     |
| 1881.6 | standard formats                                      |    |                                   |    |    |    |    |    |    |    |                                                  |    |    |       |       |       |

I - Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

| со        | STATEMENT                                                                                                             |      | ATTAINMENT OF PROGRAM OUTCOMES<br>THRESHOLD VALUE: 40% |      |      |      |      |      |      |      |       |       | ATTAINMENT OF<br>PROGRAM SPECIFIC<br>OUTCOMES |       |       |       |
|-----------|-----------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------|------|------|------|------|------|------|------|-------|-------|-----------------------------------------------|-------|-------|-------|
|           |                                                                                                                       | PO 1 | PO 2                                                   | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO 10 | PO 11 | PO<br>12                                      | PSO 1 | PSO 2 | PSO 3 |
| AU 1881.1 | Develop problem solving capability using a structured methodology.                                                    |      |                                                        |      |      |      |      |      |      |      |       |       |                                               |       |       |       |
| AU 1881.2 | Experiment with defining a problem and identifying its root cause.                                                    |      |                                                        |      |      |      |      |      |      |      |       |       |                                               |       |       |       |
| AU 1881.3 | Recognize different Lean Six Sigma<br>techniques to link strategy to a<br>project                                     |      |                                                        |      |      |      |      |      |      |      |       |       |                                               |       |       |       |
| AU 1881.4 | Judge best way to select the right tools needed to achieve their project goals in a team based environment.           |      |                                                        |      |      |      |      |      |      |      |       |       |                                               |       |       |       |
| AU 1881.5 | Recall different methods for<br>different types of problems, chose<br>and test them for a live problem<br>with a team |      |                                                        |      |      |      |      |      |      |      |       |       |                                               |       |       |       |
| AU 1881.6 | Report out their problem solving project using standard formats                                                       |      |                                                        |      |      |      |      |      |      |      |       |       |                                               |       |       |       |

0-No Attainment; I- Low Attainment; 2- Moderate Attainment; 3- Substantial Attainment